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ABSTRACT 

Data from a range of different environments indicate that the incidence of death is not 

randomly distributed across children or households but, rather, that there is death clustering 

within households. A hypothesis of considerable interest for both theory and policy is that 

there is a causal process whereby the death of a child influences the risk of death of the 

succeeding child in the family. This causal effect which, drawing language from the 

literature on unemployment, we term scarring or genuine state dependence tends to be 

confounded with both observable and unobservable inter-family heterogeneity. In this 

paper, we investigate the extent of genuine scarring in three Indian states, controlling for 

these confounding factors. The paper offers a number of methodological innovations upon 

previous research in the area and, thereby, offers what we expect are more robust estimates 

of the scarring effect. 
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1. INTRODUCTION  

Data from a range of different environments indicate that the incidence of childhood death 

is not randomly distributed across children or households but, rather, that there is a positive 

association of sibling deaths. This appears to persist even after controlling for relevant 

socio-economic, behavioural and biological variables1.  It has, in the last decade, been 

recognised that this invalidates the assumption of independence of observations for siblings 

that characterised earlier statistical models of child mortality.  

A hypothesis that is of considerable interest for both theory and policy is that there 

is a causal process whereby the death of a child influences the risk of death of the 

succeeding child. That is, a family that experiences a child death is “scarred” in the sense 

that, by a causal process, the subsequent child in that family is predisposed to a higher 

death risk.2   This type of scarring is popularly known as ‘genuine state dependence’ in the 

literature on unemployment (Heckman, 1981b). The clustering observed in the data or in 

simple regressions of death risk of the index child on survival status of the preceding 

sibling will tend to over-estimate state dependence to the extent that there is observed and 

unobserved heterogeneity between families that cannot be held constant. The main 

objective of this paper is to revisit the issue of death clustering using a unified statistical 

framework in order to identify the extent of genuine state dependence or scarring, after 

controlling for the confounding effects of observed and unobserved heterogeneity.  

                                                 
1  See, for example, Zenger (1993), Miller et al (1992), Das Gupta (1990), Bean et al (1988), Hobcraft et al 

(1985). 
2  Defining a state as a realisation of a stochastic process, this is equivalently described as the death risk 

facing the index child being dependent upon the “state” revealed [/experienced] for the preceding child. 
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A particular [causal] dynamic that has interested demographers operates by the 

death of a child modifying both birth spacing and birth spacing effects on the mortality risk 

of the subsequent child.3 The death of a child tends to shorten the time to the next birth 

because the mother stops breastfeeding and, thereby, is able to conceive sooner than 

otherwise (see, for example, Zenger (1993), Cantrelle et al (1978), Chen et al (1974)). As it 

can take up to 24 months for the mother to recuperate physiologically from a birth, a short 

preceding birth interval elevates mortality risk4. If the family-level clustering in deaths that 

is observed in the data reflects genuine state dependence of this kind, then there are clear 

implications for policy such as that improving access to contraception will reduce death 

clustering and overall mortality rates. If, on the other hand, multiple child deaths in a 

family reflect a genetic vulnerability that all children in the family share then, while such 

families may be suitable targets for policy intervention, there is no particular reason to 

expect contraception to have a big impact. Thus an appropriate choice of policy 

interventions relies upon identifying the extent of scarring after controlling for confounding 

factors.  

In the last decade, demographers have shown an active interest in understanding 

death clustering5. However, the common practise in the literature of discarding information 

on children born before a certain date raises the problem that the start of the sample period 

                                                 
3  The use of the term “dynamic” may deserve explanation. A dynamic model is typically one in which Xt is 

modelled as a function of lags of Xt. Thus the commonly used first-order Markov model is Xt=α+βXt-1+ut, 
where the regressor is termed the lagged dependent variable. In this paper, while time is implicitly 
involved, Xt is the mortality risk of the index child and the lagged regressor is the survival status of the 
preceding child. 

4  This is the case of pure state dependence arising by the impact of a previous death on birth spacing to the 
next birth. A further twist on the story is that the risk-raising effect of a short birth interval tends to be 
smaller for children whose elder sibling has died (e.g., Zenger (1993), Pebley et al (1991), Nault et al 
(1990), Bean et al (1988)). This can be explained in terms of a surviving elder sibling creating 
physiological demands on the mother in terms of breastfeeding (e.g., NRC, 1989), increasing competition 
for resources such as food and parental care (e.g. Zenger, 1993), or transmitting infectious diseases to the 
index child (Aaby et al, 1984). 
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does not coincide with the start of the stochastic process under study (see Section 4.2). As a 

result, previous estimates of state dependence are potentially biased [upwards]. A 

contribution of this study is that it avoids this problem by using the complete birth history 

of each mother and specifying a separate reduced form model for first-born children. A test 

for exogeneity of the first observation is provided. Other specification issues raised in this 

paper relate to generalisation of the distribution of unobservables by allowing for mass 

points at the extrema of the distribution, avoiding time-inconsistency, and investigating 

sensitivity to recall bias or measurement error in reporting of the age of death (see Sections 

3 and 4). Sensitivity of the estimated scarring effects to the choice of parametric model is 

also investigated. Results are presented to show the percentage of observed death clustering 

that can be explained by genuine state dependence (i.e. by the survival status of the 

preceding sibling).  

 The evidence on death clustering is almost entirely from developing countries. If 

this were entirely a reflection of inter-family differences in observable characteristics and 

unobservables such as genetic composition [or maternal health] then we would expect the 

degree of death clustering to be fairly independent of the level of socio-economic 

development. However, if there were genuine scarring then we would expect it to decrease 

with socio-economic development and demographic change6.  Previous estimates of 

scarring effects show some geographic variation but it is difficult to say whether this 

represents a robust description of the geographical variation in scarring effects since these 

                                                                                                                                                    
5  See Zenger (1993), Guo (1993), Curtis, et al (1993).  Economists have exhibited little awareness of the 

phenomenon. Bhargava (2002) is a recent exception, on which further comment is in Section 4. 
6  Socio-economic development is typically associated with a greater effective supply of and demand for 

contraception. Death of a preceding sibling would not necessarily lead to a short birth interval to the next 
child if contraception were available and if socio-economic variables were such that it was acceptable to 
use contraception. [Parity or fertility are also associated with death risk but as these are choice variables 
jointly determined with mortality [risk], it is not straightforward to make causal statements such as that a 
decline in fertility will tend to reduce state dependence. ] 
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studies use different model specifications, making them strictly non-comparable7. By 

estimating the same models for three Indian states that are at very different levels of social, 

economic, political and demographic development this paper provides comparisons that 

enable a tentative association of the degree of state dependence with the level of 

development8.  

