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Abstract
Theory tells us that output, the capital stock and the user cost of capital are
cointegrated.  From the capital accumulation identity, it also follows that the capital
stock and investment have a long-run proportional relationship.  This has been used to
justify the estimation of investment equations embodying a long-run relation between
investment and output, rather than between the capital stock and output.  But the
theory implies two cointegrating relationships exist, of which the investment-output
relationship is a reduced form (and therefore itself cointegrating).  The dynamic
structure thus implies a multicointegrating framework, in which separate cointegrating
relationships are identifiable.  In this paper, a new investment equation is estimated in
this framework, exploiting an internally constructed measure of the capital stock, and
a long series for the weighted cost of capital.  A CES production function is assumed,
and a well-determined estimate of the elasticity of substitution is obtained by a variety
of measures.  The robust result is that the elasticity of substitution is significantly
different from unity (the Cobb-Douglas case), at about 0.5.  Over-identifying
restrictions on the long-run relationship are all accepted.  Although the key long-run
parameter (the elasticity of substitution) is highly robust to alternative specifications,
single-equation investment relationships may obscure the dynamics.  There is
evidence that the Johansen method is over-sized, but given this a test for excluding
the capital accumulation identity from the investment equation is much better than
using a single equation ECM.
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1.   Introduction

This paper re-examines the aggregate business investment relationship within a
neoclassical framework.  The reason for this is partly to exploit some new data, and
partly to make a methodological point about the estimation of the investment decision
in a cointegrating framework.  In the process, we uncover a robust estimate of the
user-cost elasticity, consistent with a sensible estimate of the elasticity of substitution.
The empirical background is that researchers have found it difficult to find a role for
the user cost of capital.  Thus in research into UK investment published over the last
decade,1 the roles of variously debt, profits, capacity utilisation and uncertainty have
been used to augment Q2 and other models of investment.  Moreover, although ONS
publish a series for the stock of capital, researchers have tended to mistrust the series.3

Since Bean (1981), it has been common to exploit the steady state relationship
between investment and the capital stock and model long-run investment, rather than
capital.  However, this approach conflates capital accumulation and investment
dynamics into one equation.

In this paper, we take advantage of some new data and a new dynamic specification to
return to the aggregate business investment equation.  We use a real user cost of
capital series, incorporating a weighted average cost of finance, that we push back to
1970.  We also use estimates of the capital stock generated in-house at the Bank.  We
then pay particular attention to the endogenous dynamics of the system. The reason
why this is an issue is because the capital stock, is determined by the capital
accumulation identity (CAI).   This identity is a difference equation explaining the
growth of capital.  It follows, as mentioned above, that there are steady state
implications for the relationship between investment and capital.  Thus there are two
structural relationships that will hold in steady state.  One is a relationship between
the capital stock and its drivers (output and the user cost); this follows from the first
order conditions of the profit maximising firm (FOC).  The other is the steady state of
the accumulation identity.  In a non-stationary environment it may be helpful to
estimate both of these relationships.  As investment and the capital stock are linked
via accumulation, we have an example of multicointegration.  There are also
interesting questions about the loadings (error correction coefficients) of the variables
in the system, which have implications for the dynamics. And to anticipate the results,
we find that we can successfully estimate a user cost Neoclassical model of

                                                          
1 For example, Bakhshi and Thompson (2002), Carruth, Henley and Dickerson (2000), Cuthbertson and
Gasparro (1995) and Price (1995). Oliner et al (1995) estimate ‘traditional’ and Euler equation models
for US investment, none of which do particularly well.
2 Tobin’s Q can be derived within the standard neoclassical framework.
3 See Oulton (2001).
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investment where the key parameter, the elasticity of substitution, is both well
determined and plausible.

In the next section we ask what the first order conditions and accumulation identity
imply for the long-run.  Then we spell out the implications for estimation within a
vector error correction (VECM) framework, and estimate the model in Sections 4 and
5.  Section 6 explores the finite sample properties of the methods with a Monte Carlo
exercise, and Section 7 concludes.

2.    Theory; first order conditions and identities

The key long-run relationship explaining investment in the Neoclassical model is the
first order condition (FOC) for capital from a profit maximising firm.4

ryk �� ��� . (1)

Here lower case denotes natural logs, K is the capital stock, Y output and R denotes
the real user cost of capital (RCC). 5  Assuming a CES production function, � is the
elasticity of substitution between factors of production. Note that investment does not
appear anywhere in the relationship: rather, the long-run relates capital (the cumulated
depreciated stock of past investment flows) to output and RCC.

The CAI states that the stock of capital in any period is equal to the depreciated stock
from the previous period plus (gross) investment.  The CAI is shown in (2), where I
denotes investment and � the depreciation rate.
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Bean (1981) uses this to substitute for capital. In the steady state (2) can be written as:
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4 We assume that technical progress is only labour augmenting and that there is only one type of capital
good.
5 The data used in this note are described in the Data Appendix.
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where gK denotes the growth rate of capital. By substituting logged (3) into equation
(1), we derive a long-run relationship (4) which links investment to output and the
real user cost.6

)ln( Kgryi ����� ���   . (4)

This procedure was used in Bakhshi and Thompson (2002).  The authors argue the
long-run will not take account of past (accumulated) investment ‘gaps’, so they also
included capacity utilisation as an integral control variable.7

It is not clear that this interpretation is the best dynamic representation of the data.  It
is helpful to think about (1) and (2) in a cointegrating framework.  In what follows we
assume that k, i, y and r are all i(1) variables, which is verified in practice. The FOC
(1) defines a long-run relationship between {k, y, r}, and the CAI (2) also implies that
{k, i} cointegrate. Taking logs of (3), in the steady state

)ln( Kgik ��� � . (5)

This is an example of multicointegration, a notion introduced by Granger and Lee
(1991).  Multicointegration is likely to occur wherever there are stock-flow
relationships: for example, between consumption, income and wealth (as wealth is
cumulated savings); or between product sales, output and inventories.  In some cases,
such as the latter, it can be helpful to use techniques for analysing I(2) series (see
Engsted and Haldrup (1999)).  However, in our case as k is I(1), (3) implies that i is
also I(1) (or vice versa).  This follows from non-zero depreciation.8  Moreover, not
only are {k, i} cointegrated, but we may also have a prior about the form of the error
correction model (ECM). Lagged (2) may be re-written as:
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and this can be approximated as

                                                          
6 As gK and � are stationary, in estimation they can be excluded from the  long-run cointegrating vector.
7 Bean (1981) argues that omitting such a variable may not lead to significant biases. Note that output
itself is linked to capital via the production function and therefore incorporates a degree of integral
control.
8 As can be seen from the CAI (2), if � were zero then if I were i(1) then K would be i(2).
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)( 1110 ��

���� ttt kik �� (7)

where �i are coefficients.  In practice, this is a very close approximation. Thus the
CAI implies {k, i} cointegrate with associated vector {-1,1}, and (7) is, of course, an
ECM representation.

Thus there are two long-run relationships in the data.  (4) is now immediately
interpretable as the reduced form of (1) and (5).  It will therefore also be a
cointegrating relationship.  Whether this reduced form necessarily enters a single
ECM as a unique relationship depends on the variables included in the cointegrating
set; we return to this shortly.

