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Abstract

This paper presents evidence of persistent �bull� and �bear� regimes in

UK stock returns and considers their economic implications from the per-

spective of an investor�s portfolio decisions. We Þnd that the perceived state

probability has a large effect on the optimal allocation to stocks, particularly

at short investment horizons. If ignored, the presence of such regimes gives

rise to welfare costs that are substantial, particularly in the bear state where

stock holdings should be signiÞcantly reduced. When we extend the return

forecasting model to allow for predictability from the lagged dividend yield,

we Þnd that both dividend yields and regime switching have strong effects

on the optimal asset allocation.
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1. Introduction

Financial returns are difficult to predict and, for a long while, the absence of pre-

dictability served as one of the corner stones in Þnancial economics. This proposi-

tion was largely supported by empirical studies. As recent as in the mid-seventies,

the consensus among researchers was that, to a good approximation, returns in

stock, bond and foreign exchange markets were unpredictable and prices were well

characterized by a random walk. Following a string of papers that documented

limited predictability of returns across different predictor variables, sample periods

and asset classes, the earlier consensus has largely been replaced by a view that

− although predictability may be over-stated because of data-snooping effects and
small sample distortions − returns are predictable, particularly at longer horizons.1
Predictability of returns does not, on its own, reject the notion that Þnancial

markets are efficient. In fact, since the predictable component in asset returns tends

to be very small and uncertain, it is important to carefully consider how useful

predictability really is to risk averse investors. Only recently have the economic

implications of return predictability been explored by authors such as Barberis

(2000), Brandt (1999), Campbell and Viceira (1999) and Kandel and Stambaugh

(1996). These studies Þnd that, faced with time-varying investment opportunities,

it is optimal for investors to vary their stock holdings both as a function of a

set of predictor variables and as a function of their investment horizon. Even

though predictability of returns is generally weak from a statistical perspective, it

is generally found to have strong effects on optimal portfolio holdings.

So far the literature has almost invariably explored the asset allocation implica-

tions of stock return predictability in the context of simple linear models designed

to characterize predictability in the conditional mean of returns. However, for as-

set allocation purposes it is important to go beyond this and correctly model the

full probability distribution of returns. Unless investors are assumed to have very

restrictive preferences such as mean-variance utility, the calculation of expected

utility and the derivation of optimal portfolio weights will reßect the full probabil-

ity distribution of returns.

This paper Þnds strong evidence of nonlinearity in the process driving UK stock

returns in the form of regime switching and considers its economic implications.

1For a clear statement of the evidence and references to the literature, see Cochrane (2001).
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We identify two states that can broadly be interpreted as a bull state that offers

high mean returns and low volatility and a high volatility bear state. SpeciÞcation

tests that consider the full probability distribution of stock returns strongly reject

single-state, linear models against the two-state alternative.

Since the risk-return trade-off on UK stocks varies substantially across the bull

and bear states, their presence has the potential to signiÞcantly affect investors�

optimal asset allocation. We consider the effect of regimes by studying an investor�s

decision between a broad portfolio of stocks (the FTSE All Share index) and T-

bills. The presence of regimes gives rise to a wide variety of investment shapes

linking optimal stock holdings to the investment horizon and generates very sensible

patterns in optimal stock holdings.

Our paper makes several contributions to the existing literature. While bull

and bear markets are part of Þnancial folklore, their asset allocation implications

have not previously been studied, certainly not in the rigorous framework that we

consider.2 Our model has a rich set of implications for optimal stock holdings as

a function of the underlying dividend yield and the bull/bear regime probabilities.

Our setup also allows us to compute the expected utility cost if regimes are ignored.

This is a natural metric in an economic assessment of our Þndings and allows us to

map the potential economic gains from considering regime switching. We Þnd that

the gains are large enough to be relevant to long-term investors such as pension

funds and even to investors with shorter investment horizons.

We Þnd that optimal stock holdings are strongly affected by investors� beliefs

about the underlying state. A buy-and-hold investor who perceives a high prob-

ability of being in the moderately persistent bear state will invest very little in

stocks in the short run. This investor will hold more in stocks at longer investment

horizons as the likelihood of switching to the bull state grows. In contrast, in the

highly persistent bull state, investors hold less in stocks the longer their investment

horizon. This is because there is only a very small chance of leaving the bull state

in the short run, while this probability grows as the investment horizon expands.

