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statistics, and considers their extension to density forecasts.  The use of the familiar
framework of contingency tables increases the accessibility of these methods to users, and
allows the incorporation of two recent developments, namely a more informative
decomposition of the chi-squared goodness-of-fit statistic, and the calculation of exact small-
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1. Introduction

Interval forecasts and density forecasts are being increasingly used in practical real-time

forecasting.  An interval forecast of a variable specifies the probability that the future

outcome will fall within a stated interval; this usually uses round numbers such as 50% or

90% and states the interval boundaries as the corresponding percentiles.  A density forecast is

an estimate of the complete probability distribution of the possible future values of the

variable.  As supplements to point forecasts they each provide a description of forecast

uncertainty, whereas no information about this is available if only a point forecast is

presented, a practice which is being increasingly criticized in macroeconomic forecasting.

Density forecasts are more directly used in decision-making in the fields of finance and risk

management.  Tay and Wallis (2000) provide a survey of applications of density forecasting

in macroeconomics and finance, and the examples in the present paper come from the former

field.

Evaluating the accuracy of interval and density forecasts is similarly receiving

increasing attention.  For interval forecasts the first question is whether the coverage is

correct ex post, that is, whether the relative frequency with which outcomes are observed to

fall in their respective forecast intervals is equal to the announced probability.  Christoffersen

(1998) argues that this unconditional hypothesis is inadequate in a time-series context, and

defines an efficient sequence of interval forecasts with respect to a given information set as

one which has correct conditional coverage.  He presents a likelihood ratio framework for

conditional coverage testing, which combines a test of unconditional coverage with a test of

independence.  This supplementary hypothesis is directly analogous to the requirement of

lack of autocorrelation of orders greater than or equal to the forecast lead time in the errors of

a sequence of efficient point forecasts.  It is implemented in a two-state (the outcome lies in

the forecast interval or not) Markov chain, as a likelihood ratio test of the null hypothesis that
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successive observations are statistically independent, against the alternative hypothesis that

the observations are from a first-order Markov chain.

For density forecasts the first question again concerns goodness-of-fit.  Two classical

methods of testing goodness-of-fit - the likelihood ratio and Pearson chi-squared tests -

proceed by dividing the range of the variable into k mutually exclusive classes and comparing

the probabilities of outcomes falling in these classes given by the forecast densities with the

observed relative frequencies.  It is usually recommended to use classes with equal

probabilities, so the class boundaries are quantiles; similarly, a standard way of reporting

densities is in terms of their quantiles.  For a sequence of density forecasts these change over

time, of course.  This approach reduces the density forecast to a k-interval forecast and

sacrifices information, but the distinction between unconditional and conditional coverage

extends to this case, and a likelihood ratio test of independence can be developed in a k-state

Markov chain, generalising Christoffersen’s proposal above.

It is well known that the likelihood ratio tests and Pearson chi-squared tests for these

problems are asymptotically equivalent; for general discussion and references to earlier

literature see Stuart, Ord and Arnold (1999, Ch. 25).  In discussing this equivalence for the

Markov chain tests they develop, Anderson and Goodman (1957) note that the chi-squared

tests, which are of the form used in contingency tables, have the advantage that, “for many

users of these methods, their motivation and their application seem to be simpler”, and this

point of view prompts the present line of enquiry.  In this paper we accordingly explore the

equivalent chi-squared tests for the hypotheses discussed above.  The term chi-squared tests

is used here and in the title of the paper to refer to Pearson’s chi-squared statistic, memorable

to multitudes of students as the formula 2( ) /O E EΣ − .  Asymptotically it has the

2χ distribution under the null hypothesis.
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Two recent extensions to this framework are also considered.  The first is the

“rearrangement” by Anderson (1994) of the chi-squared goodness-of-fit test to provide more

information on the nature of departures from the null hypothesis, in respect of specific

features of the empirical distribution such as its location, scale and skewness.  Second, since

our attention is focussed on applications in macroeconomics, where sample sizes are as yet

small, we consider the exact finite-sample distribution of the chi-squared statistic.  While the

contingency table literature contains an extensive discussion of finite-sample behaviour,

going back to Fisher’s exact test - see  Yates (1984) for a review of methods for 2×2 tables -

it is only relatively recently that convenient computational routines have become easily

available.  The calculation of exact P-values based on the permutational distribution of the

test statistic uses methods surveyed by Mehta and Patel (1998), implemented in StatXact-4

(Cytel Software Corp.).