3. Modelling investment in a VECM framework

From Section 1, we have four endogenous variables, {i, k, y, r} and two co-integrating
vectors (CVs) from equations (1) and (5). To re-state, these are:

ryk �� ��� (1)

��� ki (5a)

where � and � are constants.  In VECM notation our two-CV model can be written as:

DXXLX ttt ��������
�� 11)( (8)

where L is the lag operator, X is a matrix of I(1) variables, some of which may be
weakly exogenous to the long-run relationship, and D is a set of I(0) variables both
weakly exogenous to and insignificant in the long-run cointegration space.  D may
contain deterministic terms such as the constant and trend, and intervention dummies.
For a four-variable, two-vector VECM the long-run can be decomposed as the
reduced rank form
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In this notation the �ij define the long-run relationships (the co-integrating vectors),
and the � ij the response of each variable to the two CVs (the ‘loadings’).  Although
two vectors exist, it does not necessarily follow that all variables respond to all
vectors.  If a loading is zero, we have weak exogeneity: variable i is weakly
exogenous to the parameters in vector j if �ij = 0.  Note that this does not imply that
the variable is exogenous in the economic sense.

As an example of this, we showed above that the CAI may be approximated by (7),
which is an ECM.  It may well be that the firm’s choice variable (i) does not respond
to disequilibrium in this vector.9  However, as the VECM is a transformation of the
standard VAR in which contemporaneous terms have been substituted out, we are
unlikely to have strong priors about the system dynamics; exogeneity is mainly an
empirical question.  From an econometric point of view, unless k, y and r are all
weakly exogenous to the long-run relationships, efficient estimation requires the
VECM to be estimated.  But note that if this condition did hold, single equation
estimation of the long-run parameters in an investment ECM would be unbiased.
Moreover, there are sufficient restrictions to identify all the parameters.  We would
have

)()( 11121110 �����

�������� tttttt rykkidynamicsi ���� . (10)

4.   VECM results

In this section we estimate the structure outlined above using the Johansen method.
This is maximum likelihood, and assumes Gaussian errors, so it is important to ensure
that the residuals in the underlying VAR are normal and white noise.   In order to
determine the lag structure, we began by estimating an unrestricted VAR.10  Lag order
selection criteria suggested two lags,11 but on the serial correlation criteria, eight lags
were required.  There is still some evidence of serial correlation with a significant LM
test at 6 lags, but the test is then short of degrees of freedom.  The residual
correlograms reveal no problems.12  This number of lags implies that the VAR is
almost certainly overparameterised, which reduces the power of the tests. Thus we
should err on the side of caution when determining the number of cointegrating
vectors (use lower critical values).  But the consequences of using too low a lag length

                                                          
9 ‘Disequilibrium’ here is interpreted as an approximation error.
10 Results are reported using dummies for 1985 Q1 and Q2 for a change in the tax allowances.  All
estimation is over the full sample (1970 Q2 – 2001 Q4), adjusted for lags.
11 But information criteria are not helpful in determining lag lengths in cointegrating VECMs: Cheung
and Lai (1993).
12 Residuals for the system are shown in Annex 2.
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are usually thought to be more severe. 13  On diagnostic failures in a cointegrating
context, Hendry and Juselius (2000) conclude that ‘[s]imulation studies have
demonstrated that statistical inference is sensitive to the validity of some of the
assumptions, such as, parameter non-constancy, serially-correlated residuals and
residual skewness, while moderately robust to others, such as excess kurtosis (fat-
tailed distributions) and residual heteroscedasticity.’  On normality, each equation in
the VAR comfortably passed tests for skewness, but there was evidence for excess
kurtosis at the 1% level in the r and i equations, and at the 10% level in the y
equation.  While the kurtosis result should lead to caution in interpreting results, there
is no reason to suppose inference is fatally flawed.

4.1 Results for full variable set {i,k,y,r}

Cointegration test results for the four endogenous variables are shown in Table 1, and
we conclude that there are indeed 2 cointegrating vectors.  With four variables and
two cointegrating vectors, we need two restrictions per vector for exact identification.
(1) and (5a) allow us to over-identify both vectors, and these (over-identifying)
restrictions are accepted by the data when we impose them (Table 2).

Only one parameter of interest is freely estimated in the co-integrating vectors, the
elasticity of substitution, which is found to be 0.487.  Remarkably, this is consistent
with a wide variety of single equation estimates we examined (i.e. Engle-Granger,
DOLS) with varying dependent long-run variables (capital vs investment): these
estimates were all in the range 0.43-0.51.14  This is in the region of other estimates;
i.e., below NIGEM’s estimate of 0.66 for the UK (see NIESR 2002), but above
Chirinko et al’s (2002) panel-based estimate of 0.40 for the US.15

                                                          
13 There are many Monte Carlo studies of finite sample properties of the Johansen and other tests for
cointegration, examining deviations form the maintained assumptions.  Much of this literature is
summarised in Maddala and Kim (1998). Results can be sensitive to the order in which assumptions
about constants, trends and exogeneity are tested: see Greenslade et al (2002).  We are guided by
Hendry and Juselius (2000).
14 In addition, both single equation and VECM estimates (not reported) of the elasticity using
alternative user cost measures, ie altering the expected change in the relative price term (see Data
Appendix), were mainly in this range.
15 NIGEM’s estimate for the US is 0.57.
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Table 1: Co-integration tests: {i, k, y, r}

Number of CVs Trace Max-Eigen
(null hypothesis) statistic statistic

None 60.5** 28.3*
At most 1 32.2* 21.8*
At most 2 10.4 9.8

*(**) indicates rejection of null at 5% (1%) significance level.

Table 2: Estimated  long-run of VECM
Sample: 1972:3 2001:4
LR test for binding restrictions (rank = 2):
Chi-square(3)  4.038728
Probability  0.257312

Cointegrating Eq: CointEq1
CAI

CointEq2
FOC

r(-1)  0.000000 -0.486718
 (0.04250)
[-11.4525]

i(-1) -1.000000  0.000000

y(-1)  0.000000  1.000000

k(-1)  1.000000 -1.000000

Constant -4.032444  0.092759
Error Correction: �r �i �y �k

CointEq1 loading  0.956681  0.017525 -0.010137 -0.006984
(CAI)  (0.31915)  (0.28545)  (0.08062)  (0.00534)

[ 2.99763] [ 0.06140] [-0.12574] [-1.30743]

CointEq2 loading  0.403018  0.068393  0.039719  8.74E-06
(FOC)  (0.09907)  (0.08861)  (0.02503)  (0.00166)

[ 4.06792] [ 0.77183] [ 1.58711] [ 0.00527]

Given we have identified cointegrating vectors, we can now examine weak
exogeneity (WE) of the endogenous variables with respect to the two vectors.  From
Table 2 the obvious candidates are the �i with respect to the first vector (CAI) and the
�k equation with respect to the second (FOC); the t statistics in both cases are as close
to zero as we are likely to observe: 0.06 and 0.01 respectively.  Moreover, as we spell
out shortly, these zero restrictions are precisely what we would expect.  The �y
loading with respect to CAI is also very insignificant.  The resulting estimates when
we impose these restrictions (as well as the CV restrictions) are shown in Table 3.
The full set of restrictions is comfortably accepted, and all remaining loadings are
now significant.16

                                                          
16 When we followed Greenslade et al (2002) and tested for co-integration imposing these weak
exogeneity restrictions, our results were unaffected; ie, were as shown in Table 1.
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Table 3: VECM estimates with loading restrictions
Sample: 1972:3 2001:4
LR test for binding restrictions (rank = 2):
Chi-square(6)  4.081410
Probability  0.665660