Evidence of two states remains strong when the return model is expanded to

2The only other paper that we are aware of that studies the effect of regimes on optimal asset

allocation is Ang and Bekaert (2001). However, their paper studies international asset allocation

and uses a very different methodology for model selection and asset allocation than that presented

here.
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include the lagged dividend yield as a predictor. In this extended model we Þnd

that both regime switching and predictability from the dividend yield signiÞcantly

affect optimal stock holdings. Regime switching appears to capture a relatively fast

moving mean-reverting component related to changes in volatility and its effect is

strongest at relatively short investment horizons. In contrast, the dividend yield

captures a slowly mean-reverting component in the return distribution that mostly

affects long-run asset allocations.

Rebalancing of optimal portfolio holdings decrease the sensitivity of the optimal

stock holding with respect to the investment horizon. This is to be expected since

rebalancing means that the current position can be unwound if there is a change in

the underlying state. Conversely, frequent rebalancing makes stock holdings more

responsive to the current state. If investors Þnd themselves in the bear state, they

will reduce stock holdings to a level near zero in the expectation that they can raise

them in a subsequent period. A long-term investor deprived of this possibility will

not reduce stock holdings as aggressively and will instead base these on the average

returns expected over the full investment horizon.

The outline of the paper is as follows. Section 2 presents estimation results

for the regime switching model Þtted to UK stock returns and provides a range

of results from speciÞcation tests applied to the probability distribution of stock

returns. Section 3 introduces the optimal asset allocation problem and reports

empirical asset allocation results under a buy-and-hold investment scheme. Sec-

tion 4 extends our empirical results to include predictability from the dividend

yield. Section 5 considers rebalancing effects while Section 6 reports the outcome

of calculations of welfare costs due to ignoring regimes and Section 7 concludes.

2. Regimes in UK Stock Returns

The possibility of predicting asset returns has fascinated generations of researchers

in economics and Þnance and this question has spawned numerous empirical stud-

ies. One strand of the literature has adopted linear models and concentrated on

documenting which state variables predict the conditional mean of stock returns.

Examples of this approach include Campbell and Shiller (1988) and Fama and

French (1988). For UK stock returns Clare, Thomas and Wickens (1994) Þnd that

the gilt-equity yield ratio has some predictive power, while Black and Fraser (1995)

Þnd that default- and term-premium variables have predictive power over returns.
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Pesaran and Timmermann (2000) extend this list to Þnd predictability of UK stock

returns based on a variety of macroeconomic and Þnancial variables.

Another strand of the literature on return predictability has broadened the

scope by investigating the presence of regime dynamics in asset returns. Ang

and Bekaert (2002), Driffill and Sola (1994), Gray (1996) and Hamilton (1988))

study regimes in interest rates while Ang and Bekaert (2001), Perez-Quiros and

Timmermann (2000) and Turner, Starz and Nelson (1989) consider regimes in

stock returns.

2.1. The Model

We will consider a framework that incorporates both the possibility of regimes

as well as return predictability arising from other variables. As a starting point,

suppose that the return or excess return on some risky asset, Rt, follows a Gaussian

autoregressive process with mean, variance and autoregressive parameters that can

vary across k regimes driven by a latent state variable, St:

Rt = µSt +
kX
j=1

aj,Strt−j + εt. (1)

Here St takes integer values between 1 and k, µst is the intercept in state St, aj,st is

the autoregressive coefficient at lag j in state St, and εt ∼ N(0,σ2St) is the return
innovation which has mean zero and state-speciÞc variance σ2st and is assumed to

be normally distributed. A linear model is obtained as a special case when k = 1.

Completing the model for returns requires specifying the process followed by

the state variable, St. Following Hamilton (1989), we assume that St is driven by

a Þrst order, homogeneous Markov process with transition probability matrix P

P[i,j]=Pr(St = j|St−1 = i) = pij, i, j = 1, .., k. (2)

The underlying state, St, is allowed to be unobserved. Predictability in this model

has two sources. First, as long as at least two mean parameters vary across states,

revisions in the perceived state probabilities give rise to time-varying expected

returns. This effect is present even in the absence of autoregressive lags and also

generates time-variations in the variance (volatility clustering), skew and kurtosis

of returns, c.f. Timmermann (2000). Second, when present, the autoregressive

terms in (1) directly imply some predictability.
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To encompass multivariate models that incorporate a wider set of predictors,

zt, (1) can be generalized to

yt = µst +

pX
j=1

Aj,styt−j + εt. (3)

where yt = (Rt zt)
0 and εt ∼ N(0,Ωst). This model can capture richer patterns

of predictability, combining nonlinear regime switching with linear predictability.

