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Abstract. The present paper combines loss attitudes and linear utility by providing an ax-

iomatic analysis of corresponding preferences in a cumulative prospect theory (CPT) framework.

(CPT) is one of the most promising alternatives to expected utility theory since it incorporates

loss aversion, and linear utility for money receives increasing attention since it is often concluded

in empirical research, and employed in theoretical applications. Rabin (2000) emphasizes the

importance of linear utility, and highlights loss aversion as an explanatory feature for the dis-

parity of significant small-scale risk aversion and reasonable large-scale risk aversion. In a sense

we derive a two-sided variant of Yaari’s dual theory, i.e. nonlinear probability weights in the

presence of linear utility. The first important difference is that utility may have a kink at the

status quo, which allows for the exhibition of loss aversion. Also, we may have different proba-

bility weighting functions for gains than for losses. The central condition of our model is termed

independence of common increments. The applications of our model to portfolio selection and
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insurance demand show that CPT with linear utility has more realistic implications than the

dual theory since it implies only a weakened variant of plunging.
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1 Introduction

Empirical research has shown that expected utility (EU) fails to provide a good description

of individual behavior under risk. Examples are the famous paradoxes of Allais (1953)

and Ellsberg (1961). This evidence has motivated the development of alternative theories

(the so-called non-expected utility theories), which allow for the exhibition of “paradoxical

behavior.” Building upon its predecessor prospect theory (Kahneman and Tversky, 1979),

cumulative prospect theory (CPT) has nowadays become the most prominent of these

alternatives.

Recently, a new criticism of EU has been put forward by Rabin (2000) and Rabin

and Thaler (2001). Following earlier work by Hansson (1988), these authors show that

reasonable degrees of risk aversion over small and modest stakes imply unreasonable high

degrees of risk aversion over large stakes in the EU framework. For instance an EU-

maximizer who initially rejects a 50-50 bet of loosing $10 and winning $11 regardless of

the current wealth would also reject any 50-50 bet of losing $100 and winning $x for any

large value of x. Since this high degree of risk aversion seems to be irrational, Rabin (2000)

concluded that EU is only a good representation of risk neutral behavior, which necessarily

means that utility has to be linear. Neilson (2001) has shown that this criticism on EU

carries over to rank-dependent utility which is further prominent alternative to EU and

a precursor of CPT. More precisely, in the rank-dependent utility framework the utility

function should also be linear because concave utility implies, as for EU, unreasonable

high degrees of risk aversion over large stakes.

Considering the importance of linear utility, the goal of the present paper is to investi-

gate linear utility for decision under risk in a CPT framework by providing an axiomatic
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analysis of corresponding preferences. Rabin (2000) points out that a model incorporating

loss attitudes reconciles significant degrees of risk aversion for small-scale outcomes and

reasonable degrees of risk aversion for large-scale outcomes. CPT, as a direct generaliza-

tion of expected utility and of rank dependent utility, takes into account attitudes towards

losses. The characteristic features of CPT are rank-dependence, reference-dependence,

and sign-dependence. Rank-dependence resolves the paradoxes of Allais (1953) and Ells-

berg (1961), and has played an important role in the axiomatizations of rank-dependent

expected utility (Quiggin 1981, Wakker 1989, Schmeidler 1989). By transforming cumula-

tive instead of single probabilities rank-dependence enables the incorporation of nonlinear

perception of probabilities into decision under risk, without implying violations of stochas-

tic dominance as in the original prospect theory model.

Experimental findings suggest that decision makers perceive outcomes as differences to

their status quo rather than absolute wealth levels (Markovitz 1952, Edwards 1954, Yaari

1965, Kahneman and Tversky 1979, Tversky and Kahneman 1991, Harless and Camerer

1994). Reference-dependence means that losses (i.e., negative deviations from the status

quo) are perceived differently than gains. A loss seems to have a greater impact than

the corresponding gain, which has motivated Kahneman and Tversky (1979) to propose

the hypothesis of loss aversion (the aversion of a loss weights significantly more than

the attraction by a corresponding gain). Loss aversion has been proved to be fruitful in

explaining paradoxical phenomena as the equity premium puzzle (Benartzi and Thaler

1995, Gneezy and Potters 1997), the overtime premium puzzle (Dunn 1996), the status

quo bias (Samuelson and Zeckhauser 1988), and the endowment effect (Thaler 1980). The

latter explains the observed disparity between the willingness-to-pay and willingness-to-

accept (Kachelmeier and Shehata 1992). The status quo is usually assumed to be the
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current wealth position, however, it may be influenced by other factors. For example,

based on empirical evidence by Green (1963), Swalm (1966), and Halter and Dean (1971),

the status quo was assumed to be a target return in the models of Fishburn (1977) and

Holthausen (1981).

There is also empirical evidence which suggests that the nonlinear perception of prob-

abilities, as explained above, is influenced by whether gains or losses are considered (Ed-

wards 1955, Slovic and Lichtenstein 1968, Einhorn and Hogarth 1986, Currim and Sarin

1989, Tversky and Kahneman 1992). This feature, referred to as sign-dependence, leads

to different decision weights for gains than for losses.