An early contribution to the now active literature on death clustering that has been 

much cited is a paper based on a small survey of households in the Indian state of Punjab9. 

This is the first paper to attempt a more rigorous statistical analysis of death clustering in 

India10.  

The next Section describes the data used and the incidence of death and family-

level clustering found in India. A formal econometric model is set out in Section 3, where 

genuine state dependence or scarring is defined and distinguished from unobserved 

heterogeneity. Issues that arise in estimation of the model given the nature of the available 

data are discussed in Section 4, which also describes the relation of this paper to previous 

research. Section 5 describes the empirical model, defines the variables used in the study 

and presents descriptive statistics for India and for the three states selected for this study. 

The results are set out in Section 6 and Section 7 concludes with a discussion of what the 

study has shown and provides some suggestions for further research.   

                                                 
7  The one study that we are aware of that provides comparable region-specific estimates of scarring is that 

of Curtis, Diamond and McDonald (1993) who, using data for different regions of Brazil in 1986, find, 
consistent with our hypothesis, that state dependence is only significant in the poor North-eastern region 
of Brazil. They interact the previous child’s survival status with region, which is similar to what is done in 
this paper, the difference being that we allow all model parameters and not just sibling survival status to 
be region-specific.  

8  The Indian states approximate European countries in size [and diversity] and each set of results is also 
interesting in itself. 

9  Das Gupta (1990). Also see Das Gupta (1997). 
10  Although see Bhargava (2002), who analyses data for the Indian state of UP, one of the three states that 

we investigate. 
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2. THE DATA & DEATH CLUSTERING IN INDIA 

The Data 

The National Family Health Survey (NFHS II) was conducted in 26 Indian states in 1998-

99, covering more than 99 percent of India's population. The NFHS has a systematic, 

multistage, stratified sample design that was uniform over the states. It interviewed about 

90,000 ever-married women in the age group 15-49. For each woman, the data contain a 

complete fertility history, including records of child deaths. As indicated earlier, we 

perform our analysis for each of three Indian states, Uttar Pradesh (UP), West Bengal (WB) 

and Kerala (KE). UP is the largest Indian state with social and demographic indicators that 

put it below the Indian average. Kerala is an exceptional state that leads India in almost 

every index of human development. West Bengal lies between the two in social-

demographic development while exhibiting better economic indicators (level of per capita 

income, poverty incidence) than the other two states. A profile of the three states relative to 

India is presented in Appendix: Table 1.  

Table 1 reports neonatal, infant and under-5 death rates. Of every 1000 births in 

India, 82 die before the age of 12 months. There is remarkable inter-state variation. The 

corresponding numbers are 116 in UP, 76 in WB and 36 in KE.  

Death Clustering 

How unequally is childhood mortality distributed across families? This Section investigates 

the extent of death clustering within families in the Indian data, using some alternative 

indices. Consider Table 3. Of families that have experienced at least one infant death, 27% 

experience at least one further infant death. Given that X% of families experience one and 
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only one infant death, this is suggestive of clustering11. Clustering is most evident in UP, 

least evident in KE and at about the national average in WB12. 

 In the formal analysis conducted in this study and also in some previous studies, a 

first-order Markov model is specified in which, conditional on the survival status of the 

preceding child, the survival status of earlier children does not influence the survival status 

of the index child. For this reason, Table 4 shows the sample probabilities of infant death 

conditional on the survival status of the preceding child. In UP, the probability of infant 

death is higher by 0.16 (i.e. it is 0.25 rather than 0.09) if the preceding sibling died as an 

infant. An alternative expression of the relative risk is that an infant in UP is 2.8 times as 

likely to die if the preceding sibling died rather than survived. The Table shows that the 

difference in the probability of death conditional on death or survival of the previous child 

is similar in WB and UP and smaller (at 0.12) in KE. The ratio of these conditional 

probabilities is, however, largest in KE and smallest in UP. While KE has lower levels of 

mortality than the other states, the death of a previous child is, in this state, associated with 

a five-fold increase in death risk for the index child. (dropped because we are not going to 

work with cohorts in this paper). (dropped these graphs) Overall, the Indian data exhibit a 

remarkable degree of death clustering. Without further analysis, however, it is impossible 

to say whether this reflects genuine state dependence. In Section 3 we set out an 

econometric model which defines genuine state dependence as distinct from the 

confounding effects of unobserved inter-family heterogeneity. 

                                                 
11  To see this, suppose there was no family-level clustering or that the death risks of infants from the same 

family were independent. Then, if the probability of one and only one death in a family is 0.0X then the 
probability of two deaths in a family is 0.0X^2. Similarly, the probability of 3 deaths in a family is 
0.0X^3.  Table 3 shows that the 27% families that experience multiple deaths account for 48% of all 
infant deaths or that there are just less than 2 deaths per family in this group. Then the fact that 27% 
exceeds 0.0X^2 is evidence of death clustering. 

12 This is consistent with relatively low fertility levels in Kerala and with its relatively high level of 
contraceptive use. 
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3.   THE ECONOMETRIC MODEL 

The econometric model for child j  (j=2,…,ni) in family i (i=1,2,…, N)  is specified as 

 yij
* = xij�ββββ + γyij-1 + αi  + uij,       (1) 

where yij
* denotes the unobservable propensity for child j in family i to experience an early 

death, x is a vector of strictly exogenous observable child and family specific 

characteristics that influence y*, ββββ is the vector of coefficients associated with x. It is 

assumed that there are ni children in family i. A child is observed to die when his/her 

propensity for death crosses a threshold (zero in this case), that is, if yij
* > 0.  For reasons 

stated in the previous section, it is assumed that this unobservable propensity is a function 

of the observed survival status of the previous child in the family; that is, it is the actual 

experience of a death of the previous child, rather than the propensity to die, that affects the 

survival status of the index child.  The inclusion of the survival status of the previous child 

on the right hand side of (1) allows one to test for the presence of state dependence.13 A 

family specific term αi is included to account for the possibility that there may be 

unobserved and, possibly, unobservable family characteristics which influence the index 

child’s propensity to die.  