Two datasets are used below.  The first is the U.S. Survey of Professional Forecasters’

(SPF) density forecasts of inflation, previously analyzed by Diebold, Tay and Wallis (1999).

The forecast densities are reported numerically, as histograms, and have no particular

functional form.  The fact that their skewness and kurtosis vary over time is well-established

(Lahiri and Teigland, 1987), but there is no underlying model of this variation.  The series of

forecasts and outcomes are shown in Figure 1, where plotted percentiles have been obtained

by linear interpolation of the published histograms.  The second example is the Bank of

England Monetary Policy Committee’s density forecasts of inflation, which date from the

establishment of the Committee in mid-1997.  A specific functional form is assumed, with

three parameters that determine location, scale and skewness.  The underlying point forecast

is based on a macroeconometric model, to ensure internal consistency across the range of

variables considered, but like most macroeconomic forecasts, it is also subject to judgemental

adjustment.  In particular the skewness is based on the collective judgement of the nine-
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member Committee about the balance of risks to the forecast; this varies over time, again in

an unmodelled way.

In both cases the absence of strict stationarity or of relatively simple constant-

parameter models of time-varying moments, such as conditional heteroscedasticity, precludes

the application of some recent developments in the forecast evaluation literature.  One is the

use of kernel estimation of the true conditional density function - see Li and Tkacz (2001) for

a recent proposal and references to earlier literature - while another focuses on the effect of

parameter estimation error on the evaluation procedures, following West (1996).  Simple

parametric models, such as members of the ARCH extended family, are more prevalent in

applications in finance, but as noted by Tay and Wallis (2000), there are as yet few attempts

to model and forecast skewness and excess kurtosis, which are well-known features of the

unconditional distributions of many financial series.

An alternative group of goodness-of-fit tests, well-established in the literature, is

based on the probability integral transformation.  For a density forecast whose distribution

function is (.)F , this is simply defined as ( )z F y= , where y  is the observed outcome: z  is

the forecast probability of observing an outcome no greater than that actually realised.  If

(.)F  is correct, then z  has a uniform [0,1]U  distribution.  If a sequence of density forecasts

is correctly conditionally calibrated then, analogously to the no-autocorrelation requirement

discussed above, Diebold, Gunther and Tay (1998) show that the corresponding  z-sequence

is iid [0,1]U ; they present histograms of z for visual assessment of unconditional uniformity,

and various autocorrelation tests.  Diebold, Tay and Wallis (1999) use the Kolmogorov-

Smirnov test on the sample distribution function of z in their evaluation of the SPF inflation

forecasts.  Comparison of the two approaches to testing is a subject of future research.
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The remainder of this paper is organized as follows.  Unconditional coverage and

goodness-of-fit tests are discussed in Section 2, and tests of independence in Section 3; these

are combined into joint tests of conditional coverage in Section 4.  These sections use the

SPF forecasts as illustrations, then Section 5 evaluates the Bank of England Monetary Policy

Committee's density forecasts of inflation using these techniques.

2. Unconditional coverage and goodness-of-fit tests

For a sequence of interval forecasts with ex ante coverage probability π , the ex post

coverage is p , the proportion of occasions on which the observed outcome lies in the

forecast interval, and we wish to test the hypothesis of correct coverage.  If in n observations

there are 1n  outcomes falling in their respective forecast intervals and 0n  outcomes falling

outside, then 1 /p n n= .  From the binomial distribution the likelihood under the null

hypothesis is

0 1( ) (1 )n nL π π π∝ −

and the likelihood under the alternative hypothesis, evaluated at the maximum likelihood

estimate p , is

0 1( ) (1 )n nL p p p∝ − .