Because CPT combines these three desirable features, it is currently the most used

model for decision under risk in empirical research. It was first proposed by Starmer and

Sugden (1989). Later, axiomatizations of CPT have been provided by Luce and Fishburn

(1991), Tversky and Kahneman (1992), Wakker and Tversky (1993), Chateauneuf and

Wakker (1999), and Schmidt (2000). This paper provides a new axiomatization of CPT

with a piecewise linear utility function. More precisely, utility is linear for gains and

linear for losses with a possible kink at the status quo. If loss aversion is satisfied, utility

is steeper in the domain of gains than in the domain of losses.

Linear utility has a long tradition in theoretical and empirical research. An axiomatic

foundation of subjective expected utility with linear utility was provided by de Finetti

(1931). Preston and Baratta (1948) used a linear utility model in order to estimate prob-

ability distortions. Edwards (1955) reports about a series of experiments which support

our model. He finds evidence for sign-dependent probability distortions and also for lin-

ear utility. Many studies observed linear utility for losses (Hershey and Schoemaker 1980,

Schneider and Lopes 1986, Cohen, Jaffray, and Said 1987, Weber and Bottom 1989, Lopes
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and Oden 1999). Moreover, for small stakes it seems to be commonly agreed that utility

is linear (Lopes 1995, Fox, Rogers, and Tversky 1996, Kilka and Weber 1998).

Handa (1977) axiomatized a model of subjective expected value, which was implic-

itly used by Preston and Baratta (1948) and already discussed in Edwards (1955). In

that model the value of a lottery is given by the sum of distorted probabilities multiplied

with their corresponding outcomes. As in the original prospect theory, not cumulative

but single probabilities are distorted and, therefore, violations of stochastic dominance

are implied. This was first pointed out by Fishburn (1978). One model that combines

linear utility and distorted probabilities without violating stochastic dominance is the

dual theory (DT) of Yaari (1987). Similarly to our model, cumulative probabilities are

distorted, however, the resulting probability weights are not sign-dependent. Moreover,

reference-dependence and, therefore, also loss aversion are not permitted under DT. A

second axiomatization of DT was offered by Safra and Segal (1998). As Yaari (1987)

they exclude sign- and reference-dependence by considering only positive consequences.

Their essential assumptions are constant proportional and constant absolute risk aversion

jointly unified under the name constant risk aversion. Moreover, they use additional pref-

erence conditions which impose strong restrictions on the range of probability weighting

functions.

We are convinced that CPT with linear utility is not only useful as a descriptive model

in empirical research but may also generate new insights in theoretical applications. In

particular, due to the additional freedom gained by reference- and sign-dependence, the

model is a good alternative to the DT which has often been applied in economic analyses.

Some examples are firm behavior under risk (Demers and Demers 1990), insurance de-
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mand (Doherty and Eeckhoudt 1995, Schmidt 1996), insurance pricing (Wang 1995, 1996,

Wang, Young and Panjer 1997), agency theory (Schmidt 1999a), and efficient risk-sharing

(Schmidt 1999b). Interestingly, van der Hoek and Sherris (2001) propose a risk measure

for portfolio choice and insurance decisions based on DT and choose different weighting

functions for gains and losses. Therefore, our model can serve as a theoretical basis for

their risk measure.

Altogether, linear utility plays an important role in both theoretical and empirical

research, especially for analyzing firm behavior and insurance economics. This conclusion

is reinforced by the results of Rabin (2000) and Rabin and Thaler (2001) since they clearly

show that the common assumption of concave utility has undesirable and unrealistic

implications. The goal of the present paper is to provide a theoretical foundation of linear

utility, which is in accordance with recent empirical findings and which is well-suited for

theoretical and empirical applications.

In the next section we will present the model and introduce our central condition,

termed independence of common increments. In contrast to other conditions which have

been employed to derive CPT, the condition of independence of common increments is

rather simple and, therefore, well suited for empirical research. More precisely, with the

help of independence of common increments one can empirically test the linearity of utility

even if effects of rank-, reference-, and sign-dependence are involved.

In Section 3 we apply our model to portfolio selection and insurance demand. The

various applications of DT mentioned above have shown that the linearity of utility often

implies a pattern of behavior which has been termed “plunging” by Yaari (1987). For

example when choosing between a safe and a risky asset a decision maker in DT never

diversifies but invests either all money in the safe asset or everything in the risky asset.
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Analogously, DT predicts for insurance demand that individuals either buy full coverage

or no coverage while partial coverage is never optimal. Our results show that behavior

under CPT with linear utility is more realistic since only a weakened variant of plunging

is implied: In the portfolio selection problem an individual may also diversify, however

if she diversifies, she always sticks to one specific portfolio composition. Analogously, an

individual may demand partial coverage in insurance problems, however, if she demands

partial coverage, she will always demand the same amount of coverage.

2 The Model

We consider a set of monetary outcomes identified with IR. A lottery is a finite probability

distribution over the set of outcomes. It is represented by P := (p1, x1; . . . ; pn, xn) meaning

that probability pj is assigned to outcome xj, for j = 1, . . . , n. With this notation we

implicitly assume that outcomes are ranked in decreasing order, i.e., x1 > · · · > xn. The

probabilities pj are nonnegative and sum to one. Without loss of generality, we assume

that the status quo is given by zero. Therefore, we refer to positive outcomes as gains

and to negative outcomes as losses.