Cointegrating Eq: CointEq1
CAI

CointEq2
FOC

r(-1)  0.000000 -0.487096
 (0.04229)
[-11.5184]

i(-1) -1.000000  0.000000

y(-1)  0.000000  1.000000

k(-1)  1.000000 -1.000000

Constant -4.032444  0.091444
Error Correction: �r �i �y �k

CointEq1 loading  0.952169  0.000000  0.000000 -0.007275
CAI  (0.31764)  (0.00000)  (0.00000)  (0.00187)

[ 2.99763] [   NA   ] [   NA   ] [-3.88294]

CointEq2 loading  0.401817  0.067316  0.042108  0.000000
FOC  (0.09868)  (0.03109)  (0.01752)  (0.00000)

[ 4.07184] [ 2.16511] [ 2.40312] [   NA   ]

The loading coefficient on capital to the first vector (CAI) is small numerically.  But
the estimate of 0.007 is plausible.  To see why this is the case, recall from Section 2
that the CAI can be re-written as

1
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Our ECM approximation is
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sample period the mean ratio of investment to capital is 0.0178.  With no lagged
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dependent variables in a regression of (7) this is the coefficient we should expect.17

Where they are present, we need to calculate the long-run coefficient, which in our
case is 0.0164, close to the sample average.  So this seemingly small loading
coefficient is about what we would expect, given the data.

Adjustment takes place via the user cost as well as through quantities.  Recall that if
the CAI ECM term is positive then the capital stock is below the long-run value:
equivalently, investment is above the long-run value.  If demand for investment goods
is above equilibrium, we might expect the price of investment goods to be rising.
Similarly, to use a Keynesian phrase, the excess demand for loanable funds implied
by high investment would put upward pressure on the interest rate.  Both these factors
mean the loading on the CAI vector in the ECM for r should be positive, which it is.

The output loading is positive, which has no obvious interpretation.  But it is hard to
judge details of the dynamic process from the single equation loadings, as all the
dynamics in the system are important.18  Thus Chart 1 reports the impulse responses
of the endogenous variables to a one standard deviation shock to the real user cost
(r).19  The vertical scale is log difference (ie approximately % difference/100), and the
horizontal scale is time periods in quarters.  The response of capital is fairly slow,
with the maximum (overshooting) effect occurring after six years with the further
unwind persisting beyond this.  This drawn-out response is mirrored in the investment
and output responses.  Part of this is likely to be linked to the fact that the real user
cost does not return to equilibrium until at least 30 quarters after the initial shock.

                                                          
17 And in fact a simple OLS regression produces a coefficient of 0.0168.
18 The system is shown in full in Annex 2.
19 We use a Cholesky ordering where the user cost is placed first.
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Chart 1: System impulse responses
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4.2  SUR VECM results.

We have established the existence of two cointegrating vectors and tested the
overidentifying restrictions implied by theory.  Nevertheless, with eight lags the
dynamics of the system are grossly overparameterised.  Thus we looked for a
parsimonious restriction of the system, estimated by Seemingly Unrelated Regression
(SUR).  Full results are shown in Annex 2.  When we tested down without imposing
the weak exogeneity restrictions, the dynamic capital equation responds to both co-
integrating vectors.  However, investment is still weakly exogenous to the capital
accumulation identity.

4.3 Results for restricted cointegrating variable sets: irreducible cointegration

Our model predicts that two cointegrating vectors exist among the four variables, and
we have successfully identified them using the overidentifying restrictions from
theory.  It should be clear, however, that if we restrict attention to limited sets of
variables then it should be possible to estimate unique vectors, albeit with a possible
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loss of efficiency.  This idea was formalised and explored by Davidson (1994, 1998)
as the notion of ‘irreducible cointegration’.  An irreducible cointegrating relation is
one from which no variable can be omitted without loss of the cointegration property.
Such relations may be structural or reduced form.  The advantage of the procedure he
suggests is that, under certain circumstances, when the model is overidentified, it
enables the researcher to obtain information about the underlying structure directly
from the data.  However, as in our case, this will not always be true: theory is still
required.  If our approach is correct, we should find evidence for unique structural and
irreducible cointegrating vectors in each of the sets {k, y, r} and {i, k}, from (1) and
(5).  Tables 4 and 5 reveal support for this.20  Moreover, the restrictions on the two
vectors are accepted (p values of  0.31 and 0.99 for FOC and CAI respectively).  The
pattern, significance and rough magnitudes of the loadings are consistent with those
from the full system.  The reduced form (4) also implies that {i, y, r} should constitute
an irreducible cointegrating set.  Table 6 gives the test results.  Strictly, they fail to
reject the null of no cointegration, but the failure is very marginal. So this last result
suggests that the Bean reduced form specification will work.  Nevertheless, the fact
that we are estimating a reduced form specification means that the adjustment
dynamics conflate the capital adjustment and accumulation.

Table 4: Co-integration tests: {k, y, r}

Null hypothesis: Trace Max-Eigen
no. of cointegrating statistic statistic
equations

None 35.9** 21.2*
At most 1 14.7 13.5

*(**) indicates rejection of null at 5%(1%) level

Table 5: Co-integration tests: {k, i}

Null hypothesis: Trace Max-Eigen
no. of cointegrating statistic statistic
equations

None 18.5* 18.4*

*(**) indicates rejection of null at 5%(1%) level

                                                          
20 The coefficient restrictions are essential for the irreducibility argument, as without them there is
evidence that {y,r} and {k,r} cointegrate, which have no sensible economic interpretations.  Thus we
effectively argue that {i-y,r}, {i-k} and {k-y,r} form conditional irreducible cointegrating sets.
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Table 6: Co-integration tests: {i, y, r}

Null hypothesis: Trace Max-Eigen
no. of cointegrating statistic statistic
equations

None 29.5 17.9
At most 1 11.6 10.4

*(**) indicates rejection of null at 5%(1%) level

5.  Impulse responses

The results we have obtained thus far imply that investment equilibrates the capital
stock equilibrium condition.  This automatically embodies an integral control
mechanism through the capital accumulation identity.  The cointegrating relationship
implied by the capital accumulation identity does not equilibrate through the
investment equation.  However, no variables are weakly exogenous with respect to
either of the cointegrating relationships so efficient estimation requires full system
estimation.  But given the theory and results in Table 6 if the cointegrated set excludes
capital a single equation might be estimated.21 Table 7 reports the restricted equation.
The loading is very similar to that obtained in the estimation underlying Table 6 (-
0.11 with t ratio –2.44). Table 8 reports the comparable results of using the long-run
VECM results, re-estimated parsimoniously by OLS.

Table 7: Reduced form
Dependent Variable: �i
Sample(adjusted): 1972:4 2001:4
Included observations: 117 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.
C -0.492641 0.117121 -4.206240 0.0001

�i(-2) 0.134353 0.078661 1.707989 0.0905
�i(-3) 0.239688 0.079605 3.010960 0.0032
�i(-4) 0.262899 0.080311 3.273512 0.0014
�r(-1) -0.099919 0.059572 -1.677278 0.0964

i(-1)-y(-1) -0.127121 0.029159 -4.359601 0.0000
r(-1)* 0.475670 0.097439 4.881730 0.0000
D85_1 0.080922 0.029278 2.763893 0.0067

D85_1(-1) -0.146838 0.029277 -5.015513 0.0000
R-squared 0.381152     Mean dependent var 0.008681
Adjusted R-squared 0.335311     S.D. dependent var 0.035305
S.E. of regression 0.028784     Akaike info criterion -4.184224
Sum squared resid 0.089477     Schwarz criterion -3.971749
Log likelihood 253.7771     F-statistic 8.314728
Durbin-Watson stat 1.983020     Prob(F-statistic) 0.000000

 * Long run value.