The likelihood ratio test statistic 2log[ ( ) / ( )]L L pπ− , which is denoted ucLR by

Christoffersen, is then

uc 0 1LR 2[ log(1 )/(1 ) log( / )]n p n pπ π= − − + .

The asymptotically equivalent chi-squared statistic is the square of the usual standard normal

test statistic of a sample proportion, namely
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2 2( ) / (1 )X n p π π π= − − .

Each can be compared to asymptotic critical values of the 2χ distribution with one degree of

freedom.

For interval forecasts the calibration of each tail individually may be of interest, as

noted by Christoffersen.  If the forecast is presented as a central interval, with equal tail

probabilities, then the expected frequencies under the null hypothesis of correct unconditional

coverage are (1 )/2, , (1 )2n n nπ π π− −  respectively, and the chi-squared statistic comparing

these with the observed frequencies has two degrees of freedom.  This is a step towards

goodness-of-fit tests for complete density forecasts, where the choice of the number of

classes into which to divide the observed outcomes is typically related to sample size.

Dividing the range of the variable into equiprobable classes is usually recommended with

power considerations in mind; we denote the frequencies with which the outcomes fall into k

such classes as , 1,..., ,i in i k n n= Σ = .  Equivalently, the range of the z-transform can be

similarly divided, with class boundaries / , 0,1,..., ,j k j k=  and the respective observed

frequencies are the same.  The chi-squared statistic for testing goodness-of-fit is

2 2 2( / ) /( / ) ( / )i iX n n k n k k n n n= Σ − = Σ −

and the likelihood ratio test statistic is

LR 2 log( / )i in kn n= Σ .

Each has a limiting 2χ distribution with 1k −  degrees of freedom under 0H .

The asymptotic distribution of the test statistic rests on the asymptotic k-variate

normality of the multinomial distribution of the observed frequencies.  Placing these in the

1k ×  vector x , under the null hypothesis this has mean ( / ,..., / )n k n k ′=µ  and covariance

matrix
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( / )[ / ]n k k′= −V I ee

where e  is a 1k ×  vector of ones.  This matrix is singular, with rank 1k − , thanks to the

restriction in n∑ = .  The usual derivation of the limiting 2χ  result proceeds by dropping one

class and inverting the non-singular covariance matrix of the remaining 1k −  'sin : see, for

example, Stuart and Ord  (1994, Example 15.3).  Alternatively, defining the generalized

inverse V − , the result that ( ) ( )′− −x V xµ µ−  has a 2χ  distribution with 1k −  degrees of

freedom can be used directly: see, for example, Pringle and Rayner (1971, p.78).  Since the

matrix in square brackets above is symmetric and idempotent it coincides with its generalized

inverse, and the chi-squared statistic given in the preceding paragraph is equivalently written

as

2 ( ) [ / ]( )/( / )X k n k′ ′= − − −x I ee xµ µ .

There exists a ( 1)k k− ×  transformation matrix A  such that

, [ / ]k′ ′ ′= = −AA I A A I ee ,

hence defining ( )= −y A x µ  the statistic can also be written as

2 /( / ),X n k′= y y

where the 1k −  components 2 /( / )iy n k  are independently distributed as 2χ  with one degree

of freedom under 0H .  Anderson (1994) introduces this device in order to focus upon

particular moments or characteristics of the distribution of interest.  For example, with

4k = and

1
2

1 1 1 1

1 1 1 1
1 1 1 1

− − 
 = − − 
 − − 

A
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the three components focus in turn on departures from the null distribution with respect to

location, scale and skewness.  Such decompositions are potentially more informative about

the nature of departures from the null hypothesis than the single “portmanteau” goodness-of-

fit statistic.