 Before proceeding with the estimation of the model, some assumptions regarding 

the survival status of the first child yi1 are required.   A reduced form equation for the first 

child is specified as follows,   

 yi1
* = λλλλ’ zi  + ηi   i=1,....,N  and j=1          (2) 

where zj is a vector of exogenous covariates that are assumed to influence yi1
*, 

var(ηi)=σ2
η and corr(αi ,ηi)=ρ.  In principle, the vector of covariates in x and z need not be 
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the same. These covariates are also allowed to have different effects in equations (1) and 

(2)To account for the possibility of non-zero ρ, we adopt a linear specification, in terms of 

orthogonal error components, : 

 ηi = θ αi  +  ui1         (3) 

By construction, αi and ui1 in (3) are orthogonal to one another, θ= ρ ση/σα and 

var(ui1)= σ2
η(1− ρ2).  Hence, it follows that, 

 yi1
* = λλλλ’ zi  + θ αi + ui1   i=1,....,N  and j=1         (4) 

 yij
* = xij�ββββ + γyij-1 + αi  + uij,   i=1,....,N  and j=2,..,ni (1) 

Equation (4) together with (1) specifies a complete model for the infant survival process. 

Assumptions regarding the distribution of αi and for yij
* conditional on αi, xij and  yij-1  

are now required.  First it is assumed that αi are independent and identically distributed 

with density h, and yij
* conditional on αi, xij and yij-1 is independently distributed with a 

distribution function F, both to be made precise shortly. 

Marginalising the likelihood with respect to αi gives the likelihood function for 

family i  

(i  
2

L  [( '  ) (2 1)
in

ij-1 ij
j

F y yαγ σ α
∞

=−∞

= + + − ∏∫ β %ijx                                         

)i[( '   )  (2 1)]  h( ) di1F yαθ σ α α α+ −z λ % % %     (5) 

where , α~ = α/σα.  

                                                                                                                                                    
13 For a survey of some of these models, see Hsiao (1986) and Maddala (1987). 
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Distributional assumption for the conditional distribution of y* 

The most popular assumption regarding the distribution of yij
* conditional on αi,  xij  and  

yij-1,  F, is the Logistic function, which is symmetric with respect to the mean. In order to 

check for the sensitivity of the estimates to the distributional assumption for F, the models 

are estimated under three different assumptions for F: logistic, standard normal and 

extreme-value. Unlike the logistic and the standard normal, the extreme value distribution 

is not symmetric. If tail behaviour is important in determining infant death probabilities, 

then results from the standard normal model might differ from that of the logistic  

Assessing the Size of State Dependence Effects 

A convenient way to interpret the estimated state dependence effect, γ, is required. One 

such method is to look at the change in the predicted probabilities conditional on the 

survival status of the previous child (e.g. Chamberlain, 1984). This involves the fairly 

standard calculation of marginal effects that is common to qualitative dependent variable 

models, modified to account for the distribution of unobserved heterogeneity in the 

population.  For each (non-first born) child within a family, predicted probabilities of death 

are calculated conditional first on the death of the previous child and, secondly, on the 

survival of the previous child. The difference between these two probabilities is averaged 

over the sample to obtain an estimate of the contribution of state dependence. We also 

report the ratio of the two average conditional probabilities.  

4. ISSUES OF MODEL SPECIFICATION AND TESTING 

This Section describes potential problems that arise in an empirical specification of the 

model, indicating the nature of the resulting bias in some previous studies and how this 

paper attempts to avoid such biases. Section 4.1 argues that the practice of left-truncation 

of the data common to most previous studies results in potential over-estimation of the 
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extent of state dependence. In Section.4.2, it is argued that conditioning on the preceding 

birth interval will tend to lead to an under-estimation of state dependence. Discussion of an 

appropriate distributional assumption for unobserved heterogeneity (h) is in Section 4.3. 

Measurement error in age of death is argued, in Section 4.4, to create a possible upward 

bias in the state dependence coefficient. In Section 4.5, it is argued that it is inappropriate 

to use time-varying covariates measured at the time of the survey as explanatory variables 

when the infant deaths that are being analysed may have occurred decades before the 

survey. Section 4.6 sets out some testable restrictions on the model. 

4.1.  The Initial Conditions Problem in a Dynamic Model 

It is customary in the literature to discard information on children born before an arbitrarily 

selected date, such as ten or fifteen years before the date of the survey (e.g., Zenger (1993), 

Guo (1993), Curtis, et al, (1993), Madise and Diamond (1995), Bhargava (2002)). [Other 

studies also explicitly discard first-born children when including the previous sibling’s 

survival status as a regressor]. When the sample is selected in this manner, the start of the 

sample does not coincide with the start of the stochastic process under study. This produces 

an ‘initial conditions’ problem in dynamic models. On account of the presence of family 

unobservable characteristics, α, in equation (1), the survival status of the previous child,  

yij-1 is endogenous. Thus discarding observations at the beginning of the sample results in 

an endogenously truncated sample. In principle, consistent estimates can be obtained from 

an endogenously truncated sample if an appropriate identifying restriction can be found, 

that is, a variable that influences the first sample observation but does not appear in the 

equations for higher birth order children. In practise, it is very difficult to find a valid 

identifying restriction. This study takes the alternative route of using all of the retrospective 

information available so that the first observation does refer to the first-born child for each 
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mother. Most previous studies neglect to recognise this problem14. This is very important in 

analyses of death clustering, as it will tend to bias [upwards] estimates of persistence, that 

is, to over-estimate the extent of genuine state dependence. Discarding initial observations 

also has the problem that it creates an unnecessary loss of information. For example, in the 

all-India sample, 29.7% of children are first-born, of whom 12.2% are the only-child.  

A test of the null hypothesis that θ=0 in (3) is a test for exogeneity of the first sample 

observation. Clearly, if θ=0 in (3) then unobservables in the equation for the first 

observation are uncorrelated with unobservables in the [dynamic] equations for subsequent 

observations. In this case, a separate specification of the equation for the initial sample 

observation is unnecessary. 