                                                          
21 The specification in Table 7 differs from that in the Annex A1 as there is no capacity utilisation term,
included for comparability with previous Bank work, but the long-run parameter and adjustment terms
are very close.
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Table 8: Single equation from VECM long-run results
Dependent Variable: �i
Sample: 1972:3 2001:4
Included observations: 118

Coefficient Std. Error t-Statistic Prob.
FOC* 0.094118 0.037095 2.537258 0.0126
�i(-7) 0.284577 0.076495 3.720192 0.0003
�y(-5) 0.267220 0.276990 0.964729 0.3368
�k(-7) -6.201872 1.507702 -4.113460 0.0001

Constant 0.061362 0.014359 4.273532 0.0000
1985:1 dummy 0.075808 0.028814 2.630983 0.0097

1985:1 dummy lagged -0.153400 0.028835 -5.319945 0.0000
R-squared 0.391253     Mean dependent var 0.008487
Adjusted R-squared 0.358348     S.D. dependent var 0.035217
S.E. of regression 0.028210     Akaike info criterion -4.240809
Sum squared resid 0.088333     Schwarz criterion -4.076447
Log likelihood 257.2077     Durbin-Watson stat 2.150894

* Defined as in Table 3.  Normalisation on -k.

In order to calculate the different responses of investment and capital under these
approaches, we constructed two models, each of which comprised the dynamic
investment equation and the capital accumulation identity.  In specifying these
models, we treated y and r as exogenous, as we are concerned here purely with the
investment and capital stock dynamics. Thus the responses differ from those in Chart
1.  Our impulse was a permanent +1% shock to the level of the real user cost (R).

The estimated response of capital under the two methods is shown below in Chart 2,
with forecast-relevant periods singled out in Table 9.  In each case the long-run
adjustment of capital reflects the estimated elasticity of substitution in each model, as
it must, which are similar in each model.  Due to the small size of investment relative
to the capital stock (investment represents just under 2% of the capital stock), in both
cases it takes a considerable length of time to reach the long-run.

Table 9: Impulse responses at forecast horizons

Response of: 4 8 12

Capital
Reduced Form -0.0180 -0.0540 -0.0960
VECM -0.0090 -0.0320 -0.0670

Investment
Reduced Form -0.3219 -0.5307 -0.5998
VECM -0.1825 -0.3673 -0.5084

Quarters after shock
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Chart 2: Capital impulse responses
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Chart 3: Investment impulse responses
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Chart 3 shows impulse responses for investment.  These converge to the long-run
rather more quickly than the capital stock, but near-complete convergence is still
protracted.  Investment over-shoots in both models.  In principle there is no special
reason why the two should give different answers, but as a matter of algebra, the
reduced form is quicker partly because the long-run is defined directly in terms of
investment.

6. Monte Carlo simulations

We are advocating system estimation.  But this may come at the expense of low
power or incorrectly sized test statistics.  To investigate this, we carried out a Monte
Carlo exercise, maintaining the restricted structure in the VECM.22  As a priori
nothing rules out the possibility that both cointegrating vectors enter the investment
ECM, we conducted three experiments.  The first (Method 1) is to estimate by OLS a
single equation embodying both CVs (equation (10)); the second (Method 2), the
single reduced-form CV, again in an OLS regression; the third (Method 3), the
correctly specified VECM, estimated by the Johansen method.

The parameters are from the parsimonious SUR system (Table A5), although we
replace the capital ECM with the capital accumulation identity, where depreciation is
stochastic, calibrating the normal additive error on � to match the variance of capital
stock growth.  The other shocks were calibrated at the estimated variances. Results
are based on 10,000 repetitions.

                                                          
22 In general we need to ensure that the model is estimated consistently under both the null and the
alternative, and in non-stationary environments this may not always be true.  But here we maintain the
reduced rank hypothesis throughout, so this is not an issue.
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In Table 10 the first column reports the proportions with which the true hypothesis
that the FOC is significant in a dynamic OLS regression; the power of the test.  For a
notional size of 5%, it is 80.1%.  But the striking result is that the regression fails to
reject the true hypothesis that the CAI should be excluded in the majority of cases.
That is, the actual size of the test is much greater than the notional, and inference
would be profoundly misleading.  By contrast, the reduced form approach is highly
robust, with a power of 93.1% at a notional size of 5%.  The VECM is also oversized
on the set of long-run overidentifying restrictions (OIR), just over 50% at the notional
5% significance level.  But conditional on these restrictions being accepted, the size
of the test on the (true) hypothesis that the CAI should be excluded from the
investment ECM is very small at just 0.1%.  Thus single equation techniques will lead
one to falsely include the CAI in the estimated investment equation in the majority of
cases, but this is much less likely to happen in a system context.  Indeed, it will almost
never occur.  However, the true overidentifying restrictions will be falsely rejected
roughly half the time (at a notional size of 5%).

Table 10: Monte Carlo results

Method 2

Significance level FOC CAI RF OIR CAI significant, CAI WE and
significant significant significant rejected conditional on OIR jointly 

OIR accepted rejected
power size power size size size

10% 89.68 79.99 97.01 62.40 0.00 52.14

5% 80.13 69.57 93.05 51.51 0.08 40.96

Mean 0.441 0.452 0.708
Median 0.438 0.445 0.488
5th Percentile 0.174 0.183 0.410
95th Percentile 0.651 0.650 0.588

Estimated elasticity of substitution (actual = 0.487)

  Method 1   Method 3

The other question of interest is the estimate of the elasticity of substitution, �.  The
table gives the mean and median estimates.  The distributions are highly skewed, and
the VECM mean is substantially biased upwards, but the median estimate is very
close to the true value (0.49).  The 95% confidence interval is also reported, and it is
clear that the VECM will estimate the parameter with far more precision than the
other methods.
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Finally, we bootstrapped the residuals to avoid making possibly incorrect
distributional assumptions.  We drew 6 period blocks to capture lumpiness in the
depreciation series.  The main difference to the Monte Carlo results is that the
simulations now reveal a much reduced skew.

