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ABSTRACT 
 

The attractiveness of the Regression Discontinuity Design (RDD) for the evaluation of social policies rests on its 
close similarity to a formal experimental design. On the other hand, it is of limited applicability since seldom units 
are assigned to the treatment group on the basis of pre -program characteristics observable to the analyst. Besides, 
it only allows identification of the mean impact of the program on a very specific sub-population of individuals. 
In this paper we show that the RDD straightforwardly generalizes to the instances in which individuals’ eligibility 
is established with respect to an observable pre-program measure and eligible individuals self-select into the 
program. We derive the regularity conditions necessary for the identification of treatment effects and we show 
how this set -up turns out very convenient to build a specification test on conventional non-experimental 
estimators for the mean impact of the program. Data requirements are made explicit. 
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1. INTRODUCTION  
 
 
The central issue in the evaluation of public policies is to separate their causal effect from the confounding effect of 
other factors influencing the outcome of interest. Random assignment of units to the intervention produces treatment 
and control groups that are equivalent in all respects, except for their exposition status. Thus, in a completely 
randomized experiment any post-intervention difference between the two groups doesn't reflect pre-intervention 
differences by construction. As a result, differences between exposed and control units are entirely due to the 
intervention itself. 
However, in most instances randomization is unfeasible either for ethical reasons or simply because assignment to 
the treatment can’t be controlled by the analyst. Besides, even in those instances in which the analyst can randomize 
the assignment, units may not comply with the assigned status and either drop out of the intervention or seek an 
alternative program (see Heckman and Smith, 1995). A well-known and widely used example of randomized 
assignment is the JTPA program in the United States, which currently serves close to one million economically 
disadvantaged people every year (see Friedlander et al., 1997). Random assignment occurs prior to the actual 
enrolment in the program, but a consistent fraction of those randomized into the treatment group don't participate. 
For certain components of the JTPA, such a non-complying behaviour seems to be non-negligible (see, for example, 
Heckman et al., 1998b). 
In this situation, the ideal experiment is not fully realized since participation turns out (at least partly) voluntary: 
training is provided only for those individuals who meet certain criteria of need and comply with the result of 
randomization. It follows that participation depends on observable and unobservable characteristics of individuals 
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that might be correlated with the outcome of interest. In this situation, differences between treated and control 
groups with respect to the outcome of interest might be the result of units’ self-selection into the intervention. 
The assessment of whether observed changes in the outcome of interest could be attributed to the intervention itself 
and not to other possible causes turns out to be even more complicated in a non-experimental setting. In this 
situation estimating cause-effect relationships that one might think to hold between the program and its outcomes 
typically depends on not testable assumptions about individuals’ behaviour. Given that the ideal situation for policy 
evaluators is the complete knowledge of the mechanism leading individuals to participate into the treatment, and 
given that in most instances such a mechanism is unknown (either because of non-compliance of individuals in an 
experimental setting or because of the lack of knowledge arising from observational studies), the question then arises 
of how to make the most out of each design to obtain reasonable estimates of program effects. 
There are instances in which the so called Regression Discontinuity Design (RDD) arises (see Campbell, 1964, Rubin, 
1977, Trochim, 1984). According to this design, assignment is solely based on pre-intervention variables observable 
to the analyst and the probability of participation changes discontinuously as a function of these variables. To fix 