We assume a preference relation < over the set of lotteries, where Â denotes strict

preference and ∼ denotes indifference. Our goal is to find a functional that represents

preferences over lotteries. This necessarily implies that < must be a weak order, i.e. < is

complete (P < Q or P 4 Q for all lotteries P,Q) and transitive. Moreover, we assume that

< satisfies simple continuity, i.e. for any lottery (p1, x1; . . . ; pn, xn), the sets {(y1, . . . , yn) :

(p1, y1; . . . ; pn, yn) < (p1, x1; . . . ; pn, xn)} and {(y1, . . . , yn) : (p1, y1; . . . ; pn, yn) 4 (p1, x1; . . . ; pn, xn)}

are closed subsets of IRn.
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From Debreu (1954) we know that weak ordering and simple continuity guarantee the

existence of a functional V that represents preference, i.e. P < Q ⇔ V (P ) > V (Q) for

all lotteries P and Q.

A particular functional form of V is CPT. As argued above our goal is to derive a

model of CPT with linear utility which we will refer to as linear cumulative prospect

theory (LCPT). Consider a lottery P = (p1, x1; . . . ; pn, xn) such that

x1 > · · · > xk > 0 > xk+1 > · · · > xn,

for some k ∈ {0, . . . , n}. The value of P under LCPT is given by

LCPT (P ) =
nX
i=1

πiU(xi),

where the utility function U has the form

U(x) =

 x, for all x > 0,
λx, with λ > 0 for all x 6 0

and the decision weights πi, i = 1, . . . , n, are defined as follows. There exist two probability

weighting functionsw+, w− : [0, 1]→ [0, 1] with w+(0) = w−(0) = 0 and w+(1) = w−(1) =

1 which generate the decision weights. This is done as follows:

πi =

 w+(p1 + · · ·+ pi)− w+(p1 + · · ·+ pi−1), if i 6 k,
w−(pi + · · ·+ pn)− w−(pi+1 + · · ·+ pn), if i > k.

for each i ∈ {1, . . . , n}. Therefore, for gains (i 6 k) the decision weight πi represents a

difference in transformed decumulative probabilities, whereas for losses (i > k) cumulative

probabilities are transformed. The fact that w+(p) may differ from 1−w−(1−p), the dual

of w−, reflects sign-dependence. The parameter λ in the utility function is the loss aversion

parameter. Loss aversion is characterized by λ > 1. Note that without sign-dependence

LCPT would reduce to the dual theory of Yaari (1987) if λ = 1.

In general both weighting functions are assumed to be strictly increasing. This is

necessary in order to guarantee consistency with stochastic dominance. The preference
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relation < satisfies stochastic dominance if (p1, x1; . . . ; pn, xn) Â (p1, y1; . . . ; pn, yn) when-

ever xj > yj for all j and xj > yj for at least one j with pj > 0. Since the probabilities

are fixed this condition comes down to monotonicity in outcomes.

So far we have considered only standard conditions (weak order, simple continuity,

and stochastic dominance) which imply only the existence of a representing functional

that is consistent with stochastic dominance. In order to derive a CPT functional further

conditions have to be imposed. Because such conditions need to imply the separation of

utility and decision weights and above that to imply sign-dependence, most conditions

that are employed in the derivation of general CPT are rather complex. For example Luce

and Fishburn (1991) use a condition called compound gamble and joint receipt, whereas

Tversky and Kahneman (1992), Wakker and Tversky (1993), Chateauneuf and Wakker

(1999), and Schmidt (2000) use sign-dependent and comonotonic tradeoff consistency. In

contrast, Wakker and Zank (2001) use a generalization of traditional constant proportional

risk aversion to nonpositive outcomes to derive a CPT model where utility is a power

function. The latter result shows that if one is interested in a particular form for utility,

much simpler axioms may be employed in order to characterize CPT.

In this paper we are also interested in a particular form for utility. Hence, we propose

an alternative condition, termed independence of common increments, which is rather

simple in its formulation but strong in its implications as it leads to the derivation of a

piecewise linear utility function. In order to formulate the condition as weak and simple

as possible, we consider only lotteries with equally likely outcomes. Formulations of

preference conditions for equally likely outcomes have already been proposed by Ramsey

(1931), Debreu (1959), Blackorby, Davidson, and Donaldson (1977), Chew and Epstein

(1989), and Schmidt and Zank (2001a). An analysis of the implications of equally likely
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outcomes for dominance and independence rules is offered in Quiggin (1989).

The advantage of considering only equally likely outcomes is that people may perceive

them easier. This is because in comparisons between such lotteries probabilities can be

suppressed, thereby reducing the cognitive effort for the evaluation of the lotteries. Since

probabilities and outcomes are measured on different scales, a tradeoff between them is

rather difficult. As a result people may overweight probabilities in choice problems, but

overweight outcomes in pricing problems. This pattern of behavior has been referred

to as scale compatibility in the psychological literature (Tversky, Sattath, and Slovic

1988, Tversky, Slovic, and Kahneman 1990). Scale compatibility is nowadays the most

prominent explanation of the preference reversal phenomenon first observed by Slovic

and Lichtenstein (1968). Considering only equally likely outcomes should reduce such

inconsistencies and is, therefore, particularly suited for empirical research.

To simplify notation, we identify a lottery ( 1
n
, x1; . . . ;

1
n
, xn) with the vector (x1, . . . , xn)

where (x1 > x2 > · · · > xn). Independence of common increments is defined as follows.
For two lotteries (x1, . . . , xn) and (y1, . . . , yn) and α ∈ IR we have

(x1, . . . , xi, . . . , xn) < (y1, . . . , yi, . . . , yn)⇒
(x1, . . . , xi + α, . . . , xn) < (y1, . . . , yi + α, . . . , yn),

whenever xi, xi+α, yi, yi+α are of the same sign, that is either they are all gains or they

are all losses. Implicitly in the above definition the ranking of outcomes should remain the

same. Therefore, an additional constraint is imposed on the magnitude of the constant

α.