The investor�s information set at time t, =t, is assumed to comprise the history of
returns extended by the predictor variables, i.e. =t = {Rj, zj}tj=1. Estimation of
the parameters of the model, θ = (µst,Aj,st ,Ωst,P) proceeds by maximizing the

likelihood function through the EM algorithm, c.f. Hamilton (1990).

2.2. Data

Our data consists of monthly returns on the FTSE All Share stock market index,

inclusive of dividends, and returns on 1-month T-bills. We use this data to model

the return on stocks in excess of the T-bill rate. Section 4 of our analysis also uses

the dividend yield computed as dividends over the preceding 12 months divided

by the current stock price. The sample period is 1970:1 - 2000:12, a total of 372

monthly observations. All data was obtained from Datastream.

2.3. Model Selection Based on the Probability Distribution of Returns

Determining the number of states, k, and lags, p, in (1) can pose considerable

difficulties, yet is clearly important to understanding the properties of the return

distribution. While these design parameters are typically determined by means of

statistical tests or information criteria, we will adopt an approach that is closer to

the economic objectives of the modeling exercise.

Since we will be using the estimated models for asset allocation purposes, it

is important to verify that they adequately capture the return distribution and

are not misspeciÞed. For this purpose we use the probability integral transform

considered by Rosenblatt (1952) and recently used in economic analysis by Diebold

et al (1998).

The probability integral transform or z−score is the probability of observing a
value smaller than or equal to the realization rt+1 of returns under the null that the
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model is correctly speciÞed. Under the k-state mixture of normals, this is given by

Pr(Rt+1 ≤ rt+1|=t) =
kX
i=1

Pr(Rt+1 ≤ rt+1|st+1 = i,=t) Pr(st+1 = i|=t)

=
kX
i=1

Φ

Ã
σ−1i (rt+1 − µi −

pX
j=1

aj,irt+1−j)

!
Pr(st+1 = i|=t)

≡ zt+1. (4)

Here Φ(·) is the cumulative density function of a standard normal variable. Pro-
vided that our model is correctly speciÞed, zt+1 should be independently and identi-

cally distributed (IID) on the interval [0, 1], with a uniform distribution c.f. Rosen-

blatt (1952). Based on this idea, Berkowitz (2001) proposes a likelihood-ratio test

that inverts Φ to get a transformed z−score
z∗t+1 = Φ

−1(zt+1).

Under the null of a correctly speciÞed model, z∗ should be IID and normally dis-
tributed (IIN(0, 1)). This suggests conducting tests of normality based on moment

conditions such as

E[z∗t+1] = 0,

V ar[z∗t+1] = 1,

Cov[z∗t+1, z
∗
t ] = 0,

Cov[(z∗t+1)
2, (z∗t )

2] = 0, (5)

Skewness[z∗t+1] = 0,

Kurtosis[z∗t+1] = 3.

We use a likelihood ratio test that focuses on a few salient moments of the return

distribution. Suppose the log-likelihood function is evaluated under the null that

z∗t+1 ∼ IIN(0, 1):

LIID N(0,1) ≡ −T
2
ln(2π)−

TX
t=1

(z∗t )
2

2
, (6)

where T is the sample size. Under the alternative of a misspeciÞed model, the

log-likelihood function incorporates deviations from the null, z∗t+1 ∼ IIN(0, 1) :

z∗t+1 = µ+
pX
j=1

lX
i=1

ρji(z
∗
t+1−i)

j + σet+1, (7)
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where et+1 ∼ IIN(0, 1). Obviously the null of a correct return model implies p×l+2
restrictions � µ = ρji = 0 (j = 1, ..., p and i = 1, ..., l) and σ = 1 � in equation

(7). Let L(�µ, {�ρji}p l
j=1 i=1, �σ) be the maximized log-likelihood obtained from (7).

To test that the forecasting model (1) is correctly speciÞed, we use the following

test statistic

LR = −2
h
LIIN(0,1) − L(�µ, {�ρji}p l

j=1 i=1, �σ)
i
∼ χ2p×l+2. (8)

In addition to the standard Jarque-Bera (1980) test, we focus on three likelihood

ratio tests proposed by Berkowitz (2001):

1. A test with p = l = 0 that only restricts the mean and variance of the

distribution of the transformed z−scores: LR2 = −2
£
LIID N(0,1) - L(�µ, �σ)

¤ ∼
χ22;

2. A test with p = l = 1 that also restricts the transformed z−scores to be
serially uncorrelated: LR3 = −2

£
LIID N(0,1) - L(�µ, �ρ11, �σ)

¤ ∼ χ23;
3. A test with p = l = 2 that restricts the transformed z−scores as well as their
squares to be serially uncorrelated: LR6 = −2

£
LIID N(0,1) - L(�µ, {�ρji}2 2

j=1 i=1, �σ)
¤ ∼

χ26.