ideas, consider the case in which a pool of units willing to participate are split into two groups according to whether a 
pre-intervention measure is above or below a known threshold. Those who score above the threshold are exposed to 
the intervention while those who score below are denied it. 
This design features both advantages and disadvantages relative to its competitors. On the one hand, in a 
neighbourhood of the threshold for selection a RDD presents some features of a pure experiment. In this sense, it is 
certainly more attractive than a non-experimental design. Since subjects in the treatment and control group solely 
differ with respect to the variable on which the assignment to the intervention is established (and with respect to any 
other variable correlated to it), one can control for the confounding factors contrasting marginal participants to 
marginal non-participants. In this context, the term marginal refers to those units not too far from the threshold for 
selection. The comparison of mean outcomes for marginally treated and marginally control units identifies the mean 
impact of the intervention locally with respect to the threshold for selection. Intuitively, for identification at the cut-
off point to hold it must be the case that any discontinuity in the relationship between outcomes of interest and the 
variable determining the treatment status is fully attributable to the treatment itself (this requires some regularity 
conditions at the threshold for selection discussed by Hahn et al., 2001). 
On the other hand, the RDD features two main limitations. Firstly, its feasibility is by definition confined to those 
instances in which selection takes place on observable pre-intervention variables; as a matter of fact, this is not often 
the case. Secondly, even when such a design applies, it only permits to identify the mean impact of the intervention 
at the threshold for selection. In the realistic situation of heterogeneous impacts across units, this local  effect might 
be very different from the effect for units away from the threshold for selection. To identify the mean impact on a 
broader population one can only resort to a non-experimental estimator whose consistency for the intended impact 
intrinsically depends on behavioural (and not testable) assumptions. 
In this paper we show that the range of applicability of the RDD is wider than it has been thought before. It includes 
all those instances in which the relevant population is split into two subpopulations, eligibles and non-eligibles, 
provided that (i) the eligibility status is established with respect to a continuous variable and (ii) information on both 
non-eligible and eligible non-participant units is available. Then, the mean impact on participant units in a 
neighbourhood of the threshold for eligibility is identified, no matter how eligible units self-select into the program. 
We make an explicit connection to the literature on RDDs (only implicit references so far; Angrist, 1998; Van der 
Klaauw, 2002) and we derive the regularity conditions necessary for identification to hold. We also show that the 
discontinuity in the eligibility rule leads to regularity conditions for identification weaker than those arising in the 
standard RDD design (Hahn et al., 2001). 
Secondly, as a straightforward corollary of the previous result, the selection bias at the threshold for eligibility turns 
out identifiable. Then, one can formally test whether any of the long array of existing non-experimental estimators is 
able to correct for such selection bias. On finding an estimator able to compensate for the selection bias even if only 
with reference to a particular subpopulation - namely, the units in a neighbourhood of the threshold for eligibility - 
one might feel more confident to use it on the broader population. 
Links to related literature are established. In particular, we show that our first result is closely linked to Bloom (1984) 
and to Angrist and Imbens (1991). We also stress that our result is closely related to the idea stated by Rosenbaum 
(1987) of using two alternative comparison groups to better identify a program impact. Lastly, we point out the 
similarities between our specification test of a non-experimental estimator and the specification tests derived by 
Heckman and Hotz (1989) as well as the link to the characterization of the selection bias provided by Heckman et al. 
(1998a).  