Table 11: Bootstrapped results

Method 2

Significance level FOC CAI RF OIR CAI significant, CAI WE and
significant significant significant rejected conditional on OIR jointly 

OIR accepted rejected
power size power size size size

10% 92.29 85.08 98.77 63.77 0.17 53.61

5% 85.12 75.98 96.90 52.99 0.09 42.97

Mean 0.421 0.458 0.445
Median 0.457 0.459 0.487
5th Percentile 0.301 0.291 0.430
95th Percentile 0.589 0.620 0.554

Estimated elasticity of substitution (actual = 0.487)

  Method 1   Method 3

7. Conclusions

Economic theory tells us that output, the capital stock and the user cost of capital are
cointegrated.  But from the capital accumulation identity, it also follows that the
capital stock and investment share a long-run relationship.  This has been used to
justify the estimation of long-run investment, rather than capital stock, equations.
Econometrically, the dynamic structure suggests a multicointegrating framework
should exist, in which separate cointegrating relationships are identifiable.  This turns
out to be the case for UK business sector investment.  A new investment equation is
estimated, exploiting an internally constructed measure of the capital stock, and a long
series for the weighted cost of capital.  A CES production function is assumed, and a
well-determined estimate of the elasticity of substitution is obtained by a variety of
measures.  The robust result is that the elasticity of substitution is significantly
different from unity (the Cobb-Douglas case), at about 0.5.  Over-identifying
restrictions on the long-run relationship are all accepted.  Although the key long-run
parameter (the elasticity of substitution) is highly robust to alternative specifications,
single-equation investment relationships may obscure the dynamics.  Thus we finally
conclude that if we are interested only in knowing the elasticity of substitution,
estimation using an OLS long-run investment relationship will return an unbiased
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estimate, although the Monte Carlo results show that that the VECM is considerably
more accurate.  In a macroeconometric modelling context, however, we may prefer to
model investment via the long-run capital stock relationship, with the capital
accumulation identity as a separate relationship.
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Data Appendix

Business investment (I) and GDP (Y) are readily available from the Office for
National Statistics (ONS) National Accounts data, with quarterly backruns to 1965
and 1955 respectively.  The ONS capital stock and (implied) depreciation series
exhibit worrying properties, however.  Some of the issues are described in Oulton
(2001).  As such we also use a capital stock (and depreciation) series that has been
constructed in-house following Oulton and Srinivasan (2002).23

The other key variable is the real user cost of capital (RCC).  The full Hall-Jorgensen
RCC is defined as:

corptax
PVIC

P

PEc
P
PRCC

Y

K

Y

K

�

�
���

�

�

1
1)( �

where

c denotes Real cost of finance
Pk denotes The price of capital goods (the IBUS deflator)
Py denotes The price of all goods (the GDP deflator)
PVIC denotes Present value of investment allowances
corptax denotes Corporation tax rate

The price variables are available from National Accounts data, as is the effective
corporation tax rate.  PVIC is based on Bank calculations, following Mayes and
Young (1993). The expected relative price inflation term is an unobserved variable,
assumed to be zero.  In unpublished work excluding this term improved the fit of
singly-estimated investment equations.  But we also experimented using a variety of
assumptions including ARMA forecasts, filtered ex-post expectations and backward-
looking averages.

A more problematic issue is construction of a ‘real cost of finance’ variable.  From
1982 Q1, a weighted average cost of capital (WACC) can be calculated, following
Brealey and Myers (2000).  But wanting to conduct estimation prior to 1982, previous
work24 has used an alternative cost of finance described in Flemming et al (1976).
Essentially this measure is the ratio of current earnings to the financial valuation of
companies.  While in principle measuring a similar concept, over the same sample the
Flemming measure is more volatile than WACC (see Chart A1) and the correlation is
not strong (0.48 over the whole sample).

                                                          
23 We have assumed that the asset split of business investment is the same as whole-economy
investment, and are grateful to Jamie Thompson for his help in constructing the series.
24 See Bakhshi and Thompson (2002).
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Chart A1: WACC and Fleming cost of finance
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As an alternative we decided to construct a back series for WACC to 1970.  WACC is
calculated as the weighted average of the cost of debt finance (RD) and the cost of
equity finance (RE):

E
t

D
tt RRWACC )1( �� ���

The weight (�) is taken from company balance sheet data on the relative use of debt
and equity finance: a weight of 15% is placed on debt, and 85% on equity.  The real
cost of debt finance is calculated as the risk-free real interest rate plus a measure of
spreads, while the real cost of equity finance is calculated using a simple dividend
discount model.  Using these calculations, the cost of equity finance is readily
available back to 1965, but the cost of debt finance only from 1982 (Chart A2).  Thus
to construct a WACC we need to backcast the cost of debt finance.

Chart A2: WACC components
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We constructed three different models to backcast the cost of debt finance using
macro variables e.g. GDP, base rates, and inflation.  Two of the three models included
leads of the dependent variable (DV).  The first model estimated the real risk-free rate
and the spreads measure separately, including leading DVs (a “bottom-up” approach);
the second estimated the cost of debt finance directly including leading DVs (a “top-
down” approach); and the third was a “simple” equation for RD with no DVs
included.  The three different models produced very different backcasts for the cost of
debt finance, shown in Chart A3.  However, given the small weight of debt finance,
the resulting backcast WACC series were almost indistinguishable (Chart A4).  Given
this, we picked the simple approach, due to concerns about the stability of the models
including leading DVs.

Chart A3: Backcast cost of debt
finance
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Chart A4: Backcast WACC
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Having constructed our cost of finance term, we now have our four endogenous
variables.25  Logged series are shown below in Charts A5 to A8.  Unit root tests for all
four variables are shown in tables A1 and A2.26  The tests indicate that all variables
are i(1) at standard significance levels.

                                                          
25 All data are consistent with the 2002 Blue Book.
26 For ADF tests, we included as many lagged differences in the auxiliary regressions as were
significant.
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Chart A5: Investment (i)
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Chart A6: Capital stock (k)
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Chart A7: Real user cost of capital (r)
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Chart A8: GDP (y)
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Table A1: ADF tests
Variable Level First difference

i -0.734 -3.569***
k -0.179 -2.666*
r -0.558 -5.737***
y 0.029 -4.786***

* (**,***) indicates significance at the 10% (5%, 1%)
significance level

Table A2: KPSS and Phillips-Perron tests
Variable KPSS Phillips-Perron

H0 = I(0) H0 = I(1)
i 2.270*** -0.491
k 2.490*** -0.364
r 1.964*** -0.623
y 2.465*** -0.281

* (**,***) indicates rejection of null at the 10% (5%, 1%)
significance level
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Annex 1: Baseline single equation results

Variables in single equation estimation are as listed in the main text and the Data
Appendix, namely:

I Business investment
K Capital stock
Y Gross Domestic Product
R Real user cost of capital
FKU Capital utilisation (taken from Larsen J, Neiss K and Shortall F (2002))
D85_1 Dummy variable for 1985 Q1 (tax allowance change)

All estimation was carried out over the full data sample (1970 Q2 – 2001 Q4),
adjusted for lags.  FKU is an ‘integral control variable’, referred to in the main body
of the text; (unreported) results were similar with other measures, eg the CBI capacity
utilisation balance.  A baseline least squares equation is shown in Equation A1,
estimated using a ‘general to specific’ approach with four lags of all variables.  It
differs in dynamic detail from Table 7 in the main text, for comparability with
Bakhshi and Thompson (2001).

Equation A1: Single equation estimates with investment in long-run
Dependent Variable: �i
Sample(adjusted): 1971:2 2002:1

Coefficient Std. Error t-Statistic Prob.
Constant -1.169883 0.245649 -4.762411 0.0000
�i(-4) 0.159909 0.079877 2.001936 0.0476

FKU(-1) 0.652244 0.188109 3.467378 0.0007
1985:1 dummy 0.105947 0.028837 3.674024 0.0004

1985:1 dummy lagged -0.126417 0.029031 -4.354503 0.0000
i(-1)-y(-1) -0.130131 0.028800 -4.518517 0.0000

r(-1)* 0.511132 0.091144 5.607972 0.0000
R-squared 0.356953     Mean dependent var 0.007787
Adjusted R-squared 0.323976     S.D. dependent var 0.034801
S.E. of regression 0.028614     Akaike info criterion -4.215050
Sum squared resid 0.095795     Schwarz criterion -4.055841
Log likelihood 268.3331     Durbin-Watson stat 2.084497

 * Long-run value.