For the SPF density forecasts of inflation shown in Figure 1, the frequencies of

outcomes falling in 4 equiprobable classes can be easily read from the graph.  The class

boundaries are the quartiles, and ordering the classes from the lowest to the highest values

gives the observed frequencies 2, 16, 3, 7.  The chi-squared statistic has the value 17.43,

suggesting that the null hypothesis of correct distribution should be rejected.  The

decomposition suggested in the preceding paragraph gives the contributions of departures

with respect  to location, scale and skewness as 2.29, 3.57 and 11.57 respectively.  The major

departure is with respect to skewness, resulting from the relative absence of large negative

inflation surprises, as noted by Diebold, Tay and Wallis (1999), and the preponderance in the

last twelve years of the sample of outcomes that are close to but just below the median.

3. Tests of independence

A test of independence against a first-order Markov chain alternative is based on a matrix of

transition counts [ ]ijn , where ijn is the number of observations in state i at time 1t −  and j at t.

The maximum likelihood estimates of the transition probabilities are the cell frequencies

divided by the corresponding row totals.

For an interval forecast there are two states - the outcome lies inside or outside the

interval - and these are denoted 1 and 0 respectively.  The estimated transition probability

matrix is
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00 0 01 001 01

10 1 11 111 11

/ /1

/ /1

n n n np p

n n n np p

−   
= =   −   

i i

i i
P

where replacing a subscript with a dot denotes that summation has been taken over that index.

The likelihood evaluated at P is

( ) 01 1100 10
01 01 11 11(1 ) (1 )n nn nL p p p p∝ − −P .

The null hypothesis of independence is that the state at t is independent of the state at 1t − ,

that is, 01 11π π= , and the maximum likelihood estimate of the common probability is

1 /p n n= i .  The likelihood under the null, evaluated at p, is

0 1( ) (1 )n nL p p p∝ − i i .

This is identical to ( )L p  defined in the previous section if the first observation is ignored.

The likelihood ratio test statistic is then

indLR 2log[ ( ) / ( )]L p L= − P

which is asymptotically distributed as 2χ with one degree of freedom under the independence

hypothesis.

This likelihood ratio test is asymptotically equivalent to the chi-squared test of

independence in a 2×2 contingency table.  Alternatively denoting the matrix of observed

frequencies as

a b
c d

 
 
 

this has the familiar expression

2
2 ( )

( )( )( )( )
n ad bc

X
a b c d a c b d

−
=

+ + + +
.
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Equivalently, it is the square of the standard normal test statistic for the equality of two

binomial proportions.  It is sometimes proposed to use the Yates continuity correction, so that

the 2χ  distribution better approximates the discrete distribution of 2X .  The adjusted statistic

is

21
2 2(| | )

( )( )( )( )c

n ad bc n
X

a b c d a c b d
− −

=
+ + + +

.

Computer packages are now available to compute the exact distribution by enumerating all

possible tables that give rise to a value of the test statistic greater than or equal to that

observed and cumulating their null probabilities.  Thus there is no reason for the Yates

correction, nevertheless the following example provides an interesting illustration of its use.

An interval forecast with probability 0.5 is implicit in the SPF density forecasts of

inflation, as the inter-quartile range represented by the boxes in Figure 1.  The matrix of

transition counts for these data is

5 4
3 15

 
 
 

which gives a chi-squared statistic of 4.35, reduced to 2.69 by the Yates continuity correction.

At the 5% significance level the adjusted statistic indicates that the null hypothesis should not

be rejected, whereas the original Pearson statistic indicates the opposite, using the asymptotic

2 (1)χ  critical value.