4.2.  Specification of State Dependence or Scarring Effects 

Previous studies of death clustering differ in their specification of “state dependence 

effects”, variously using one or more of the number of surviving siblings, the survival 

status of the previous sibling and the preceding birth interval15. Recall the causal process 

hypothesised in the demographic literature to drive state dependence (see Section 1). The 

survival status of the previous sibling has a direct bearing on the birth interval to the index 

child in a way that the number of surviving siblings does not. [The number of surviving 

siblings is a compound indicator of fertility and mortality in the family]. If the purpose is to 

                                                 
14 This includes Muhuri and Preston (1991), Muhuri (1996), Pal and Makepeace (2001), Zenger 
(1993), Guo (1993), Curtis, et al, (1993), Madise and Diamond (1995).The only study we are aware 
of that recognises the endogeneity problem coming via the correlation of the survival status of previous 
children and family unobservables, is that of Bhargava (2002). He uses a sample of data restricted to ten 
(check) years before the date of the survey (NFHS-I, 1991/92). The variable used for the identification of the 
parameters of interest is the number of live births before that of the index child. The validity of this variable 
as a suitable instrument is questionable since fertility may be considered to be a choice variable 
[/endogenous]. 
15 For example, Bhargava (2002) uses number of surviving siblings, the number of children born before the 

mother adopted family planning and the preceding birth interval; Curtis et al (1993) use survival status of 
previous sibling in interaction with the birth interval. Zenger (1993) presents alternative specifications 
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identify genuine state dependence then the number of surviving siblings is an inappropriate 

substitute for survival status of the previous sibling.  

A number of demographic studies describe the index child’s mortality risk as a 

function of both previous child’s survival status and the preceding birth interval. To the 

extent that the previous child’s survival status impacts on the index child’s death risk by 

altering the length of the birth interval, holding constant the birth interval in the model will 

tend to weaken the coefficient on previous child’s survival status. As a result, the degree of 

state dependence will tend to be under-estimated. A further problem with this specification 

is that the birth interval is an endogenous variable and one for which valid instruments may 

be difficult to find16. There are also measurement problems with birth intervals as they may 

be shorter on account of premature birth or longer on account of miscarriage [e.g. Madise 

and Diamond (1993)]. If these events are sufficiently common in the data, the coefficient 

on birth interval will reflect a compound of these mechanisms. 

 In this paper, the state dependence effect is captured entirely by the coefficient on 

previous sibling’s survival status. Birth interval is not used as one of the regressors.  

4.3.  Distributional Assumption for Unobserved Heterogeneity 

Following the literature, it is initially assumed that αi, unobserved family-level 

heterogeneity, is independently and identically distributed as a normal variate. One possible 

weakness of this assumption is that it does not allow enough flexibility to model the fact 

that some families never experience any child deaths and that in some families all children 

die.(insert % of hhs in India at each end point).  

                                                                                                                                                    
using the birth interval in every case and either survival status of previous child or family-level random 
effects in the alternative cases. [add more] 

16  Endogeneity means that the birth interval is potentially correlated with the error term in the model 
describing mortality risk for the index child. Although uptake of contraception is a choice variable 
(endogenous), the availability of contraception is a potential instrument for birth interval. This does not 
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Referring back to equations (1) and (4), a very large positive (negative) value for the 

unobservable α will give a very large (small) value for y* and hence a very large (small) 

probability of observing death of the index child. This can be accommodated by allowing 

for empirically determined masses at the two extremes, that is, at plus and minus infinity of 

the Normal mixing distribution17.  This gives the following likelihood for family i, 
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where, Li is given by equation (5) and ψ0 and ψ1 are the unknown end-point parameters. 

Hence, the estimated proportion of families who will have a very large or a very small 

unobserved family component are given by p0 and p1 respectively, where, 
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In practice, the data may not contain enough variation in order to allow us to identify ψ1 

(this is, indeed, what was found in this study). 

4.4.  Measurement Error 

A reason that many previous studies left-truncate the sample is to minimise recall error in 

the recorded date of child death, which is assumed to be larger the further away the mother 

is from the event. It may seem implausible, a priori, that mothers ever forget the date of 

death of a child but the data do exhibit some age-heaping. In particular, the Indian data that 

are used in this study show heaping at six-month intervals. Since the model has infant 

death on both sides of the equation, with the index child’s risk a function of the preceding 

                                                                                                                                                    
appear to have been considered in the previous literature. As we do not use the birth interval in our model 
in this paper, this exploration is left to future work. 

17  See Barry et al (1989), Narendranathan and Elias (1982) for an example in the case of unemployment 
experiences.  
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child’s survival status, positively correlated measurement error in these variables will tend 

to create an upward bias on the state dependence coefficient. 

The dependent variable and the survival status of the preceding child in the model 

estimated in this paper are both coded as binary variables that are unity if the child dies 

before the age of 12 months and zero otherwise. To investigate sensitivity of the estimates 

to age-heaping at 12 months the models were re-estimated with these variables defined to 

include deaths occurring at 12 months. The results were very similar (and so are not shown 

but available on request). This is unsurprising since the problem of recall error may be 

expected to be less severe when the dependent variable is binary (as in a probit or logistic 

model) than when it records time till death (as in hazard models that are sometimes 

estimated instead).  

4.5.  Time Inconsistency  

Survey data used to study childhood mortality typically contain complete retrospective 

histories of births and child deaths experienced by ever-married women aged 15-49. The 

data we use for India are similar. A woman aged 49 in 1999 may have experienced a birth 

and an infant death as long ago as 1969. As a result, data on the current assets of her 

household or the facilities available in her village are unlikely to be informative in an 

analysis of childhood deaths18. This is the time-inconsistency problem. Several previous 

analyses use time-inconsistent information for variables such as toilet facility, electricity or 

access to piped water and they do not seem to acknowledge the problem (e.g. Madise and 

                                                 
18 There is plenty of evidence in the literature that both income mobility and geographical mobility in 

developing countries is considerable. The recent availability of household and individual-level panel data 
for developing countries has made it possible to study income distribution dynamics. This research 
indicates considerable “churning” in the distribution with the identity of households classified as poor 
changing quite rapidly through time (see Baulch and Hoddinott, 2000). There is also a non-negligible 
degree of geographical migration (see Williamson, 1998). Together, these facts make implausible the 
assumption that current household assets or current community infrastructure are a good proxy for the 
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Diamond (1995), DeVanzo et al (1983), Gubhaju et al (1991), Bhargava (2002)). A few 

recent papers model community-level random effects (e.g. Bolstad and Manda (2000), 

Sastry (2001)) which run into the same problem when unobservables (ranging from 

community infrastructure to social norms) are subject to rapid change19.  