The estimated elasticity of substitution  is 0.51, significantly different from unity (as
would be implied under Cobb-Douglas technology).  The equation is well specified in
terms of the usual residual test criteria (normality, homoscedasticity, serial correlation
and ARCH test).  In addition we estimated a DOLS regression with two leads to
compare the estimated elasticity of substitution in the  long-run relationship.  Results
are shown below.  The DOLS estimate of 0.43 is a little lower than that in the baseline
equation above (0.51), but our baseline estimate is not significantly difference from
the lower DOLS estimate.

Equation A2: DOLS equation estimates (two leads): investment in long-run
Dependent Variable: i-y
Sample(adjusted): 1971:1 2001:2

Coefficient Std. Error t-Statistic Prob.
Constant -6.952356 0.555914 -12.50617 0.0000

r -0.434979 0.036132 -12.03861 0.0000
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�r(-1) -0.055584 0.173045 -0.321212 0.7487
�r(-2) 0.055279 0.171561 0.322210 0.7479
�r(+1) -0.414721 0.167442 -2.476803 0.0148
�r(+2) -0.515120 0.166413 -3.095434 0.0025

�(i(-1) – y (-1)) 0.407197 0.242330 1.680340 0.0957
�(i(-2) – y (-2)) 0.285502 0.239358 1.192782 0.2355

FKU(-1) 3.182071 0.552722 5.757092 0.0000
1985:1 dummy 0.104843 0.083281 1.258903 0.2107

1985:1 dummy lagged -0.088384 0.085307 -1.036080 0.3024
R-squared 0.676166     Mean dependent var -2.249935
Adjusted R-squared 0.646991     S.D. dependent var 0.136100
S.E. of regression 0.080863     Akaike info criterion -2.106277
Sum squared resid 0.725815     Schwarz criterion -1.853455
Log likelihood 139.4829     Durbin-Watson stat 0.334110

We also replicated the single equation results using the capital stock (KS) rather than
investment in the long-run.  The corresponding results are shown below.

Equation A3: Single equation estimates with capital in long-run
Dependent Variable: �i
Sample(adjusted): 1971:2 2002:1

Coefficient Std. Error t-Statistic Prob.
Constant 0.056827 0.047587 1.194184 0.2348
�i(-3) 0.213625 0.079322 2.693140 0.0081
�i(-4) 0.251448 0.079833 3.149675 0.0021
�k(-1) -5.763616 1.625906 -3.544865 0.0006

1985:1 dummy 0.086419 0.029767 2.903161 0.0044
1985:1 dummy lagged -0.142597 0.029679 -4.804624 0.0000

(k(-1) – y(-1)) -0.095662 0.035467 -2.697200 0.0080
r(-1)* 0.510988 0.131373 3.889587 0.0002

R-squared 0.328656     Mean dependent var 0.007787
Adjusted R-squared 0.288143     S.D. dependent var 0.034801
S.E. of regression 0.029362     Akaike info criterion -4.155857
Sum squared resid 0.100010     Schwarz criterion -3.973903
Log likelihood 265.6631     Durbin-Watson stat 2.014129

* Long-run value.

Once again the estimated elasticity of substitution is close to 0.5.  And yet again
DOLS estimation (see below) suggested a slightly smaller coefficient, but not
radically different.

Equation A4: DOLS equation estimates for capital (two leads)
Dependent Variable: k-y
Sample(adjusted): 1971:1 2001:2

Coefficient Std. Error t-Statistic Prob.
Constant 0.287322 0.122623 2.343128 0.0209

r -0.425197 0.035003 -12.14754 0.0000
�r(-1) 0.028893 0.159425 0.181232 0.8565
�r(-2) 0.048398 0.157955 0.306405 0.7599
�r(+1) -0.350058 0.157729 -2.219371 0.0285
�r(+2) -0.517238 0.158090 -3.271786 0.0014

�(k(-1) – y (-1)) 1.239275 0.700934 1.768033 0.0798
�(k(-2) – y (-2)) 0.924749 0.695961 1.328737 0.1866
1985:1 dummy 0.034583 0.078278 0.441802 0.6595

1985:1 dummy lagged 0.034922 0.078248 0.446305 0.6562
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R-squared 0.609103     Mean dependent var 1.778145
Adjusted R-squared 0.577692     S.D. dependent var 0.118681
S.E. of regression 0.077125     Akaike info criterion -2.208367
Sum squared resid 0.666205     Schwarz criterion -1.978529
Log likelihood 144.7104     Durbin-Watson stat 0.133597
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Annex 2: estimated system

The system below is the full version of the summary shown in Table 3.

Table A3: Full system results from Johansen estimation
Vector Error Correction Estimates
 Sample(adjusted): 1972:3 2001:4
 Included observations: 118 after adjusting endpoints
 Standard errors in ( ) and t-statistics in [ ]
LR test for binding restrictions (rank = 2):
Chi-square(6)  4.081410
Probability  0.665660

Cointegrating Eq: CointEq1
CAI

CointEq2
FOC

r(-1)  0.000000 -0.487096
 (0.04229)
[-11.5184]

i(-1) -1.000000  0.000000

y(-1)  0.000000  1.000000

k(-1)  1.000000 -1.000000

C -4.032444  0.091444
Error Correction: �r �i �y �k

CointEq1 loading  0.952169  0.000000  0.000000 -0.007275
CAI [ 2.99763] [   NA   ] [   NA   ] [-3.88294]

CointEq2 loading  0.401817  0.067316  0.042108  0.000000
FOC [ 4.07184] [ 2.16511] [ 2.40312] [   NA   ]

�r(-1)  0.226944 -0.094932 -0.002288 -0.001148
[ 2.39367] [-1.11953] [-0.09552] [-0.72356]

�r(-2) -0.110199  0.001630 -0.008236 -0.000442
[-1.21306] [ 0.02007] [-0.35893] [-0.29040]

�r(-3)  0.156324  0.022960 -0.048215  0.000665
[ 1.78001] [ 0.29231] [-2.17346] [ 0.45221]

�r(-4) -0.025504 -0.064456 -0.011040 -0.001333
[-0.27864] [-0.78736] [-0.47749] [-0.87015]

�r(-5) -0.189192  0.068779  0.016333  0.001767
[-2.21604] [ 0.90075] [ 0.75737] [ 1.23688]

�r(-6) -0.061289 -0.012704 -0.026195 -0.000243
[-0.71308] [-0.16527] [-1.20656] [-0.16919]

�r(-7) -0.050634  0.042542 -0.011742  0.001275
[-0.58869] [ 0.55302] [-0.54046] [ 0.88587]

�r(-8)  0.329762  0.036840  0.008203  0.000524
[ 4.02817] [ 0.50315] [ 0.39670] [ 0.38207]

�i(-1)  0.766695 -0.125365  0.092538 -0.006574
[ 2.03765] [-0.37253] [ 0.97365] [-1.04381]

�i(-2)  0.777583 -0.099428  0.079507 -0.004195
[ 2.02446] [-0.28943] [ 0.81948] [-0.65261]

�i(-3)  0.052655 -0.114795  0.107372 -0.004011
[ 0.13803] [-0.33645] [ 1.11427] [-0.62817]

�i(-4)  0.382264  0.215494 -0.126779  0.001590
[ 0.99879] [ 0.62954] [-1.31139] [ 0.24816]
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�i(-5)  0.251271 -0.037890 -0.154780 -0.007375
[ 0.64121] [-0.10811] [-1.56368] [-1.12447]