The exact P-value for the observed table is given by StatXact-4 as 0.072, which leads

to the same decision as the adjusted statistic.  This is a “conditional” test in the sense that it

treats the marginal totals as fixed: this issue has been long debated, and the consensus of

Yates (1984) and his discussants is that this is “the only rational test”.  Conditioning on the

margins of the observed contingency table for the purpose of inference eliminates nuisance
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parameters and is justified by sufficiency and ancillarity principles; it does not require that

the margins are actually fixed in the data generating process.  However it implies that the

resulting (hypergeometric) distribution is highly discrete in small samples.  Given the

marginal totals of a 2×2 table, the entry in any one cell determines the other three.  The top

left cell in our example can take integer values between 0 and 8, thus the chi-squared statistic

has only 9 possible values, whose probabilities under 0H  are given by the hypergeometric

distribution. To test 0H  the P-value is the sum of these probabilities for values of the statistic

greater than or equal to that observed.  This in turn has rather few possible values, hence a

formal test using a conventional significance level such as 0.05 is in general conservative,

since its actual size is smaller than this.  In the present example, the next possible value of the

chi-squared statistic is 5.68, which has P-value 0.026.  A less conservative test can be based

on the mid P-value, which is half the probability of the observed statistic plus the probability

of values greater than that observed, here equal to 0.049.  Alternatively, rather than deciding

whether to “accept” or “reject” the null hypothesis, one can simply regard the P-value as a

measure of the degree to which the data support 0H .

Various generalizations of the 2×2 test are immediate.  For interval forecasts each tail

may be considered separately, as noted above, so that the Markov chain has three states, as

the outcome lies in the lower tail, the forecast interval, or the upper tail.  The resulting chi-

squared statistic (with 4 degrees of freedom) is used as an “autocorrelation” measure by

Granger, White and Kamstra (1989) in evaluating their interval forecasts based on ARCH-

quantile estimators, although they do not make explicit the Markov chain framework.  For the

SPF density forecasts in Figure 1 the matrix of transition frequencies becomes

0 2 0

2 15 1
0 2 5

 
 
 
  

,
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which disaggregates the a, b and c cells of the previous 2×2 array.  In the event, the a entry of

5 is simply relocated to the bottom right corner, as the result of the first six outcomes all lying

in the upper quartile of the forecast densities.  The chi-squared statistic is 13.38, the major

contribution coming from this bottom right cell.  The asymptotic P-value based on 2 (4)χ  is

0.008 and the exact P-value 0.007.  The distinction between the two tails of the forecast

densities and the initial sequence of observations in the upper tail results in stronger evidence

against independence than that provided by the 2×2 table.

The generalization to density forecasts grouped into k classes is also immediate,

although with sample sizes that are typical in practical macroeconomic forecasting the

resulting table is likely to be sparse once k gets much beyond 2 or 3, as in the above example.

Conventional time-series tests based on the z-series, as used by Diebold et al. (1998, 1999),

are then likely to be more informative.  They also facilitate the investigation of possible

higher-order dependence, given the disadvantage of the Markov chain approach that the

dimension of the transition matrix increases with the square of the order of the chain.

However, such expansion can be avoided if a particular periodicity is of interest, by defining

transitions from time t l−  to t, where l  is the length of the period, ignoring intermediate

movements, as noted by Clements and Taylor (2001).  This would be appropriate in testing

the efficiency of a quarterly series of one-year-ahead forecasts, for example, by checking

independence at lag four.
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4. Joint tests of coverage and independence

Christoffersen proposes a likelihood ratio test of conditional coverage as a joint test of

unconditional coverage and independence.  This is a test of the null hypothesis of Section 2

against the alternative of Section 3, and the likelihood ratio test statistic is

ccLR 2log[ ( ) / ( )]L Lπ= − P .

Again ignoring the first observation the test statistics obey the relation

cc uc indLR LR LR= + .

Asymptotically ccLR  has a 2χ distribution with two degrees of freedom under the null

hypothesis.  The alternative hypothesis for indLR  and ccLR  is the same, and these tests form

an ordered nested sequence.

The asymptotically equivalent chi-squared test compares the observed contingency

table with the expected frequencies under the joint hypothesis of row independence and

correct coverage probability π .  The statistic has the usual form 2( ) /O E EΣ −  where the

observed and expected frequencies are respectively

a b
c d

 
 
 

     and     
(1 )( ) ( )
(1 )( ) ( )

a b a b
c d c d

π π
π π

− + + 
 − + + 

.