The left-truncation of the data referred to in Section 4.1 mitigates the time 

inconsistency problem by severing the retrospective information before it gets into the 

distant past. Sometimes this selection is forced upon the researcher by the nature of the 

survey20. However, as already discussed, this truncation of the data can bias key 

coefficients in the analysis if the model is dynamic and appropriate identifying restrictions 

are unavailable. In this paper, since information on the entire history of births for every 

woman in the sample is used, the problem of time inconsistency is avoided by including in 

the model only those conditioning variables that can be reasonably assumed to be 

exogenous and that are time-invariant or at least relatively sluggish (see Section 5).   

4.6 Some Testable Restrictions on the Model 

1.  Exogeneity of the initial sample observation:  θ=0 in (4) is a test of the hypothesis that 

the initial sample observation can be treated as exogenous. Under the assumption that the 

initial sample observation is exogenous, the model reduces to a simple random effects 

model.  

                                                                                                                                                    
socio-economic status of the household at the time that the children in question were exposed to the risk of 
infant death. 

19  Mother-specific random effects included in this and previous studies are much more likely to be stable. 
We expect mother-specific unobservables in a model of child mortality to include genetic factors, attitudes 
or inherent maternal ability, all of which can plausibly be assumed stable over time. 

20 Thus, in the Demographic and Health Surveys of which the Indian survey used in this study is an example, 
information on certain variables (like vaccinations, breastfeeding) is collected only for births occurring in 
the three or five years preceding the survey. 
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2. Process observed from the beginning:  This is equivalent to a test of θ=1 in (4).  This 

model can be estimated simply by creating a time dummy (dum) which equals one when 

j=1 and zero otherwise.  Equations (4) and (1) together now become 

 ( ) ( ) ( )*
1 i i1  ' 1  'ij ij ij ijy dum dum y dum uγ α− = ∗ − + − + ∗ + + x zβ λβ λβ λβ λ   (8) 

Equation (8) can then be estimated using all the data with standard software packages, 

which allow estimation of random effects models.   

3.  No unobservable family characteristics:  

Let  corr(αi+uij ,αi+uik)=
σ

σ σ
α

α

2

2 2+ u

 =  r  say,  for all j ≠ k ≠ 1.       (9) 

The correlation coefficient r gives the proportion of total error variance that is attributed to 

the unobservable component. Given the binary nature of the dependent variable, model 

identification requires a normalisation. The most common normalisation is that σ2
u=1. This 

is the standard normalisation that is used in probit models where F is assumed to be the 

standard normal density. But, when F is assumed to be either a logistic or an extreme value 

distribution, as is the case in this study, then σ2
u= π2/3 and  π2/6. 

A test of H0: σα
2=0 (which is a test that there are no unobservable family 

characteristics in the sample and therefore that the model collapses to a simple binary 

dependent variable model) is equivalent to a test of H0: r=0 in equation (9). This can be 

tested as a likelihood ratio test but the test statistic will not be a standard chi-sq test since 

the parameter restriction is on the boundary of the parameter space. The standard likelihood 

ratio test statistic has a probability mass of 0.5 at zero and 0.5 χ2(1) for positive values. 

Thus a one-sided 5% significance level test requires the use of the 10% critical value 

(Lawless (1987)). 

5. AN EMPIRCAL MODEL  
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 This Section describes the variables in the empirical model. Variable definitions 

and with their means and standard deviations is provided in Appendix Table 2.The 

dependent variable is defined as unity if the child is observed to die before the age of 12 

months and zero otherwise (infant death). The regressor of interest is the infant survival 

status of the preceding sibling21.(removed because all this is said in Sec 4.1).         .,  

Like most previous studies, mother’s education and age at first birth are included. 

Since child mortality risk is known to be U-shaped in mother’s age at first birth, this is 

specified as a quadratic. A relatively flexible specification of mother’s education is used:a 

set of dummy variables for level of education attained. This is preferred to years of 

education as it allows for non-linearities and because knowledge of whether it is say, 

secondary, rather than primary education that makes a big difference is of direct interest to 

policy makers. Unlike most other studies, a similar set of indicators for educational level of 

father is also included. This is likely to be an important additional control for socio-

economic status to the extent that fathers are the main earners. Exclusion of this variable 

will tend to raise the proportion of the residual variance attributable to unobserved inter-

family heterogeneity. Other family-level observable variables included in the model are 

religion and caste. Child-specific regressors in the equation are child birth-order, gender 

and an indicator for whether the child is one of a multiple birth (twin, triplet, etc). 

In contrast to the common procedure of throwing away observations with missing 

values, dummy variables were created to indicate missing values and these werencluded in 

the model estimation.  

6. EMPIRICAL RESULTS 

                                                 
21 [ref Southampton paper: we shd make sure that previous child had 12 months of exposure before index 

child was born- so I shd check how many cases we have of preceding birth intervals<12 months.] 
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Estimates of the full model are presented in Table 6. The main result is that we find 

evidence of genuine state dependence in each of the three Indian states after controlling for 

a number of exogenous child and family-specific characteristics and for all unobserved 

differences between families. Genuine state dependence explains 52% of the clustering (or 

persistence) observed in the data in UP, the corresponding proportions being 30% for WB 

and 43% for KE (Table 7). These proportions are not vastly different from one another. 

While it is difficult to make general statements based on a comparison of three statistics, it 

is interesting that scarring is smaller in WB than in KE. 

To assess the importance of controlling for inter-family heterogeneity and also for 

exogenous observable variables, we estimate models that do not include these terms. The 

proportion of observed clustering that such a model would (spuriously) attribute to state 

dependence rises to 87%, 82% and 69% in UP, WB and KE respectively. The large part of 

this difference is on account of unobserved heterogeneity (see Table 7). We conclude that 

genuine state dependence tends to be substantially over-estimated in the absence of 

controls for unobserved heterogeneity. 

Some of the coefficients on the interaction terms between the exogenous covariates 

and an indicator variable for first-born children are significant. This confirms the 

importance of our strategy (see Section 4.1). The estimate of θ is not significantly different 

from unity, which implies that unobserved heterogeneity enters the equations for the first 

child and for subsequent children in a similar way (see Section 3). Estimates of p0 are 

insignificant in each column, indicating that the mass point correction for very large 

probabilities of death was not necessary, the assumption of normality offering a fair 

approximation to the data.  