�i(-6) -0.532432 -0.320801  0.061673 -0.007069
[-1.29999] [-0.87576] [ 0.59613] [-1.03121]

�i(-7)  0.934136  0.005441  0.008720 -0.000922
[ 1.94228] [ 0.01265] [ 0.07178] [-0.11455]

�i(-8)  0.052139 -0.067622  0.043296 -0.001617
[ 0.39995] [-0.57998] [ 1.31484] [-0.74104]

�y(-1) -1.063908  0.056689 -0.127850  0.003898
[-2.27477] [ 0.13552] [-1.08220] [ 0.49791]

�y(-2) -0.343096  0.259335  0.087875  0.008229
[-0.73208] [ 0.61870] [ 0.74230] [ 1.04904]

�y(-3) -0.859075  0.296681  0.144272  0.006625
[-1.93478] [ 0.74708] [ 1.28634] [ 0.89141]

�y(-4)  0.217365  0.080207 -0.229443  0.005826
[ 0.47348] [ 0.19534] [-1.97860] [ 0.75825]

�y(-5)  0.669464  0.661368 -0.027394  0.012399
[ 1.50013] [ 1.65700] [-0.24302] [ 1.65998]

�y(-6)  0.946097  0.219878  0.062847  0.003351
[ 2.26016] [ 0.58730] [ 0.59437] [ 0.47830]

�y(-7)  1.132815  0.039173 -0.022904 -0.000464
[ 2.80966] [ 0.10863] [-0.22489] [-0.06869]

�y(-8) -0.076194 -0.060149 -0.195318 -0.001289
[-0.18658] [-0.16468] [-1.89347] [-0.18853]

�k(-1)  6.670670  2.434786 -3.383969  0.869286
[ 0.37062] [ 0.15125] [-0.74433] [ 2.88557]

�k(-2)  1.069177  2.347818 -2.510422 -0.093058
[ 0.04465] [ 0.10964] [-0.41509] [-0.23221]

�k(-3)  37.45416  3.489607 -2.889120  0.067487
[ 1.51353] [ 0.15767] [-0.46220] [ 0.16294]

�k(-4) -32.24643 -15.72479  13.49078 -0.286942
[-1.26730] [-0.69097] [ 2.09898] [-0.67375]

�k(-5)  18.49647  1.926763  2.813069  0.299220
[ 0.69893] [ 0.08141] [ 0.42082] [ 0.67553]

�k(-6)  31.46754  18.10585 -9.977920  0.031719
[ 1.18659] [ 0.76337] [-1.48954] [ 0.07146]

�k(-7) -52.99518 -3.805771 -0.080321 -0.079318
[-1.74333] [-0.13998] [-0.01046] [-0.15589]

�k(-8)  33.48509 -13.15441  0.401224 -0.252899
[ 1.31428] [-0.57728] [ 0.06234] [-0.59305]

Constant -0.423091  0.044621  0.025202  0.004086
[-2.82300] [ 0.33288] [ 0.66572] [ 1.62877]

1985:1 dummy -0.047661  0.091405  0.014515  0.001597
[-1.13778] [ 2.43975] [ 1.37178] [ 2.27805]

1985:1 dummy lagged  0.072806 -0.137998  0.000895 -0.002461
[ 1.85113] [-3.92302] [ 0.09005] [-3.73768]

 R-squared  0.631335  0.475100  0.473243  0.936711
 Adj. R-squared  0.467484  0.241812  0.239128  0.908582
 Sum sq. resids  0.095217  0.076166  0.006075  2.67E-05
 S.E. equation  0.034286  0.030665  0.008660  0.000574
 F-statistic  3.853104  2.036533  2.021416  33.30117
 Log likelihood  252.7799  265.9513  415.1437  735.4112
 Akaike AIC -3.657287 -3.880530 -6.409215 -11.83748
 Schwarz SC -2.788513 -3.011756 -5.540441 -10.96870
 Mean dependent -0.003242  0.008487  0.005533  0.009067
 S.D. dependent  0.046984  0.035217  0.009929  0.001898
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 Determinant Residual Covariance  3.25E-18
 Log Likelihood  1794.882
 Log Likelihood (d.f. adjusted)  1706.112
 Akaike Information Criteria -26.27308
 Schwarz Criteria -22.61014

The residuals from the system are shown below.

Chart A9: VECM residuals
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The system at the moment is very over-parameterised.  As mentioned in the main text,
we therefore tested down to a parsimonious form using SUR.  Results for this, without
imposing the weak exogeneity (WE) restrictions accepted under Johansen estimation,
are shown below in Table A4.

Table A4: SUR estimates, not imposing WE
Estimation Method: Seemingly Unrelated Regression
Sample: 1972:1 2002:1

Coefficient Std. Error t-Statistic Prob.

�r equation
FOC* 0.382907 0.059323 6.454572 0.0000
CAI* 0.830001 0.174850 4.746939 0.0000
�r(-1) 0.243153 0.067477 3.603475 0.0004
�r(-2) -0.133780 0.066185 -2.021309 0.0439
�r(-3) 0.160364 0.066062 2.427462 0.0156
�r(-5) -0.162267 0.061812 -2.625161 0.0090
�r(-8) 0.315781 0.064598 4.888375 0.0000
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�i(-1) 0.738964 0.199086 3.711781 0.0002
�i(-2) 0.744976 0.186712 3.989971 0.0001
�i(-6) -0.253838 0.112134 -2.263702 0.0241
�i(-7) 0.790046 0.337004 2.344325 0.0195
�y(-1) -0.835937 0.345385 -2.420304 0.0159
�y(-3) -0.660715 0.318570 -2.074005 0.0387
�y(-5) 0.547227 0.345288 1.584843 0.1137
�y(-6) 0.911267 0.328870 2.770900 0.0058
�y(-7) 1.251684 0.315997 3.961064 0.0001
�k(-3) 39.23613 9.508261 4.126531 0.0000
�k(-4) -13.14682 5.965400 -2.203845 0.0281
�k(-5) 14.97934 6.172408 2.426822 0.0156
�k(-7) -31.04468 17.94314 -1.730170 0.0843
�k(-8) 27.36244 17.35224 1.576883 0.1156

Constant -0.365846 0.084403 -4.334510 0.0000
1985:1 dummy lagged 0.070512 0.032300 2.183023 0.0296
R-squared 0.598735     Mean dependent var -0.003242
Adjusted R-squared 0.505810     S.D. dependent var 0.046984
S.E. of regression 0.033029     Sum squared resid 0.103637
Durbin-Watson stat 2.087646

�i equation
FOC* 0.112620 0.035694 3.155126 0.0017
CAI* 0.031590 0.032527 0.971174 0.3320
�i(-7) 0.299382 0.072270 4.142532 0.0000
�k(-7) -6.647218 1.611822 -4.124040 0.0000

Constant 0.065074 0.015084 4.314048 0.0000
1985:1 dummy 0.078012 0.028029 2.783254 0.0056

1985:1 dummy lagged -0.151325 0.027383 -5.526266 0.0000
R-squared 0.382091     Mean dependent var 0.008007
Adjusted R-squared 0.349570     S.D. dependent var 0.035112
S.E. of regression 0.028317     Sum squared resid 0.091413
Durbin-Watson stat 2.127822