Independence of common increments says that a common absolute change of an out-

come of the same rank does not revert the preference between two lotteries as long as

this change is small enough to affect neither the rank nor the sign of outcomes. For
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α small enough, repeated application of this principle yields (x1 + α, . . . , xn + α) <

(y1 + α, . . . , yn + α), indicating that it implies a weakened variant of the concept of con-

stant absolute risk aversion (CARA). The restrictions on α mentioned above are crucial

for the difference to traditional CARA.

Because in the definition of our independence condition the outcomes in the considered

lotteries are all different there exist constants α1 > · · · > αn such that

(x1, . . . , xi, . . . , xn) < (y1, . . . , yi, . . . , yn)⇒
(x1 + α1, . . . , xn + αn) < (y1 + α1, . . . , yn + αn)

if xk, yk > 0 > xk+1, yk+1. This shows that the property comes close to additivity on rank

ordered sets. Such a condition has been used by Weymark (1981) to derive the generalized

Gini welfare functions. Our condition here is weaker because of its reference- and sign-

dependent nature. If we would drop the sign- and the rank-dependence restrictions we

would get additivity on general sets. That and stochastic dominance are equivalent to the

non-existence of a Dutch book, and the latter condition has been used by de Finetti (1931)

to derive subjective expected utility with linear utility. This demonstrates that the only

features that we have added to additivity are rank-dependence, reference-dependence, and

sign-dependence, the basic characteristics of CPT.

It is easy to show that independence of common increments is a necessary condition

for CPT with linear utility. The next theorem shows that the property is also sufficient

in the presence of weak ordering, simple continuity and stochastic dominance.

Theorem 1 Assume a preference relation < on the set of lotteries. The following con-

ditions are equivalent:

(i) < satisfies weak ordering, simple continuity, stochastic dominance, and indepen-

dence of common increments.
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(ii) LCPT holds with strictly increasing weighting functions.

If one of the above statements holds, then the weighting functions are uniquely deter-

mined and the utility function is a ratio scale, i.e. it is unique up to multiplication by a

positive constant. ¤

This theorem — proved in the appendix — demonstrates that due to its simple formu-

lation independence of common increments is a suitable concept for empirical research in

the examination of linear utility in the presence of rank-, reference-, and sign-dependence.

3 Applications

3.1 Portfolio Selection

In the introduction we mentioned that DT implies behavior which can be characterized as

all-or-nothing decision. The reason for this plunging behavior is the fact that the linearity

of utility in DT produces corner solutions (Yaari 1987). The goal of the present section

is to investigate whether plunging is also implied by LCPT. Therefore, we consider a

simple problem of portfolio selection which can be analyzed graphically in a two-outcome

diagram. In such a diagram it is assumed that there are only two possible states of the

world, state A and state B. The consequences associated with these states are denoted

by xA and xB, respectively. Moreover, it is assumed that the states occur with fixed

probabilities, that is we can assume that 0 < p < 1 is the probability of state A and

1 − p the probability of state B. In order to compare LCPT with DT we will first

analyze DT as reference model. As mentioned above LCPT reduces to DT if reference-

and sign-dependence can be ignored, i.e. the loss aversion factor λ is always equal to

unity and the weighting functions for gains coincides with the dual one for losses (i.e.
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w+(·) = 1− w−(1− ·) = w(·)). Therefore, the utility of a two-outcome lottery P in DT

is given by

DT (P ) =

 w(p)xA + (1− w(p))xB if xA > xB
w(1− p)xB + (1− w(1− p))xA if xB > xA.

We can now calculate the slope of indifference curves in a two-outcome diagram as:

dxA
dxB

¯̄
dDT (P )=0 =

 −1−w(p)
w(p)

if xA > xB

− w(1−p)
1−w(1−p) if xB > xA.

This equation shows that indifference curves are negatively sloped and piecewise linear.

Note that strong risk aversion in DT implies that the weighting function is strictly convex

(Chew, Karni, and Safra 1987, Yaari 1987), i.e. w(p) + w(1 − p) < 1, which yields

1−w(p) > w(1− p) and w(p) < 1−w(1− p). Hence, the indifference curves for xA > xB

are steeper than those for xA < xB, meaning that they have a kink along the 45
0-line

as depicted in Figure 1. Moreover, the slope of the indifference curves is independent of

income in the sense that indifference curves are parallel above the 450-line and parallel

below the 450-line.
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x A

x B

Figure 1

Let us now consider LCPT. For convenience, we exchange the function w− for its dual

w̃− defined by w̃−(q) := 1 − w−(1 − q) for q ∈ [0, 1], that is, we consider transformed

decumulative probabilities not only for gains but also for losses. Then, the utility of a

two-outcome lottery is given by

LCPT (P ) =



w+(p)xA + (1− w+(p))xB if xA > xB > 0
w+(1− p)xB + (1− w+(1− p))xA if xB > xA > 0
w̃−(p)λxA + (1− w̃−(p))λxB if 0 > xA > xB

w̃−(1− p)λxB + (1− w̃−(1− p))λxA if 0 > xB > xA
w+(p)xA + (1− w̃−(p))λxB if xA > 0 > xB

w+(1− p)xB + (1− w̃−(1− p)λxA if xB > 0 > xA,

which implies the following slope of indifference curves:
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dxA
dxB

¯̄
dLCPT (P )=0 =



−1−w+(p)
w+(p)

if xA > xB > 0
− w+(1−p)
1−w+(1−p) if xB > xA > 0
−1−w̃−(p)

w̃−(p) if 0 > xA > xB
− w̃−(1−p)
1−w̃−(1−p) if 0 > xB > xA
−λ(1−w̃−(p))

w+(p)
if xA > 0 > xB

− w+(1−p)
λ(1−w̃−(1−p)) if xB > 0 > xA.