We find that Muslim children face a significantly lower death risk than others in 

UP, while religion has no impact in other states. Children from the lower castes do not 
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appear to be more vulnerable after conditioning on the other covariates. The education of 

both mothers and fathers has a significant effect in reducing death risk in each state, there 

typically being some additional benefit to each level of education. The quadratic in age of 

the mother at birth of the index child is significant in each state. However, it is striking that 

it is clearly less significant in Kerala, where average age at birth is higher and where there 

appears to be less variation in this variable than in the other states. Birth order effects 

(order 2 and upwards) are only significant in UP: this is consistent with it being the most 

backward state and one with relatively high fertility and low availability and use of 

contraception.  

7. CONCLUSIONS 

This paper investigates the phenomenon of death clustering in India. This is a phenomenon 

of considerable theoretical interest, understanding which contributes to understanding the 

inter-relations of family behaviour, fertility and mortality. It is also clearly of interest to 

policy since finding a concentration of child deaths within certain households raises the 

question of identifying and targeting high-risk families. The main aim of the paper is to 

identify the degree of pure state dependence and it offers some statistical innovations in 

disentangling this from unobserved heterogeneity. In doing this, it borrows insights from 

the literature on the economics of unemployment which, it can be argued, has (statistical) 

properties similar to mortality. The main result is that there is a significant degree of state 

dependence in each of the three states. We show the extent to which this would be over-

estimated if we did not hold constant a range of observables and family-specific 

unobservables.  
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Table 1 - Mortality Rates 
 
Neonatal 5.21% 7.39% 4.82% 2.54% 
Infant 8.22% 11.64% 7.59% 3.56% 
Under 5 11.28% 15.92% 9.82% 4.47% 
 
Notes:  
(i) Authors’ calculations from NFHS-II. These are the percentage of all children born to 

mothers aged 15-49 in 1998-99 that are reported to have died before a certain age.  
(ii) Neonatal death is in the first 28 days of life, infant is in the first 12 months and under-

5 is in the first 60 months. The post-neonatal mortality rate may be computed as the 
difference between infant and neonatal mortality rates. 
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e  

Table 3 
Death Clustering in India 

 
  INDIA UP WB KE 
Infant Deaths     
Children (m2/m1) 48.22% 57.76% 46.22% 27.36% 
Mothers (n2/n1) 27.23% 34.40% 25.04% 13.48% 
     
Under5 Deaths     
Children (m2/m1) 55.73% 66.39% 50.19% 28.57% 
Mothers  (n2/n1) 32.74% 41.58% 27.78% 14.41% 
     

 
Notes: To illustrate the interpretation of these figures, consider the upper left cell. This 
tells us 27% of families (mothers) experienced multiple child deaths and that 48% of infant 
deaths in India came from such families. 
n1: number of mothers with 1 or more child deaths 
n2: number of mothers with 2 or more child deaths 
m1: number of child deaths amongst mothers with 1 or more child deaths 
m2: number of child deaths amongst mothers with 2 or more child deaths 
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TABLE 4 
Previous Child�s Survival Status: Clustering and State Dependence in Infant Death 

 Uttar 
Pradesh 

West 
Bengal 

Kerala 

All Women    
Incidence of infant death (%) 11.10 7.31 3.32 
Conditional Probabilities    
Prob(yij=1|yij-1=1) 0.250 0.210 0.145 
Prob(yij=1|yij-1=0) 0.090 0.058 0.028 
Raw data persistence due to yij-1 (difference measure)(ii) 0.160 0.152 0.117 
Raw data persistence due to yij-1 (ratio measure)(iii) 2.78 3.62 5.18 
Total number of women with more than one child ever born 
(% of all women) 

22640 
(75.6) 

7021 
(66.1)  

3610 
(60.7) 

Age 15-30    
Incidence of infant death (%) 9.45 5.11 1.19 
Conditional Probabilities    
Prob(yij=1|yij-1=1) 0.205 0.165 0.059 
Prob(yij=1|yij-1=0) 0.078 0.039 0.011 
Raw data persistence due to yij-1 (difference measure)(ii) 0.127 0.126 0.048 
Raw data persistence due to yij-1 (ratio measure)(iii) 2.63 4.23 5.60 
Total number of women with more than one child ever born 
(% of all women) 

5649 
(78.7) 

1740 
(53.2) 

590  
(82.5) 

Age  31-40    
Incidence of infant death (%) 9.92 7.36 3.18 
Conditional Probabilities    
Prob(yij=1|yij-1=1) 0.211 0.215 0.079 
Prob(yij=1|yij-1=0) 0.084 0.058 0.030 
Raw data persistence due to yij-1 (difference measure)(ii) 0.127 0.157 0.049 
Raw data persistence due to yij-1 (ratio measure)(iii) 2.51 3.71 2.68 
Total number of women with more than one child ever born 
(% of all women) 

10034 
(79.6) 

2920 
(69.1) 

1446 
(61.0) 

Age 41-49    
Incidence of infant death (%) 14.13 8.85 4.26 
Conditional Probabilities    
Prob(yij=1|yij-1=1) 0.320 0.234 0.209 
Prob(yij=1|yij-1=0) 0.108 0.078 0.033 
Raw data persistence due to yij-1 (difference measure)(ii) 0.212 0.156 0.176 
Raw data persistence due to yij-1 (ratio measure)(iii) 2.96 3.00 6.33 
Total number of women with more than one child ever born 
(% of all women) 

6957 
(82.8) 

2361 
(75.3) 

1574 
(69.2) 

Notes:  (i)  yij=1 if child j in family i has died before the age of 12 months. 
  (ii) Raw data persistence due to yij-1 is calculated as the difference in the two conditional  

  probabilities – see text for further details. 
  (iii) Raw data persistence due to yij-1 is calculated as the ratio of the two conditional  

  probabilities – see text for further details. 
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Table 5 
Descriptive Statistics 

 INDIA UP WB KE 
 mean s.d. mean s.d. mean s.d.. mean s.d. 
         