It has two degrees of freedom since the column proportions are specified by the hypothesis

under test and not estimated.  The statistic is equal to the sum of the squares of two standard

normal test statistics of sample proportions, one for each row of the table.

Although the chi-squared statistics for the separate and joint hypotheses are

asymptotically equivalent to the corresponding likelihood ratio test statistics, in finite samples

they obey the additive relation among those statistics given above only approximately, and

not exactly.
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For the matrix of transition counts of the SPF inter-quartile range forecasts given on

page 10 the chi-squared test statistic for the joint hypothesis is 8.11.  Its exact P-value in the

two binomial proportions model is 0.018, indicating rejection of the joint hypothesis.  This

confirms the conclusion reached by Diebold, Tay and Wallis (1999) by less formal methods.

The chi-squared statistic testing unconditional coverage on the column totals is 4.48, and with

the test statistic for independence from Section 3 of 4.35 we note the lack of additivity.

5. Bank of England fan chart forecasts

The Bank of England has published a density forecast of inflation in its quarterly Inflation

Report since February 1996.  The forecast is represented graphically as a set of prediction

intervals covering 10%, 20%,…,90% of the probability distribution, of lighter shades for the

outer bands.  This is done for inflation forecasts one to nine quarters ahead, and since the

dispersion increases and the intervals “fan out” as the forecast horizon increases, the result

has become known as the “fan chart”.  Contrary to the initial suggestion of Thompson and

Miller (1986) to use the selective shading of quantiles “to draw attention away from point

forecasts and toward the uncertainty in forecasting,” the Bank’s preferred presentation is

based on the shortest intervals for the assigned probabilities, hence the tail probabilities are

typically unequal, moreover they are not reported.  An example is shown in Figure 2, whereas

Figure 3 shows an alternative presentation of the same forecast based on percentiles, as

recommended by Wallis (1999).  These differ because the distribution is asymmetric, usually

positively skewed, and the accompanying discussion often emphasises the distinction

between the “upside risks” and the “downside risks” to the forecast.  The forecast is

represented analytically by the two-piece normal distribution (John, 1982; Wallis, 1999), for
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which probabilities can be readily calculated from standard normal tables once values have

been assigned to the underlying parameters that determine its location, dispersion and

skewness.

The introduction of new arrangements for the operation of monetary policy in 1997

saw the establishment of the Monetary Policy Committee (MPC), which in particular adopted

the Bank’s existing forecasting practice.  Evaluations of forecasts published to date, in the

Inflation Reports of August 1999 and August 2000, have analysed “The MPC’s forecasting

record” beginning with its first inflation projection published in August 1997, focussing on

the one-year-ahead forecasts.  These forecasts, extended to the first three years, are shown in

the upper panel of Table 1, together with inflation outcomes and associated z-values

calculated via formulae given by Wallis (1999).  The definition of inflation is the annual

percentage growth in the quarterly Retail Prices Index excluding mortgage interest payments

(RPIX, Office for National Statistics code CHMK).  Strictly speaking, the forecasts are

conditional projections, which assume that interest rates remain at the level just set by the

MPC.  Nevertheless it is argued that they can be evaluated as unconditional forecasts,

comparing the mean projections with actual outcomes, for example, since inflation does not

react rapidly to interest rate changes and, in any event, the actual profile of interest rates has

turned out relatively close to the constant interest rate assumption.