In the following we assume that w+ and w̃− are strictly convex and that for all q ∈ [0, 1]

we have λ > w+(q)
w̃−(q) as well as λ >

1−w+(q)
1−w̃−(q) . If we consider only two-outcome lotteries, these

assumptions are necessary and sufficient for the exhibition of strong risk aversion (Schmidt

and Zank 2001b) and yield the pattern of indifference curves depicted in Figure 2.

x A

x B

IIIIII

F igu re  2 : In d ifferen ce  cu rv es in  L C P T

In this figure, three types of indifference curves are considered, curve a representing

a strictly positive utility level, curve b representing a utility level of zero, and curve c
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representing a strictly negative utility level. The shape of curve a becomes clear by ob-

serving that our assumptions on λ, w+, and w̃− imply λ(1−w̃−(p))
w+(p)

> 1−w+(p)
w+(p)

> w+(1−p)
1−w+(1−p) >

w+(1−p)
λ(1−w̃−(1−p)) . Moreover, the shape of curve b is due to

λ(1−w̃−(p))
w+(p)

> w+(1−p)
λ(1−w̃−(1−p)) while the

shape of curve c is caused by λ(1−w̃−(p))
w+(p)

> 1−w̃−(p)
w̃−(p) > w̃−(1−p)

1−w̃−(1−p) >
w+(1−p)

λ(1−w̃−(1−p)) . Compared

to DT, indifference curves have additional kinks at both axes. Moreover, due to sign-

dependence, indifference curves representing a positive utility level may have a different

slope than those representing a negative utility level.

We will now investigate a simple portfolio selection problem already studied, among

others, by Tobin (1958), Arrow (1965), and Cass and Stiglitz (1972) which has been

applied to DT by Yaari (1987). Consider an individual who may invest a fixed positive

amount ȳ into two assets, one riskless asset with a fixed positive interest rate r > 0 and

one risky asset. Suppose that the risky asset has a high return zA > r in state A and a

negative return zB < 0 in state B. It is well known that a risk averse expected utility

maximizer would always invest some amount yEU with 0 < yEU < ȳ into the risky asset

provided that the expected return, i.e. pzA+ (1− p)zB, is strictly greater than r. On the

other hand, DT implies an investment of yDT in the risky asset given by

yDT =


0 if zA−r

zB−r > −
1−w(p)
w(p)

any value in [0, ȳ] if zA−r
zB−r = −

1−w(p)
w(p)

ȳ if zA−r
zB−r < −

1−w(p)
w(p)

.

This behavior has been termed as plunging: The investor either invests everything

safe or everything risky depending on the relative rate of return of the risky asset.

Let us now consider LCPT. This requires a choice of the status quo. Already Kahne-

man and Tversky (1979) argued that the status quo is in most cases given by the initial

position. Since also most applications choose initial wealth as status quo we think it is
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most convincing to fix it at ȳ. Then the optimal investment yLCPT in the risky asset is

given by:

yLCPT =



0 if zA−r
zB−r > −

1−w+(p)
w+(p)

any value in [0, rȳ
r−zB ] if zA−r

zB−r = −
1−w+(p)
w+(p)

rȳ
r−zB if − λ(1−w̃−(p))

w+(p)
< zA−r

zB−r < −
1−w+(p)
w+(p)

any value in [ rȳ
r−zB , y] if zA−r

zB−r = −
λ(1−w̃−(p))
w+(p)

ȳ if zA−r
zB−r < −

λ(1−w̃−(p))
w+(p)

.

The validity of this equation can be easily checked by considering Figure 3. In case I the

budget line is flatter than the indifference curve for xA > xB > 0, i.e.
zA−r
zB−r > −

1−w+(p)
w+(p)

,

which yields yLCPT = 0 as optimum. In case II the budget line is steeper than the

indifference curve for xA > xB > 0 but flatter than the indifference curve for xA > 0 > xB

which implies that xB = 0 and, therefore, yLCPT =
rȳ

r−zB is optimal. Finally, if the budget

line is steeper than the indifference curve for xA > 0 > xB we get yLCPT = ȳ as optimum

(case III).

xB

xA

y (1+r)y

(1+r)y

(1+zA)y

(1+zB)y

III
III

Figure 3: Portfolio selection in LCPT
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Altogether the result shows that individuals in LCPT exhibit only a weak variant of

plunging. In contrast to DT there is not only an all-or-nothing decision but there exist

also relative returns of the risky asset for which diversification is optimal. However, if the

individual diversifies, she or he always invests that amount in the risky asset for which

the final wealth in the unfavorable state equals the status quo.