The remaining of this paper is organized as follows. Section 2 discusses similarities between a fully randomized 
experiment and a RDD. Section 3 generalizes the use of a RDD when participation into the treatment group is 
determined by self-selection. Section 4 shows how to validate the use of non-experimental estimators for the 
treatment effect using a RDD. Section 5 presents some concluding remarks. 
 
 

2. REGRESSION DISCONTINUITY DESIGN AND RANDOMIZED EXPERIMENTS 
 
 
This section highlights similarities between a fully randomized experiment and a RDD. Following the notation of the 
potential outcome approach to causal inference (see Rubin, 1974), let (YT,YNT) be the potential outcomes as a results 
of participating and not participating in the program, respectively. The causal effect of the treatment is  then defined 
as the difference between these two outcomes, ?=YT-YNT, which is not observable since being exposed to (denied) 
the program reveals YT (YNT) but conceals the other potential outcome. 
Let D be the binary variable for the treatment status, with D=1 for participants and D=0 for non-participants. If the 
assignment is determined by randomization, the treatment status doesn't depend on individuals’ characteristics and 
the following condition holds true 
 ( )T NTY Y D? ? ? (1) 
Typically randomization is administered only to people who previously applied for a certain program, who in general 
are not representative of the overall population (as for the JTPA case discussed above). In this situation condition 
(1) holds with respect to the group of units actually randomized, not with respect to the overa ll population. 
The attractiveness of randomization is that the difference between the mean outcome for treated units and the mean 
outcome for control units identifies the mean impact of the program 
 ( ) ( 1) ( 0)T NT T NTE Y Y E Y D E Y D? ? ? ? ? ? ? ? (2) 
since conditioning on D in the right-hand side of (2) is irrelevant by construction. In other words, randomization 
allows using information on non-participants to identify the mean counterfactual outcome for participants, i.e. what 
participants would have experienced had they not participated into the program. 
Although a RDD lacks random assignment of units to the treatment group, it shares some interesting features with an 
experimental design. Throughout this section we will focus on the so called sharp  RDD (Trochim, 1984), that is a 
RDD where the participation status is determined according to the following deterministic function of the observable 
characteristic S 
 D 1(S s),? ?  (3) 
where s  is a threshold for selection. This is actually the original formulation of such a design discussed by Campbell 
(1964). Units are assigned to the treatment if and only if they score at or above s , implying that the probability of 
participation conditional on S is discontinuous at s  stepping from zero to one as S crosses the threshold s . 
Exploiting the relationship between S and D in (3), it follows that in a sharp RDD the following condition holds true 
 ( )T NTY Y D S s? ? ? ?  (4) 
Because of the similarity with condition (1), a sharp RDD is often referred to as a quasi-experimental design (Cook 
and Campbell, 1979). In this context, conditioning on S allows to identify the average impact of the program on 
individuals scoring s , thus a local version of the parameter in (2). In fact, in a neighbourhood of s  this design 
presents the same features of a pure randomized experiment, since for any positive ? the following condition holds 
approximately 
 ( ) ( ) .T NT T NTY Y S s Y Y S s? ?? ? ? ? ? ? ? ? ?  
Note that to meaningfully define marginal units (with respect to s ), S needs to be continuous. In a finite sample for 
the condition to hold ? needs to go to zero at a proper rate as the sample size grows to infinity, implying a non-
standard asymptotic theory for the resulting estimator of the mean impact (see Hahn et al., 2001, and Porter, 2002). 
In some cases, units do not comply with the mandated status, dropping out of the program or seeking alternative 
treatments. Any of these violations of the original assignment might lead to biased conclusions on program effects, 
since conditions (1) or (4) are no longer valid. In fact, the presence of non-complying units when the assignment 
mechanism is given by (3) still makes the probability of participation discontinuous at s , but the treatment status is 
no longer a deterministic function of the variable S (see Hahn et al., 2001, and Battistin and Rettore, 2002). 



Two major drawbacks hamper the applicability of RDDs. First, in an observational study it is more often the case that 
units self-select into the treatment rather than being exogenously selected on a pre-program measure. Secondly, even 
in those instances in which the RDD applies, such a design is not informative about the impact on units away from 
s . These are the two issues we look at in the next sections. 
 
 