Point forecast evaluations usually focus on the conditional expectation, the mean of

the forecast density, and the Inflation Report evaluations of the one-year-ahead forecasts do

likewise, despite the focus on the mode, the most likely outcome, in the MPC's forecast

commentary and press releases.  With the usual definition of forecast error as outcome minus

forecast, the mean forecasts in the upper panel of Table 1 have an average error of -0.20: on

average inflation has been overestimated by 0.2 percentage points.  The standard error of the

mean is 0.11, hence the null hypothesis of unbiasedness would be rejected against the one-
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sided alternative of an upward bias at the 5% significance level.  The standard deviation of

the forecast errors is 0.38, indicating that the standard deviation used in preparing the fan

chart is an overestimate.  This supports the comment (Inflation Report, August 2000, p.63)

that, having based the fan chart variances on forecast errors over the past ten years, outturns

that tend to lie close to the centre of the distribution suggest that recent forecast errors have

been smaller than in the past.

Reducing the density forecasts to interval forecasts based on the central 50% interval

or inter-quartile range, as in the SPF example above, gives the sequence of states defined in

Section 3 as

1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1.

The matrix of transition counts for this sequence is

2 2
2 5

 
 
 

with chi-squared statistic 0.505.  This is one of only five possible values of the conditional

test statistic, with mid P-value 0.386.  The test takes no account of the fact that all the zero

states relate to outcomes in the lower tail, however, but in this case the three-way

classification of Granger et al. (1989) illustrated in Section 3 is not helpful, since the above

2×2 array is simply bordered below and on the right by zeros.  The class frequencies for the

four-way goodness-of-fit test used in the closing paragraph of Section 2 are 4, 4, 4, 0, giving

a test statistic of 4.0.  This provides little evidence against the null hypothesis, nevertheless

the absence of outcomes in the top quartile suggests an exaggerated concern with the upside

risks on the part of the MPC.  The decomposition of the test statistic into components

associated with location, scale and skewness coincidentally gives exactly the same weight to

departures in each of the three moments, reflecting the preceding discussion.  A further
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picture of the general departure of the fan chart forecasts from the correct density is given in

Figure 4, which compares the sample distribution function of the observed z-values with the

uniform distribution function, the 45° line representing the null hypothesis of a correct

density.  It is seen that the density forecasts place too much probability in the upper ranges of

the inflation forecast.

Although the errors of a quarterly series of optimal one-year-ahead point forecasts

would be expected to exhibit low-order autocorrelation, the simple device used above

indicates no substantial departure from independence in the implied interval forecasts.

However, little is known about how the corresponding lack of independence in density

forecasts might manifest itself and hence be efficiently detected.  For this question the one-

step-ahead forecasts are then of interest, although they have been neglected in published

discussion to date.  In practical forecasting the first thing one has to do is forecast the present,

and the fan chart is no exception, the first forecast shown being for the current quarter.  The

MPC normally meets on the Wednesday and Thursday following the first Monday of each

month, and the quarterly Inflation Report, containing the fan chart forecasts, is published in

February, May, August and November a week after the meeting.  At approximately the same

time, in mid-month, the Office for National Statistics releases the previous month’s Retail

Prices Index.  Thus the quarterly forecast can take account of no current-quarter information

on the variable in question, and so can be regarded as a one-step-ahead forecast, although

other economic intelligence on the first month of each quarter is clearly available to the MPC

at its mid-quarter meeting.  Correspondingly, the year-ahead forecasts discussed above are, in

effect, five-step-ahead forecasts.

Data on the one-step-ahead forecasts and outcomes are shown in the lower panel of

Table 1.  The mean forecasts have a mean error of 0.001 and an RMSE of 0.17.  Unlike the

year-ahead forecasts, the one-quarter-ahead forecasts are unbiased, and now the forecast
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standard deviation in general appears to be correct.  The transition frequencies for an inter-

quartile range interval forecast are

4 4
4 3

 
 
 

,

which are within rounding of the expected values under the independence hypothesis.  The

sample distribution function of the observed z-values for these forecasts and outcomes shown

in Figure 5 lies much closer to the 45° degree line than in the previous case, the complete

range of the densities being better represented in the data.  Overall, the evidence suggests that

the current-quarter forecasts are conditionally well-calibrated.