Table 1 shows the outcome of the tests for a range of regime-switching mod-

els, including the special case of a linear, single-state model. Models without

state-dependence in the volatility are strongly rejected by the Þrst test suggesting

that volatility deÞnitely varies across regimes. The two-state model with state-

dependent mean and variance passes all four tests. Since this is the most par-

simonious model that appears to appropriately capture the distribution of stock

returns, we use this model in our further analysis.3

2.4. Interpretation of the States

Using the two-state model Þtted to monthly excess returns on the FTSE All Share

index, Figure 1 plots the smoothed probability for state 1. This state picks up the

3Including a larger number of states in the model does not always lead to better performance

of the misspeciÞcation tests. The reason is that the parameters of the larger models are not

chosen to minimize the value of the probability integral test statistics.
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very volatile markets in 1974-75 along with low return and high volatility episodes in

1976, 1981 and 1987.4 Table 2 conÞrms this interpretation by providing full-sample

estimates for the two-state model. The Þrst regime is a bull state where excess

returns have a high mean (0.7% per month) and low volatility (4.5% per month).

The second regime is a bear state with negative mean excess returns (-0.65% per

month) and much higher volatility (15.2% per month).5 The parameters of the

two-state model span those obtained for the single-state model: The estimated

mean excess return in the linear model is 0.6% per month and the volatility is

6.2% per month.

While the mean excess return is statistically signiÞcantly different from zero

in the bull state, it is not signiÞcantly different from zero in the bear state. This

is likely to reßect the relatively small part of the sample spent in the bear state

which leads to a larger standard error for the mean parameter in this state. In

fact, at 0.986 and 0.844, the transition probability estimates show that the bull

state is highly persistent with an average duration of 74 months while the expected

duration of the bear state is only six months.

Though not visited frequently, the bear state is nevertheless important in de-

termining both the expected value and the risk of stock returns and it clearly helps

to capture outliers in the excess return distribution that cannot be accomodated

by a Gaussian model. To demonstrate this point, Figure 2 plots the Þrst four con-

ditional moments as a function of the bull state probability using the parameter

estimates reported in Table 2.

As the state probabilities change, the mean, volatility, skew and kurtosis of

the distribution also change. The conditional mean increases linearly in the bull

state probability, while the volatility decreases monotonically as a function of this

probability. Increasing the probability of the bull state introduces a negative skew

in the return distribution which peaks at -0.3 for a bull state probability of 0.9

only to increase to zero when the bull state probability is one. Kurtosis shows

the opposite pattern. It increases from 3 (the kurtosis of the normal distribution),

peaks just below 10 for a bull state probability of 0.9 and then drops to 3 again

4We also estimated a three-state model for monthly excess returns. The third state isolated

the unusually large returns in January and February 1975 but did not include other parts of the

sample.
5Although we label the two regimes �bull� and �bear� states, they could equally well be char-

acterized as low and high volatility states.
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when the bull state is known with certainty. Variations in the perceived state

probabilities thus lead to large changes in the properties of the return distribution.

As we shall see in the next section, this is key to understanding the optimal asset

allocation results.

3. Optimal Stock Holdings

Using the two-state model for UK stock returns, this section studies the optimal

stock holdings for a buy-and-hold investor with constant relative risk aversion pref-

erences. In later sections we introduce predictability from the dividend yield and

periodic rebalancing. Abstracting from these effects in the initial analysis simpli-

Þes the problem considerably and makes our results easier to understand. We Þrst

characterize the investor�s optimization problem and then present empirical results.

3.1. The Investor�s Optimal Asset Allocation Problem

Consider a buy-and-hold investor with unit wealth at time t and power utility

deÞned over the level of wealth T periods from now, Wt+T :
6

u(Wt+T ) =
W 1−γ
t+T

1− γ . (9)

Here γ is the coefficient of relative risk aversion while T is the investment horizon.