3. A GENERALIZATION OF THE SHARP REGRESSION DISCONTINUITY DESIGN 
 
3.1 Identification results 
 
This section discusses how to use the properties of a RDD within a set-up encountered in the evaluation of many 
social policies. Suppose that the program is targeted to a specific group of individuals whose eligibility depends on a 
known characteristic (such as age, income or unemployment duration) and that, conditional on eligibility, individuals 
choose to participate into the program according to a process unknown to the analyst. Without loss of generality, 
suppose that eligible individuals are those whose values of the variable S are above a certain threshold s . 
Accordingly, the eligibility status is determined on the basis of a deterministic rule. If all eligible units participated 
into the program, a sharp RDD would arise and the mean impact on units in a neighbourhood of s  would be 
identifiable. 
In fact, it is widespread evidence that not all eligible units participate into the program they are eligible for. 
Heterogeneity in the information available on the program, individual preferences and opportunity costs are factors 
likely to influence participation in several instances. In this situation, the probability of participation still varies 
discontinuously as a function of S but is no longer a deterministic function of this variable. In fact, the probability of 
participation is zero for those individuals who are not eligible for the program (S< s ), and is less than one for those 
who are instead eligible for it (S= s ). The resulting design is often called fuzzy RDD (Trochim, 1984). 
As a result of both the eligibility rule and the process leading to participation, the population turns out split into 
three subgroups: non-eligibles, eligible non-participants and participants. To label these subgroups we introduce 
a further binary variable to distinguish, amongst individuals whoa are eligible for the treatment, those who actually 
receive it. Let Z be the program eligibility status, with Z=1 (Z=0) for individuals who are eligible (ineligible) for the 
program, and let D be the binary variable for the treatment status as defined above. Non-participants are a mixture of 
those individuals who don't meet eligibility criteria (Z=0) and those who choose not to enter the program, (Z=1, D=0). 
It is worth noting that, contrary to the case considered in the previous section, in this set-up participation of eligible 
individuals into the program does not take place by design but is due to self-selection. 
Let 
 ( 1 1 )TE Y Z D S s? ? ? ? ? ?  (5) 
be the mean outcome for eligible units scoring S=s and actually receiving the treatment, with S? s . This quantity is 
identified exploiting information on participants for any given value of S. Let 
 ( 1 1 )NTE Y Z D S s? ? ? ? ? ?  (6) 
be the counterfactual mean outcome for the same group of units, i.e. what their response would have been had they 
not participated into the program. The mean impact of the program on treated units scoring S=s is then defined as the 
difference between factual and counterfactual results in (5) and (6) 
 ( ) ( 1 1 ) ( 1 1 ).T NTs E Y Z D S s E Y Z D S s? ? ? ? ? ? ? ? ? ? ? ? ? ? ?  
Accordingly, the mean impact on participants ? is obtained as a weighted average of these quantities, with weights 
given by the proportion of eligible units scoring S=s. 
Neither ?(s) nor ? are directly identifiable, since the counterfactual mean outcome in (6) is not observed by 
construction. Nor we can replace it by the factual mean outcome observed for eligible non-participants. In fact, due to 
the self-selection process determining the group of participants (i.e. those for whom Z=1 and D=1) and the group of 
non-participants (i.e. those for whom E=1 and D=0), eligible non-participants are not a random sample from the pool 
of eligible units, implying that in general 
 ( 1 0 )NTE Y Z D S s? ? ? ? ? ?  (7) 
is different from (6). Note that this result holds true for any given value of S, in particular when S= s . 



Suppose that the information on outcomes experienced by non-eligible units (Z=0) is available to the analyst. Since 
this group of units is by construction characterized by values of S below the threshold for selection s , it cannot be 
used to approximate the counterfactual outcomes of participants. Nor we can use non-eligible units  in a 
neighbourhood of s  to approximate the counterfactual mean outcome of participant units in a neighbourhood of s . 
The quantity 
 ( 0 )NTE Y Z S s? ? ? ?  (8) 

is in fact different from the counterfactual result (6) evaluated at s  because of the non-random selection of units into 
the treatment group discussed above. Non-eligibles alone do not allow solving the problem. 
It is the joint use of information on non-eligibles and eligible non-participants to allow solving the problem (at least 
for a particular subpopulation of participants). The key relationship to obtain this result is the following 
 ( 1 ) ( 0 ),NT NTE Y Z S s E Y Z S s? ? ? ? ? ? ? ? ?  (9) 

which is a straightforward implication of the eligibility rule. In a neighbourhood of the cut-off point s  eligible and 
non-eligible units are nearly alike with respect to S, so that in the counterfactual scenario the two marg inal groups 
would have experienced the same mean outcome. This result rests on the sharp RDD as reviewed in the previous 
section. The left-hand side of equation (9) can be written as a weighted mean of outcomes experienced by eligible 
participants and eligible non-participants, respectively, in a neighbourhood of s  
 ( 1 1, ) ( ) ( 1 0, )(1 ( ))NT NTE Y Z D S s s E Y Z D S s s? ?? ? ? ? ? ? ? ? ? ? ? ?  

where ?( s )=Pr(D=1|Z=1,S= s ) is the probability of self-selection into the program for units marginally eligible. 
Substituting the last expression in (9) we obtain 

 
( 0 ) ( 1 0, )(1 ( ))

( 1 1, ) .
( ) ( )

NT NT
NT E Y Z S s E Y Z D S s s

E Y Z D S s
s s

?
? ?

? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ?  (10) 

Namely, the counterfactual mean outcome for participants presenting S= s  is a linear combination of the factual mean 
outcome for non-eligible units at S= s  and of the factual mean outcome for eligible non-participants at s . The 
coefficients of the linear combination add up to one and are function of the probability ? ( s ), which is identifiable. 
Hence, ?( s ) - the mean impact on participants at s  - is identifiable and it can be expressed as  

 
( 1 ) ( 0 )

,
( )

E Y Z S s E Y Z S s
s?

? ? ? ? ? ? ? ? ?
 

by subtracting (10) from (5). The last expression can be interpreted as the ratio of the intention to treat effect, the 
mean impact we would observe if all eligible units actually took part in the program, to the mean impact of Z on D at 
s . Results by Hahn et al. (2001) and Porter (2002) on non-parametric estimation in a RDD straightforwardly apply. 
Note that condition (9) is the cornerstone on which we build the result. Otherwise stated, it is crucial that the 
eligibility rule is determined according to a sharp RDD. The major implication is that, although the RDD described in 
this section is fuzzy, the regularity conditions for identification of ?( s ) are those required in a sharp  RDD (and are 
therefore weaker). Moreover, to derive the result we don't need to specify how eligible units self-select into the 
treatment. Thus, identifiability of ?( s ) doesn't require any behavioural assumption on the selection process. 
However, in order to obtain identification we need access to information for three different groups of units: 
participants, eligible non-participants and non-eligibles. 
 
3.2 Related results 
 
In a fully randomized experiment, Bloom (1984) deals with the case where some units assigned to the program do not 
actually participate (no-shows). Exploiting information on participants, eligible non-participants and non-eligibles the 
author proves that the mean impact on participants is identifiable. The result in the previous section can be seen as a 
special case of Bloom (1984) since it is as if randomization took place at the threshold for eligibility s . In our case 
eligible non-participants at s  play the role of Bloom's (1984) no-shows. 
Our result (as well as Bloom's one) can also be derived as a special case of Angrist and Imbens (1991). The authors 
prove that, even if participation takes place as a result of self-selection, the mean impact on participants is identifiable 
provided that (i) there exists a random variable A affecting the participation into the program and orthogonal to the 
potential outcomes (YT,YNT) and (ii) the probability of participation conditional on A is zero for at least one value of 
A. Condition (i) qualifies A as an Instrumental Variable for the treatment status. 



In Bloom’s (1984) context, self-selection arises as a consequence of the non-complying behaviour of some units 
randomly assigned to the program. The natural choice for A in that case is the mandated status as it results from 
randomization. Condition (i) is satisfied since Pr(D=1|A=1)>Pr(D=1|A=0) and A is orthogonal to the potential 
outcomes while condition (ii) is satisfied since Pr(D=1|A=0)=0. In our case, since Z is orthogonal to the potential 
outcomes in a neighbourhood of s  and Pr(D=1|Z=0)=0, Z meets the conditions stated by Angrist and Imbens (1991) 
in a neighbourhood of s . Hence the identification of the mean impact on participants at s  follows. 
 
 