Note that the possibility of diversification in LCPT is an immediate consequence of

reference dependence which implies the additional kink of indifference curves along both

axes. Sign-dependence, on the other hand, allows for different investment behavior in the

gain and in the loss domain. Note that in DT the optimal investment does only depend

on zA−r
zB−r . In contrast, the optimal investment in LCPT for positive r can differ from the

optimal investment for negative r (which ´may for instance be a result of holding money

in the presence of inflation) even if zA−r
zB−r remains constant.

3.2 Insurance Demand

In this section we will analyze demand for coinsurance with LCPT. Again we will only

consider two possible states of the world in order to allow for a graphical analysis in the

two-outcome diagram. Suppose the initial wealth of an individual is given by x̄A in state

A and by x̄B = x̄A − L < x̄A in state be where L is some monetary loss which can be

insured. More precisely, if the individual enters into an insurance contract, he or she has

to pay a premium R with

R = γC

and, therefore, receives a compensation C, 0 6 C 6 L, if state B occurs. An insurance

premium is said to be fair if γ = p. With the possibility of insurance the final wealth

distribution is given by
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xA = x̄A − γC

xB = x̄B − γC + C = x̄B + (1− γ)C,

which implies that the slope of the budget line is given by − γ
1−γ .

The problem of the optimal choice of C has been studied in the DT framework by

Doherty and Eeckhoudt (1995) and Schmidt (1996). They have shown that the demand

for coinsurance CDT is in DT given by

CDT =


L if − γ

1−γ > −1−w(p)
w(p)

any value in [0, L] if − γ
1−γ = −1−w(p)

w(p)

0 if − γ
1−γ < −1−w(p)w(p)

.

This equation shows that individuals in DT also exhibit plunging for insurance demand

since they either demand no coverage of full coverage while partial coverage is only optimal

in the knife-edge case of − γ
1−γ = −1−w(p)

w(p)
.

If we want analyze insurance demand with LCPT, again the reference point has to

be fixed. There is not much literature on the choice of the reference point in the case of

a random initial wealth. We think that it is most convincing to assume that the status

quo q is somewhere in-between the two possible initial wealth levels, i.e. xA > q > xB.

We further assume that q < x̄A − γL, i.e. both outcomes are gains in the case of full

insurance. Note that for q = x̄A−γL optimal insurance demand for DT and LCPT would

coincide. However, for q < x̄A − γL insurance demand CLCPT in the case of LCPT is

characterized by

CLCPT =



L if − γ
1−γ > −1−w

+(p)
w+(p)

any value in [ q−x̄B
1−γ , L] if − γ

1−γ = −1−w
+(p)

w+(p)

q−x̄B
1−γ if − λ(1−w̃−(p))

w+(p)
< − γ

1−γ < −1−w
+(p)

w+(p)

any value in [0, q−x̄B
1−γ ] if − γ

1−γ = −λ(1−w̃−(p))
w+(p)

0 if − γ
1−γ < −λ(1−w̃−(p))

w+(p)
.
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The validity of this equation can be easily inferred from Figure 4. In order to find

the optimal solution the slope of the budget line has to be compared with the slope

of indifference curves. Apart from the slope of the budget line, − γ
1−γ , the problem is

identical to the portfolio selection problem presented in the preceding section. Therefore,

the argument will not be repeated here.

xB

xA

q xA-γL

xA-γL

xA

xA-L

III
III

Figure 4: Insurance demand in LCPT

Also for insurance demand under LCPT individuals exhibit only a weak variant of

plunging. In contrast to DT they choose not only between no and full coverage but there

exist also values of γ for which partial coverage is optimal. However, if an individual

demands partial coverage she or he always chooses that value of C for which final wealth

in the worse state equals the status quo.

4 Appendix

Proof of Theorem 1: First we assume statement (ii) and derive statement (i). Let
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LCPT hold for a preference relation < on the set of lotteries. Then, weak ordering follows
from the fact that LCPT represents the preference on the set of lotteries. Because util-

ity is continuous under LCPT, simple continuity is satisfied. Moreover, utility is strictly

increasing as well as the weighting functions, which implies stochastic dominance. It

remains to show that independence of common increments is satisfied. Consider two lot-

teries (x1, . . . , xn) and (y1, . . . , yn) such that (x1, . . . , xn) < (y1, . . . , yn). Let i ∈ {1, . . . , n}
be arbitrary. Then

(x1, . . . , xi, . . . , xn) < (y1, . . . , yi, . . . , yn)

⇔
LCPT (x1, . . . , xi, . . . , xn) > LCPT (y1, . . . , yi, . . . , yn)

We consider the case that xi and yi are gains. After substitution of LCPT we get

i−1X
j=1

πjxj + πixi +
kX

j=i+1

πjxj +
nX

j=k+1

πjλxj >
i−1X
j=1

πjyj + πiyi +
kX

j=i+1

πjyj +
nX

j=k+1

πjλyj .

Take any α ∈ IR such that xi, xi + α, yi, yi + α are positive and such that both xi−1 >

xi + α > xi+1 and yi−1 > yi + α > yi+1 hold. Then, the previous inequality implies

i−1X
j=1

πjxj+πi(xi+α)+
kX

j=i+1

πjxj+
nX

j=k+1

πjλxj >
i−1X
j=1

πjyj+πi(yi+α)+
kX

j=i+1

πjyj+
nX

j=k+1

πjλyj .