Infant mortality 0.08 0.27 0.12 0.32 0.08 0.26 0.04 0.19 
Infant mortality (sibling) 0.07 0.25 0.10 0.30 0.07 0.25 0.03 0.16 
Female 0.48 0.50 0.47 0.50 0.49 0.50 0.48 0.50 
Multiple birth  0.01 0.11 0.01 0.12 0.02 0.12 0.02 0.12 
Birth order 1  0.30 0.46 0.24 0.43 0.34 0.47 0.39 0.49 
Birth order 2  0.25 0.43 0.21 0.41 0.26 0.44 0.32 0.47 
Birth order 3  0.18 0.39 0.17 0.38 0.17 0.37 0.16 0.37 
Birth order 4  0.12 0.32 0.13 0.34 0.10 0.30 0.07 0.25 
Birth order 5  0.07 0.26 0.09 0.29 0.06 0.23 0.03 0.17 
Birth order >5  0.08 0.27 0.13 0.34 0.07 0.25 0.03 0.16 
Hindu 0.76 0.43 0.82 0.38 0.73 0.45 0.47 0.50 
Muslim 0.14 0.34 0.17 0.37 0.25 0.43 0.38 0.48 
Other Religion 0.10 0.30 0.01 0.09 0.02 0.15 0.15 0.36 
Scheduled caste 0.18 0.39 0.20 0.40 0.23 0.42 0.09 0.28 
Scheduled tribe 0.13 0.34 0.02 0.14 0.06 0.23 0.01 0.10 
Caste data missing 0.01 0.09 0.05 0.22 0.00 0.07 0.00 0.00 
Ma educ missing 0.00 0.02 0.00 0.02 0.00 0.04 0.00 0.00 
Ma no education 0.60 0.49 0.75 0.43 0.50 0.50 0.11 0.32 
Ma incomp primary ed 0.10 0.30 0.05 0.21 0.20 0.40 0.20 0.40 
Ma complete prim ed 0.07 0.26 0.08 0.27 0.05 0.22 0.09 0.28 
Ma incomp sec ed 0.13 0.33 0.06 0.24 0.16 0.36 0.32 0.47 
Ma secondary, higher 0.10 0.30 0.06 0.24 0.09 0.28 0.28 0.45 
Pa educ missing 0.00 0.05 0.00 0.06 0.01 0.09 0.00 0.06 
Pa no education 0.32 0.47 0.33 0.47 0.30 0.46 0.07 0.26 
Pa incomp priPary ed 0.12 0.32 0.07 0.25 0.22 0.41 0.20 0.40 
Pa complete prim ed 0.09 0.28 0.11 0.31 0.06 0.23 0.11 0.32 
Pa incomp sec ed 0.22 0.41 0.19 0.40 0.22 0.41 0.33 0.47 
Pa secondary ed 0.12 0.32 0.12 0.33 0.07 0.26 0.17 0.37 
Pa higher ed 0.14 0.34 0.17 0.37 0.12 0.32 0.10 0.30 
Age ma at 1st birth 18.56 3.27 18.01 2.99 18.08 3.24 20.25 3.54 
Age ma at 1st birth, sq 355.17 132.54 333.28 116.92 337.47 129.43 422.54 154.66 
         
 

Authors’ calculations based on NFHS-2. 
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TABLE 6 

Infant Mortality 
Uttar Pradesh West Bengal Kerala 

Coef. z Coef. z Coef. z 
1(prev. child died) 0.396 10.54 0.296 3.27 0.518 2.54 
1(girl) -0.020 -0.98 -0.107 -2.6 -0.168 -2.35 
muslim -0.211 -5.63 -0.090 -1.21 -0.060 -0.51 
other religion -0.160 -1.01 0.034 0.16 0.142 0.99 
scheduled caste 0.001 0.02 0.036 0.48 0.121 0.76 
other caste 0.062 0.71 -0.060 -0.45 0.113 0.29 
caste missing -0.001 -0.01   
ma:ed<primary -0.106 -1.64 -0.032 -0.43 -0.304 -2.14 
ma:ed=primary -0.127 -2.34 -0.393 -2.55 -0.149 -0.85 
ma:ed<secondary -0.121 -1.93 -0.474 -3.97 -0.322 -2.13 
ma:ed=secondary+ -0.364 -4.57 -0.288 -1.47 -0.551 -2.72 
pa:ed<primary 0.076 1.48 -0.055 -0.72 0.064 0.4 
pa:ed=primary -0.101 -2.25 0.044 0.36 -0.005 -0.03 
pa:ed<secondary -0.111 -2.92 -0.018 -0.21 -0.112 -0.64 
pa:ed=secondary -0.111 -2.41 -0.116 -0.81 -0.203 -0.89 
pa:ed>secondary -0.099 -2.12 -0.237 -1.43 -0.071 -0.27 
ma age@birth -0.117 -6.84 -0.197 -5.61 -0.132 -1.82 
sq[ma age@birth] 0.002 4.98 0.003 4.81 0.003 1.81 
multiple birth 1.075 14.36 1.263 9.3 0.983 4.69 
birthorder2 -0.484 -4.75 0.033 0.12 -0.263 -0.52 
birthorder3 -0.429 -4.26 0.195 0.71 -0.501 -1 
birthorder4 -0.326 -3.27 0.230 0.84 -0.315 -0.63 
birthorder5 -0.267 -2.68 0.256 0.93 -0.300 -0.58 
birthorder6 -0.110 -1.17 0.195 0.73 0.091 0.19 
Interactions with birthorder 1: 
muslim 0.102 1.51 0.039 0.35 0.084 0.49 
other religion 0.053 0.2 -0.334 -1.02 -0.229 -1.01 
scheduled caste 0.002 0.03 -0.079 -0.71 0.030 0.13 
other caste -0.002 -0.01 0.287 1.53 -4.341 -0.05 
caste missing 0.129 1.29   
ma:ed<primary 0.133 1.25 -0.073 -0.63 0.211 0.89 
ma:ed=primary -0.100 -1.06 0.306 1.47 0.022 0.07 
ma:ed<secondary -0.014 -0.14 0.289 1.83 0.223 0.92 
ma:ed=secondary+ -0.010 -0.08 -0.143 -0.55 0.126 0.39 
pa:ed<primary -0.241 -2.46 -0.110 -0.92 -0.064 -0.25 
pa:ed=primary 0.166 2.11 -0.076 -0.4 -0.183 -0.61 
pa:ed<secondary 0.012 0.18 -0.084 -0.66 -0.244 -0.88 
pa:ed=secondary 0.035 0.44 0.016 0.08 -0.456 -1.24 
pa:ed>secondary -0.013 -0.16 0.092 0.41 -0.613 -1.43 
ma age@birth -0.046 -3.26 0.008 0.25 -0.027 -0.44 
sq[ma age@birth] 0.001 2.72 0.000 0.3 0.001 0.62 
multiple birth 0.271 1 -0.605 -1.71 0.478 0.85 

   
constant 0.915 3.88 0.964 2.16 0.357 0.33 
rho 0.106 6.47 0.192 4.58 0.052 0.46 
theta 0.814 4.19 0.780 3.28 1.956 0.56 
p0 -12.692 -0.1 -11.456 -0.19 -3.396 -0.23 
Notes: Dependent variable: Probability of death in first 12 months of life. Prev=previous, 
ma=mother, pa=father, ed=education, sq=square. See Section 3 for definitions of rho, theta 
and p0 and for discussion of the ML estimator. 
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TABLE 7 
 Estimated State Dependence (Persistence): Difference(ii) [Ratio(iii)]  