4. VALIDATING NON-EXPERIMENTAL ESTIMATORS OF THE MEAN IMPACT 
ON PARTICIPANTS 

 
4.1 Specification tests  
 
In the previous section we have shown that the existence of an eligibility rule allows to identify the mean impact of an 
intervention on marginally eligible participants even if participants are self-selected from the eligible pool. If the 
treatment effect is heterogeneous with respect to S, the impact on marginal participants is not informative on the 
impact of the intervention on units away from the threshold for eligibility. Nor non-eligible units and eligible non-
participants can be used as valid comparison groups, since they differ systematically from participants (the former 
with respect to S and the latter with respect to the variables determining self-selection). 
In order to identify the mean impact on the overall population of participants, one has to resort to one of the long 
array of non-experimental estimators available in the literature which adjust for the selection bias under different 
assumptions (see Heckman et al., 1999, and Blundell and Costa Dias, 2000, for a review). The main problem with this 
approach is that alternative estimators for the parameter of interest are consistent under assumptions that most of the 
times are not testable. 
Over the years the literature took two main routes to deal with this problem. The first route amounts to seek whether 
any over-identifying restriction on the data generating process arises from a behavioural theory of the phenomenon 
under investigation, possibly exploiting such a kind of restriction to test the assumptions on which the non-
experimental estimator rests (see Rosenbaum, 1984 and Heckman and Hotz, 1989). 
The second route is feasible only when an experimental design has been run, so that an experimental estimate of the 
impact comes available. Then, besides estimating the mean impact, one can exploit the experimental set up to study 
the selection bias and to assess whether the non-experimental estimators are able to reproduce the experimental 
estimate (see LaLonde, 1986 and Heckman et al., 1998a). When information from a randomized experiment is available, 
one can meaningfully check how closely non-experimental comparison groups methods approximate experimental 
impact estimates. At the same time, this allows us to assess the performance of alternative non-experimental 
estimators for the treatment effect, thus suggesting the best strategy to follow when experimental data are not 
available. 
In this section we show that if information is available on the three groups of units resulting from the set-up of 
Section 3.1, then one can test the validity of any non-experimental estimator on a specific subpopulation. To fix the 
ideas, we will focus on the well-known matching estimator, but the same  line of reasoning applies to other non-
experimental estimators. The key assumption on which the matching estimator rests is that all the variables driving 
the self-selection process and correlated to the outcome are observable to the analyst. Formally, the assignment to 
the treatment is told strongly ignorable given a set of characteristics x if, conditional on x, the treatment can be 
thought as randomly assigned to units provided that at each value x there is a positive probability of being treated 
 ( ) 0 ( 1 ) 1T NTY Y D x Pr D x? ? ? ? ? ? ? ? ? (11) 
If this condition holds, then it is as if units were randomly assigned to the treatment with a probability depending on 
x; the counterfactual outcome for participants presenting characteristics x can be approximated by the actual outcome 
of non-participants presenting the same characteristics. Since units presenting x have a common probability to enter 
the program, then an operational rule to obtain an ex post experimental-like data set is to match participants to non-
participants on such probability (the so called propensity score), whose dimension is invariant with respect to the 
dimension of x (see Rosenbaum and Rubin, 1983). 
The critical assumption of this procedure is that the set x is rich enough to guarantee the orthogonality condition in 
(11). In principle, this imposes strong requirements on data collection. Moreover, the violation of the second 



condition in (11) would raise the so called common support problem (see for example Heckman et al., 1998a, and 
Lechner, 2001). 
Let 
 ( ) ( 1 1 ) ( | 1 0 )NT NTsb s E Y E D S s E Y E D S s? ? ? ? ? ? ? ? ? ? ? ? ?  (12) 

be the selection bias affecting the raw comparison of eligible participants to eligible non-participants. The first term 
on the right-hand side is a counterfactual mean outcome while the second is a factual one. This quantity captures 
pre-intervention differences between eligible units self-selected in and out of the intervention, res pectively, at each 
level of S, with S? s .  
Using the results of the previous section, the mean counterfactual outcome for participants is identifiable in a 
neighbourhood of s  by means of (10). This also implies that the selection bias for units marginally eligible, sb( s ), is 
identifiable as the difference between (10) and (7) evaluated at s . Note that the identification of the counterfactual 
term on the right-hand side of (12) at s  exploits information on the subgroup of non-eligible units closest to the 
group of eligible units. Apparently, identification is precluded as S moves away from s . 
Then, let 
 ( , ) ( 1 1 ) ( 1 0 )NT NTsb s x E Y E D x S s E Y E D x S s? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?  

be the selection bias on the specific subpopulation indexed by x, where x are the variables exploited to account for 
the selection bias in a matching estimation of the intervention impact. If the orthogonality condition in (11) holds, 
then sb(s,x)=0 uniformly with respect to x and S. In particular, a necessary condition for the matching estimator to 
work is that sb( s ,x)=0, which is directly testable. 
Operationally, in a neighbourhood of s  any test of the equality of the mean outcomes of the non-eligible units and 
of the eligible non-participants, respectively, conditional on x is a test of the strong ignorability of the assignment to 
intervention, thus a test of the validity of the matching estimator. Clearly, the rejection of the null hypothesis is 
sufficient to conclude that condition (11) does not hold. 
On the other hand, on accepting the null hypothesis one might feel more confident in using the matching estimator 
but by no means it can be said that the validity of the estimator has been proved. In fact, the specification test tells 
nothing on whether the strong ignorability condition holds away from s . 
 