Note that the choice of α is crucial. That the sign of the affected outcomes is the same

ensures that the decision weights are generated by the same weighting function. Moreover,

because the ranking of outcomes has not been altered the decision weights for the involved

outcomes is the same. That is, the above equation can be written as

LCPT (x1, . . . , xi−1, xi + α, xi+1, . . . , xn) > LCPT (y1, . . . , yi−1, yi + α, yi+1, . . . , yn)

or equivalently

(x1, . . . , xi−1, xi + α, xi+1, . . . , xn) < (y1, . . . , yi−1, yi + α, yi+1, . . . , yn).

The case where both xi, and yi are losses is similar. Hence, we have shown that indepen-

dence of common increments is satisfied, which concludes the derivation of statement (i)

from statement (ii).
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Now we assume statement (i) and derive statement (ii). Let us briefly outline the main

steps of the proof. First, we show that independence of common increments is satisfied

on the set of lotteries with equally likely outcomes which may be equal. Then, for a fixed

natural number n, we show that LCPT holds on the set of lotteries with n equally likely

(and possible equal) outcomes. In a subsequent step we show that LCPT holds on the set

of lotteries with rational probabilities. Then, LCPT can uniquely be extended to hold on

the entire set of lotteries, which concludes the derivation of statement (ii). Finally, the

uniqueness results in the theorem are derived.

For any natural number n let L(n) denote the set of lotteries where outcomes are

distinct and their probabilities are 1/n. Hence,

L(n) := {( 1
n
, x1; . . . ;

1

n
, xn)|x1 > · · · > xn}.

We can define

L̄(n) := {( 1
n
, x1; . . . ;

1

n
, xn)|x1 > · · · > xn}

as the set of lotteries where outcomes having probabilities 1/n are not necessarily distinct.

Independence of common increments is defined to hold only for lotteries from L(n).

However, in the presence of the remaining conditions, independence of common increments

holds on L̄(n) as well, as the next lemma shows.

Lemma 2 Suppose that < satisfies weak ordering, simple continuity, stochastic dom-

inance, and independence of common increments. Then < satisfies independence of

common increments on L̄(n) for any natural number n.

Proof: Suppose that independence of common increments is not satisfied on L̄(n)

for some n. Obviously, n > 1 by stochastic dominance and completeness. Then, there

exists a pair of lotteries (x1, . . . , xn), (y1, . . . , yn) ∈ L̄(n) such that for some i ∈ {1, . . . , n}
and some α ∈ IR we have a preference reversal

(x1, . . . , xi, . . . , xn) < (y1, . . . , yi, . . . , yn)
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⇒
(x1, . . . , xi + α, . . . , xn) ≺ (y1, . . . , yi + α, . . . , yn)

although xi, xi + α, yi, yi + α are of the same sign and xi−1 > xi + α > xi+1 and yi−1 >

yi + α > yi+1 holds.

We write x+1i ·α instead of (x1, . . . , xi+α, . . . , xn). By continuity there exists δ < 0

such that

x+ 1i · α ≺ y + 1i · α+ 1n · δ.

By stochastic dominance we have

x Â y + 1n · δ.

We show that the last two preferences cannot occur jointly. Let j be the smallest index

such that xj = xj+1. Then for εj > 0 small enough continuity implies

x+ 1i · α+ 1j · εj ≺ y + 1i · α+ 1n · δ.

Also, stochastic dominance implies

x+ 1j · εj Â y + 1n · δ.

By repeating this process for all such indices j for which xj = xj+1 we can distort the

lottery x into a lottery x̃ with strictly rank-ordered outcomes such that

x̃+ 1i · α ≺ y + 1i · α+ 1n · δ

and

x̃ Â y + 1n · δ.

Note that in y+1n · δ outcomes may not be strictly rank-ordered. However, applying the
same procedure as above to y + 1n · δ we can distort this lottery into one called ỹ where
outcomes are strictly rank-ordered. We get

x̃+ 1i · α ≺ ỹ + 1i · α

and

x̃ Â ỹ.
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This clearly contradicts independence of common increments. This concludes the proof

of the lemma. 4

Let n be an arbitrary natural number. We derive LCPT on L̄(n, k) := {x ∈ L̄(n)|xk >
0 > xk+1}. First, note that weak ordering, stochastic dominance, continuity and indepen-
dence of common increments are satisfied on this set of lotteries. Next, we show that on

L̄(n, k) the preference relation satisfies comonotonic independence. Comonotonic inde-

pendence says that replacing common outcomes by possibly different common outcomes

does not affect the preference between two lotteries, i.e.,

x+ 1i · (α− xi) < y + 1i · (α− yi)

implies

x+ 1i · (β − xi) < y + 1i · (β − yi).

Comonotonic independence follows immediate from independence of common increments

and the previous lemma.

Hence, < on L̄(n, k) satisfies weak ordering, stochastic dominance, simple continuity,
and comonotonic independence. Comonotonic independence is stronger than the separa-

bility conditions proposed by Gorman (1968), which imply additive representability. This

result has been used in Theorem C.6 of Chateauneuf and Wakker (1993). Accordingly, we

conclude that there exists an additive representation V n,k(x) =
Pn

j=1 V
k
j for < on L̄(n, k).