�y equation
FOC* 0.035241 0.012676 2.780112 0.0057
CAI* -0.049691 0.041670 -1.192490 0.2337
�r(-3) -0.054191 0.014702 -3.686029 0.0003
�r(-6) -0.033178 0.015122 -2.194000 0.0288
�i(-1) 0.072563 0.024791 2.926978 0.0036
�i(-4) -0.168958 0.051836 -3.259496 0.0012
�i(-5) -0.128016 0.050025 -2.559037 0.0108
�i(-6) 0.071179 0.021404 3.325505 0.0010
�i(-8) 0.055609 0.021949 2.533594 0.0116
�y(-3) 0.141914 0.078034 1.818616 0.0697
�y(-4) -0.221450 0.078258 -2.829728 0.0049
�y(-8) -0.176656 0.072179 -2.447480 0.0148
�k(-1) -5.034970 2.209140 -2.279154 0.0232
�k(-4) 9.490053 2.676250 3.546026 0.0004
�k(-6) -8.694220 2.512138 -3.460885 0.0006

Constant 0.045849 0.019834 2.311624 0.0213
1985:1 dummy 0.012610 0.007945 1.587151 0.1132

R-squared 0.434554     Mean dependent var 0.005675
Adjusted R-squared 0.346717     S.D. dependent var 0.010038
S.E. of regression 0.008113     Sum squared resid 0.006780
Durbin-Watson stat 2.205775
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�k equation
FOC* 0.001753 0.000678 2.586129 0.0100
CAI* -0.003256 0.001230 -2.647276 0.0084
�i(-7) 0.004755 0.001362 3.490259 0.0005
�k(-1) 0.771877 0.059862 12.89432 0.0000
�k(-7) -0.098471 0.030401 -3.239111 0.0013

Constant 0.002899 0.000589 4.925946 0.0000
1985:1 dummy 0.001260 0.000523 2.407077 0.0165

1985:1 dummy lagged -0.002750 0.000516 -5.334713 0.0000
R-squared 0.924283     Mean dependent var 0.009074
Adjusted R-squared 0.919550     S.D. dependent var 0.001883
S.E. of regression 0.000534     Sum squared resid 3.19E-05
Durbin-Watson stat 2.032066

* FOC and CAI defined as in table A3.

One of the three WE restrictions from the Johansen estimation is rejected under SUR,
namely that the D(k) equation is weakly exogenous to the FOC.  For completeness we
also tested down having already imposed the WE restrictions from the Johansen
estimation.  The results are shown in Table A5.

Table A5: SUR estimates, imposing WE
Estimation Method: Seemingly Unrelated Regression
Sample: 1972:1 2002:1

Coefficient Std. Error t-Statistic Prob.

�r equation
FOC* 0.366559 0.059303 6.181118 0.0000
CAI* 0.760880 0.171657 4.432568 0.0000
�r(-1) 0.206790 0.065760 3.144604 0.0018
�r(-2) -0.141701 0.066520 -2.130187 0.0337
�r(-3) 0.162272 0.066682 2.433520 0.0154
�r(-5) -0.172814 0.062590 -2.761060 0.0060
�r(-8) 0.324277 0.065198 4.973739 0.0000
�i(-1) 0.654098 0.192402 3.399648 0.0007
�i(-2) 0.692459 0.183299 3.777750 0.0002
�i(-6) -0.226286 0.096157 -2.353300 0.0191
�i(-7) 0.273851 0.098209 2.788461 0.0055
�y(-1) -0.740078 0.348115 -2.125958 0.0341
�y(-3) -0.716126 0.319294 -2.242842 0.0254
�y(-5) 0.695236 0.338845 2.051783 0.0408
�y(-6) 1.069935 0.322404 3.318620 0.0010
�y(-7) 1.314250 0.317705 4.136700 0.0000
�k(-3) 36.81103 9.450115 3.895299 0.0001
�k(-4) -14.06410 6.024085 -2.334645 0.0200
�k(-5) 11.68599 4.878103 2.395601 0.0170

Constant -0.335916 0.082395 -4.076924 0.0001
1985:1 dummy lagged 0.065349 0.032572 2.006295 0.0455
R-squared 0.590046     Mean dependent var -0.003242
Adjusted R-squared 0.505519     S.D. dependent var 0.046984
S.E. of regression 0.033039     Sum squared resid 0.105881
Durbin-Watson stat 2.021798

�i equation
FOC* 0.035900 0.018521 1.938377 0.0532
�i(-7) 0.246963 0.070791 3.488628 0.0005
�y(-5) 0.507487 0.244492 2.075675 0.0385
�k(-7) -3.181295 0.847400 -3.754181 0.0002
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Constant 0.031369 0.008447 3.713605 0.0002
1985:1 dummy 0.085672 0.027805 3.081121 0.0022

1985:1 dummy lagged -0.144194 0.026819 -5.376539 0.0000
R-squared 0.348161     Mean dependent var 0.008007
Adjusted R-squared 0.313854     S.D. dependent var 0.035112
S.E. of regression 0.029084     Sum squared resid 0.096433
Durbin-Watson stat 2.092715

�y equation
FOC* 0.046446 0.011189 4.151233 0.0000
�r(-3) -0.056113 0.014618 -3.838603 0.0001
�r(-6) -0.028991 0.014985 -1.934637 0.0537
�i(-1) 0.154573 0.043683 3.538488 0.0004
�i(-2) 0.089221 0.042909 2.079302 0.0382
�i(-3) 0.071899 0.040640 1.769169 0.0776
�i(-4) -0.135324 0.050697 -2.669267 0.0079
�i(-5) -0.097782 0.048345 -2.022603 0.0437
�i(-6) 0.069547 0.020532 3.387217 0.0008
�i(-8) 0.056466 0.021333 2.646850 0.0084
�y(-1) -0.136248 0.076337 -1.784822 0.0750
�y(-3) 0.133514 0.077545 1.721760 0.0858
�y(-4) -0.221191 0.077614 -2.849899 0.0046
�y(-8) -0.182464 0.071028 -2.568890 0.0105
�k(-1) -6.387601 2.096837 -3.046303 0.0025
�k(-4) 11.49030 2.903817 3.956965 0.0001
�k(-6) -6.693892 2.494748 -2.683193 0.0076

Constant 0.020021 0.004526 4.423608 0.0000
1985:1 dummy 0.014561 0.007776 1.872519 0.0618

R-squared 0.451309     Mean dependent var 0.005675
Adjusted R-squared 0.353522     S.D. dependent var 0.010038
S.E. of regression 0.008071     Sum squared resid 0.006579
Durbin-Watson stat 1.990839

�k equation
CAI* -0.004398 0.001237 -3.555343 0.0004
�i(-7) 0.003733 0.001368 2.729027 0.0066
�y(-4) 0.004722 0.002404 1.964656 0.0501
�y(-5) 0.011286 0.004620 2.443095 0.0150
�k(-1) 0.718512 0.068030 10.56169 0.0000

Constant 0.002409 0.000621 3.881169 0.0001
1985:1 dummy 0.001469 0.000529 2.777934 0.0057

1985:1 dummy lagged -0.002465 0.000513 -4.800954 0.0000
R-squared 0.919255     Mean dependent var 0.009074
Adjusted R-squared 0.914208     S.D. dependent var 0.001883
S.E. of regression 0.000551     Sum squared resid 3.41E-05
Durbin-Watson stat 1.932705

* FOC and CAI defined as in table A3.