4.2 Related results 
 
Since the RDD can been seen as a formal experiment at s , the specification test developed above displays a 
similarity to what Heckman et al. (1998a) develop in an experimental set-up. In both cases there is a benchmark 
estimate of the intervention mean impact - the RDD estimate in the former, the experimental one in the latter - to which 
the analyst is ready to attach credibility. Then, the analyst tests non-experimental estimators against the benchmark 
to discover whether the assumptions they rest upon are met. 
The similarity between the two approaches stops here. On the one hand, the availability of an experimental set-up as 
in Heckman et al. (1998a) allows to fully characterize the selection bias and to test non-experimental estimators with 
reference to the population of participants. If a RDD is available, this is feasible only with reference to the population 
of participants at s . 
On the other hand, it is very often the case that an intervention is targeted to a population of eligible units  among 
which it is actually delivered only to those showing up to participate while it is much less frequent to have available 
an experimental set-up. Then, the three groups of units needed to implement the results in this paper in principle 
should be available. Whether they are actually available it depends on the design of the data collection. This opens 
the door to a routinely application of the specification test based on the RDD as a tool to validate non-experimental 
estimators of the mean impact on participants. 
Rosenbaum (1987) in his discussion of the role of a second control group in an observational study gives an example 
(example 2 on p. 294), which resembles very closely the set-up we refer to. The Advanced Placement (AP) Program 
provides high school students with the opportunity to earn college credits for work done in high school. Not all high 
schools offer the AP program, and in those that do, only a small minority of students participate. Two comparison 
groups naturally arise in this context, (i) students enrolled in high school not offering the program and (ii) students 
enrolled in high schools offering the program who did not participate. 
Then, Rosenbaum (1987) goes on discussing how the availability of two comparison groups can be exploited to test 
the strong ignorability condition needed to believe the results of a matching estimator. 



Apparently, the first comparison group resembles our pool of non-eligible units while the second comparison group 
resembles our pool of eligible non-participant units. The main difference between Rosenbaum's example and our set-
up is that in the former case the rule according to which high schools decide whether to offer the AP program or not 
is unknown to the analyst while in our set-up the eligibility rule is known. It is exactly this feature to allow identifying 
the mean impact on participants as well as the selection bias at s . 

5. CONCLUSIONS 
 
 
The main message from this paper is that every time an intervention is targeted to a population of eligible units but is 
actually administered to a sub-set of self-selected eligible units, it is worth collecting information separately on three 
groups of units: non-eligibles, eligible non-participants and eligible participants. Also, the variables with respect to 
which eligibility is established have to be recorded. 
The relevance of distinguishing between non-eligibles and eligible non-participants to improve the comparability of 
treatment and control groups has already been stressed in the literature (see, amongst others, Heckman et al., 1998a). 
We have shown that, if the eligibility rule is based on a continuous variable and information is observed for both 
non-eligibles and eligible non-participants, the mean impact on participants who are marginally eligible for the 
program is identified, no matter how self-selection of participants takes place. We have also shown that the resulting 
design fits a fuzzy RDD but that discontinuities in the eligibility rule lead to regularity conditions for identification 
characterizing a sharp RDD. Finally, we have shown that as a straightforward consequence of the previous result 
also the selection bias for units on the margin between eligibility and non-eligibility is identifiable. Such a results 
suggests the use of a specification test in a neighborhood of the threshold for eligibility so that the properties of 
non-experimental estimators can be assessed. By design, such a test is informative on the performance of non-
experimental estimators only for a particula r subgroup of units, thus results cannot be generalized to the whole 
population (unless we are willing to impose further identifying restrictions). The value of the specification test is that 
if it rejects the estimator locally then this is sufficient to reject it altogether.  
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