Moreover, on L̄(n, k) independence of common increments is satisfied, so that for α ∈ IR

x ∼ y ⇒ x+ 1i · α ∼ y + 1i · α,

whenever xi, xi + α, yi, yi + α are of the same sign. Substitution of V n,k(x) gives

V ki (xi)− V ki (yi) = V ki (xi + α)− V ki (yi + α),

which implies linearity of V ki on IR+ if i 6 k and on IR− if i > k + 1.
Let now k 6 n − 1 be arbitrary fixed. Then, on the set L̄(n, k) ∩ L̄(n, k + 1) = {x ∈

L̄(n, k)|xk+1 = 0} both V n,k and V n,k+1 represent the preference <. Because the V ki ’s and
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V k+1i ’s are cardinal, we can choose V ki = V
k+1
i for i 6= k + 1 on the common domain. In

doing this we have observed that

V ki = V k+1i = Vi on IR+ if i 6 k,

V ki = V k+1i = Vi on IR− if i > k + 1,

hence, these functions are independent of k. Moreover, for i = k + 1 the domain of V kk+1

is IR− and the domain of V k+1k+1 is IR+. So by defining

Vk+1 =

 V k+1k+1 , on IR+,

V kk+1, on IR−,

the functions Vi for i = 1, . . . , n are extended to all of IR.

Let us summarize. We have derived an additive representation V n(x) =
Pn

j=1 Vj for

< on L̄(n), with cardinal functions Vi which are linear on IR+ and linear on IR−. We

can, therefore, fix the functions Vi(0) = 0 for all i and set V (1, . . . , 1) = 1. Because of

linearity of these functions on IR+ we know that they are proportional to each other and

in particular to their sum. Therefore we can derive decision weights π+i (= Vi(1)) that

are positive and sum to one such that on IR+

Vi(xi) = π+i xi.

The decision weights π+i are differences in transformed decumulative probabilities: We

can define the weighting function w+n as

w+n (j/n) =

 0, if j = 0,

π+1 + · · ·+ π+j , if j = 1, . . . , n.

This way w+n is uniquely defined, it is monotonic on its domain and satisfies w
+
n (0) = 0

and w+n (1) = 1. With the above definition we have π
+
i = w

+
n (i/n)− w+n ((i− 1)/n).

Similarly, there exist decision weights π−i (= Vi(−1)/V (−1, . . . ,−1)) that are positive
and sum to one such that on IR−

Vi(xi) = π−i λxi.

The constant λ is positive and is defined as −V (−1, . . . ,−1). Moreover, λ is independent
of i due to the cardinality of the functions Vi. The decision weights π

−
i are generated by
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a weighting function

w−n (j/n) =

 0, if j = 0,

π−1 + · · ·+ π−j , if j = 1, . . . , n.

Also, w−n is uniquely defined, it is monotonic on its domain and satisfies w
−
n (0) = 0 and

w−n (1) = 1.

Therefore, we have derived LCPT on L̄(n) for a fixed natural number n.

Next, take n andm to be two distinct natural numbers. Then, on L̄(n) LCPT holds as

well as on L̄(m), and on L̄(nm). Because L̄(n), and L̄(m) are subsets of L̄(nm) it follows

that λ is independent of n (m,nm), and that the involved weighting functions agree on

common domain. Thus, they are also independent of n (m,nm), and moreover, they are

defined on the rational probabilities inheriting all properties. We have therefore derived

LCPT on the entire set of lotteries with rational probabilities.

Let now p := (p1, . . . , pn) be any probability vector. We consider the set Lp of lotteries

with fixed probability vector p. On Lp the preference relation < satisfies weak ordering

stochastic dominance and simple continuity, and can be represented by a function Wp :

Lp → IR that is unique up to strictly increasing continuous transformations.

Also, each lottery (p1, x1; . . . ; pn, xn) ∈ Lp has a uniquely determined certainty equiv-

alent (1, CE(p1, x1; . . . ; pn, xn)), i.e. the lottery that is indifferent to (p1, x1; . . . ; pn, xn)

and has sure outcome CE(p1, x1; . . . ; pn, xn). The existence follows by continuity and

uniqueness by stochastic dominance.

Therefore, we can choose Wp to agree with the LCPT functional above on the set of

certain lotteries, implyingWp(1,α) = LCPT (1,α) for all α ∈ IR. Because for each lottery

(p1, x1; . . . ; pn, xn) ∈ Lp we have Wp(p1, x1; . . . ; pn, xn) = Wp(1, CE(p1, x1; . . . ; pn, xn)) =
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LCPT (1, CE(p1, x1; . . . ; pn, xn)), we have found a functional, say V , that represents pref-

erence on the union of both sets of lotteries, namely on Lp and on the set of lotteries

with rational probabilities. This functional V agrees with Wp on Lp and with the above

LCPT-functional on the set of lotteries with rational probabilities.

Because the probability tuple p was arbitrary chosen, we conclude the existence of a

general functional representing preference on the entire set of lotteries and which agrees

with LCPT on the set of lotteries with rational probabilities. Again we call this functional

V .

Note that the set of lotteries with all probabilities rational is a dense subset of the entire

set of lotteries, and the latter can be viewed as a linear space. Also, V is a continuous

functional that is linear on the dense subspace of lotteries with all probabilities rational.

Therefore, V has a unique linear extension to the entire set of lotteries (Dunford and

Schwartz, 1958). Hence, we conclude that LCPT holds on the entire set of lotteries.

Finally, let us recall that under general cumulative prospect theory the weighting

functions are unique and utility is a ratio scale. Here we have derived CPT with a specific

utility function. Utility is linear for gains and it is linear for losses. Hence, the uniqueness

results apply here. This completes the proof of Theorem 1. ¤
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