 
 Uttar Pradesh West Bengal Kerala 

Raw data     
Persistence: difference measure [ratio measure] 0.160 [2.8] 0.152 [3.6] 0.117 [5.2] 
Model with unobserved heterogeneity but no 
covariates(iv)

  - model has one mass point at - ∞∞∞∞ 
   

Estimated Persistence: difference measure [ratio measure] 0.093 [2.2] 0.055 [2.4] 0.049 [3.4] 
θ - see text (t-ratio for θ=0) [t-ratio for θ=1] 0.835  

(4.76) [0.939]
0.771  
(3.32) [0.987] 

1.351  
(1.34) [0.347]

Proportion of variance attributed to unobservables  
(standard error) 

0.114 (0.02) 0.181 (0.038) 0.115 (0.069) 

Percentage of observed persistence explained by the 
survival status of the previous child  

 
58 

 
36 

 
42 

Likelihood ratio test for σ2
α = 0 [p-value - see text for 

details) 
84.77 [0.000] 37.38 [0.000] 6.01 [0.007] 

Model with unobserved heterogeneity but no 
covariates(iv)

  - model has two mass points at + - ∞∞∞∞ 
   

Estimated Persistence: difference measure [ratio measure] 0.093 [2.2]   
θ - see text (t-ratio for θ=0) [t-ratio for θ=1] 0.836  

(4.60) [0.901]
  

Proportion of variance attributed to unobservables  
(standard error) 

0.111 (0.02)   

Percentage of observed persistence explained by the 
survival status of the previous child  

 
58 

  

Likelihood ratio test for σ2
α = 0 [p-value - see text for 

details) 
87.50 [0.000]   

Model with unobserved heterogeneity but WITH 
covariates  - model has ONE mass points at - ∞∞∞∞ 

   

Estimated Persistence: difference measure [ratio measure] 0.083 [2.0] 0.045 [2.0] 0.050 [3.0] 
θ - see text (t-ratio for θ=0) [t-ratio for θ=1] 0.836  

(4.25) [0.834]
0.881  
(3.15) [0.429] 

1.66 
(0.68) [0.27] 

Proportion of variance attributed to unobservables  
(standard error) 

0.105 (0.02) 0.171 (0.04) 0.060 (0.08) 

Percentage of observed persistence explained by the 
survival status of the previous child  

 
52 

 
30 

 
43 

Likelihood ratio test for σ2
α = 0 [p-value - see text for 

details) 
65.40 [0.000] 30.70 [0.00] 1.61 [0.102] 

Model WITHOUT unobserved heterogeneity     
Estimated Persistence: difference measure [ratio measure] 0.140 [2.5] 0.125 [3.1] 0.081 [3.8] 
Percentage of observed persistence explained by the 
survival status of the previous child  

 
87 

 
82 

 
69 

Sample Size  29937 10627 5950 
Notes:  (i)  yij=1 if child j in family i has died before the age of 12 months. 
 (ii) Raw data persistence due to yij-1 is calculated as the difference in the two conditional probabilities – see text 

 for further details. 
 (iii) Raw data persistence due to yij-1 is calculated as the ratio of the two conditional probabilities – see text for 

 further details. 
 (iv) The model has a common intercept, and dummy indicators for the first-born and the survival status of the 

 previous child.  
 



 31

Appendix: Table 1 -  
Background Information: India and Three States 

 

Data Sources and Notes: 
Except for income-rank, population size and sample size, all figures are percentages.From World Bank 
(2000): Poverty incidence in 1994 (based on Datt (1997), (1999)); Rank of states in per capita income 
in 1996-97; Growth rate of economy (per cent) during the period 1991-2 to 1996-7. (Rank and growth 
rate calculations use the 1980/81-based GDP series).  All other data are from the NFHS-2 Fact Sheets 
in the NFHS-2 final report (2000), with the exception of mother’s literacy and population share which 
are the authors’ calculations from the NFHS-2 data. The water, toilet and electricity data refer to the 
percent of households in the sample that have these facilities. Total fertility rate (TFR) is based on data 
for 1996-98. This is the number of children a woman would bear during her reproductive years if she 
were to experience the age-specific fertility rates prevailing at the time of the survey. Contraceptive 
use is the percent of currently married women aged 15-49 using any contraceptive method. “Breastfed 
only” is the percent of children aged 0-3 months who were exclusively breastfed. “Breastfed & 
solid/mushy food” refers to the percent of children aged 6-9 months. “Women with low BMI” is the 
percent of women with body mass index less than 18.5kg/m2. Low BMI is an indicator of poor health. 
Population is as recorded by the Registrar-General’s Office of the 2000 Census on 1 July 2000. 
 
 

   INDIA UP WB KE 

Rank in per capita income   n.a. 12 6 8 

Growth rate  3.2 2.2 3.2 3 

Poverty incidence  36.5  40.2 26 29.2 

Drinking Water: pipe/hand pump  77.9 85.6 89.3 19.9 

Toilet facility  36.0 26.7 45.1 85.2 

Electricity  60.1 36.6 36.7 71.8 

Female literacy rate, 6+  51.4 42.7 57.4 85.1 

Mother’s literacy rate, 15-49  39.6 24.5 50.0 88.5 

Total fertility rate  2.85 3.99 2.29 1.96 

Contraceptive use  48.2 28.1 66.6 63.7 

Breastfed only, 0-3 months  55.2 56.9 48.8 68.5 

Breastfed & solid/mush food, 6-9m  33.5 17.3 46.3 72.9 

Women with low BMI  35.8 35.8 43.7 18.7 

Population share   100 17.1 7.91 3.2 

Population in millions  1002.1 171.5 79.3 32.4 

Sample size  248785 29937 10627 5950 
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