The initial conclusion from these rather short series of forecasts is that calibration

problems arise as the MPC moves beyond the current-quarter forecasts: the fan charts fan out

too quickly, positive inflation shocks have occurred much less frequently than the MPC

expected, and on average inflation one year ahead has been overestimated.

6. Conclusion

The increasing use of interval and density forecasts is a welcome development.  They help to

assess and communicate future uncertainty, whereas a point forecast alone gives no guidance

as to its likely accuracy.  If the forecast is an input to a decision problem, then once one

moves beyond the circumstances in which certainty equivalence holds - to an asymmetric

cost function, for example - a point forecast is inadequate and a density forecast is required.

The accuracy of interval and density forecasts in turn requires assessment, and this paper

recasts some recent proposals into a familiar framework of contingency tables, which

increases their accessibility for many users of these methods and allows other recent
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developments to be incorporated.  In many important applications only small samples are

available for evaluation, and the calculation of exact P-values for the statistics considered is

advocated.

The density forecasts of inflation made by the Bank of England’s Monetary Policy

Committee have received much attention in the United Kingdom and in other central banks.

Our first evaluation of the series of “fan chart” forecasts published since the MPC’s

inauguration in 1997 shows that, whereas the current-quarter forecasts perform well, the one-

year-ahead forecasts, on which the Bank’s evaluations have hitherto exclusively focussed,

show negative bias.  Uncertainty in these forecasts has been overestimated, so that the fan

charts fan out too quickly, and the excessive concern with the upside risks has not been

justified over this period.
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Table 1.   Bank of England Monetary Policy Committee Inflation Forecasts

zInflation
Report

Mode Mean Std. Dev. Outcome

One-year-ahead forecasts

Aug 97 1.99 2.20 0.75 2.55 0.69
Nov 97 2.19 2.84 0.61 2.53 0.37
Feb 98 2.44 2.57 0.60 2.53 0.49
May 98 2.37 2.15 0.61 2.30 0.57
Aug 98 2.86 3.00 0.60 2.17 0.08
Nov 98 2.59 2.72 0.62 2.16 0.18
Feb 99 2.52 2.58 0.62 2.09 0.22
May 99 2.23 2.34 0.59 2.07 0.33
Aug 99 1.88 2.03 0.56 2.13 0.59
Nov 99 1.84 1.79 0.55 2.11 0.72
Feb 00 2.32 2.42 0.56 1.87 0.16
May 00 2.47 2.52 0.55 2.26 0.32

Current quarter (one-step-ahead) forecasts

Aug 97 2.65 2.69 0.15 2.81 0.79
Nov 97 2.60 2.73 0.12 2.80 0.75
Feb 98 2.60 2.64 0.24 2.59 0.43
May 98 2.83 2.74 0.24 2.94 0.79
Aug 98 2.51 2.56 0.24 2.55 0.49
Nov 98 2.54 2.58 0.19 2.53 0.41
Feb 99 2.49 2.51 0.19 2.53 0.54
May 99 2.48 2.51 0.18 2.30 0.12
Aug 99 2.31 2.35 0.17 2.17 0.13
Nov 99 2.20 2.19 0.17 2.16 0.44
Feb 00 1.93 1.96 0.17 2.09 0.78
May 00 1.88 1.89 0.17 2.07 0.84
Aug 00 2.38 2.38 0.16 2.13 0.06
Nov 00 2.36 2.37 0.17 2.11 0.05
Feb 01 1.94 1.92 0.17 1.87 0.42
May 01 1.90 1.88 0.17 2.26 0.99
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Figure 2 The August 1997 Inflation Report fan chart
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Figure 3 Alternative fan chart based on central prediction intervals

1994 95 96 97 98 99
0

1

2

3

4

5

6Increase in prices on a year earlier



25

Figure 4

MPC year-ahead forecasts: distribution functions
  of sample z-values (n=12) and uniform distribution
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Figure 5

MPC current-quarter forecasts: distribution functions
                      of sample z-values (n=16) and uniform distribution