The investor is assumed to maximize expected utility at time t by allocating ωt to

stocks while 1− ωt is invested in riskless, one-month T-bills.7 The problem solved
by the investor is

max
ωt

Et

"
W 1−γ
t+T

1− γ

#
s.t. Wt+T =

©
(1− ωt) exp

¡
Trf

¢
+ ωt exp

¡
Rst+T

¢ª
(10)

ωt ∈ [0, 1]
6Our analysis follows much of the existing literature by assuming power utility over Þnal

wealth, but the qualitative results appear to be robust to alternative functional forms.
7Following standard practice we assume that the risk-free rate is known and constant. This

assumption means that we do not have to simultaneously model future T-bill rates and stock

market returns. Because we model excess return on stocks, variations in T-bill rates are, however,

likely to have a much smaller effect on optimal stock versus T-bill holdings since higher T-bill

rates also increase stock returns computed as the excess return plus the T-bill rate.
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where Rst+T ≡ Rst+1 + R
s
t+2 + ... + R

s
t+T is the continuously compounded stock

return over the T−period investment horizon. The constraint ωt ∈ [0, 1] rules out
short-selling.

There is no closed-form solution to the optimal stock holdings under power

utility, so we use Monte-Carlo methods to draw N time paths of T monthly excess

returns from the regime switching model using the parameter estimates �θt = {�µt,
σ2
t
, �Pt}. These simulations account for the possibility of stochastic regime switching

as governed by the transition matrix �Pt. For a given value of ωt, we can approximate

the integral in the expected utility functional:

�Et[U(Wt+T )|ωt] = N−1
NX
n=1


h
(1− ωt) exp

¡
Trf

¢
+ exp

³PT
i=1R

s
t+i,n

´i1−γ
1− γ

 .
(11)

Here 1 ≤ n ≤ N tracks the simulation number.8 A grid search across different

values of ωt determines the optimal stock holdings.

3.2. Empirical Results

Investors differ along several dimensions. They are likely to have different levels of

risk aversion and different investment horizons. To assess the economic signiÞcance

of regimes in stock returns we study optimal portfolio holdings by varying both the

level of risk aversion (γ) and the time horizon (T ). We start with the investment

horizon. Speculators and some mutual funds may have relatively short investment

horizons of up to one year, while pension funds have a longer investment horizon

of, e.g., 10-20 years, depending on their liability structure.

Using the last half of our sample (1986-2000), Figure 3 shows the evolution in

the real-time optimal stock holdings at four different investment horizons, namely

a short horizon (1 month) two medium horizons (6 and 24 months) and a very

long horizon (120 months). For comparison we also show the optimal allocation

to stocks under no predictability, i.e. assuming that returns are identically and

8A large number of simulations is needed to adequately account for the occurrence of bear

regimes with moderate steady-state probability. We experimented with different values of N

between 5,000 and 50,000 and found that N = 40, 000 is adequate to obtain sufficiently precise

and stable solutions.
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independently distributed. Following studies such as Barberis (2000) and Brandt

(1999) we initially Þx the coefficient of relative risk aversion at γ = 5.

To be more realistic and avoid a �beneÞt of hindsight� bias, these results do not

condition on end-of-sample parameter estimates or state probabilities and instead

use the real-time recursive parameter estimates {�µt, �σ2t , �Pt}2000:12t=1986:01 and state prob-

abilities {�πt}2000:12t=1986:01. This explains why the optimal stock holdings change over

time even under the no-predictability model.

The Þrst conclusion emerging from Figure 3 is that optimal stock holdings are

far more volatile at the short horizons than at the longer horizons. Throughout

most of the sample a short-horizon portfolio objective implies a very high commit-

ment to stocks. However, an investor with a 1-month horizon would have invested

very little in stocks in the aftermath of October 1987, only to have raised stock

holdings to 80% in early 1988. Despite this volatility in the optimal stock holdings,

the short-sales constraint is never binding.

As the investment horizon grows the investor pays less attention to the current

state and the optimal stock holdings become smoother over time. With the ex-

ception of a short period from the end of 1987 to the beginning of 1988, investors

with a horizon of at least two years would have steadily invested between 20% and

40% of their wealth in the UK stock market. On the back of the high stock returns

during the 1990s this percentage increased from about 30% to around 35% at the

end of 2000.

It is interesting to compare the optimal stock holdings under this two-state

model to those obtained under an assumption of no predictability (k = 1). The

optimal stock holdings under no predictability are closest to those derived under

a 1-month horizon when the probability of being in the bull state is high. It

is easy to see why. The parameter estimates for the bull state are much closer

to the full-sample values than the bear state parameter estimates, c.f. Table 2.

Since the bull state is highly persistent, at short horizons where the current state

matters the most, the optimal asset allocation will be similar in the bull state and

under the no-predictability model. Of course, this conclusion does not carry over

to the bear state since this state has a probability distribution for returns that is

very different from the unconditional return distribution. It also does not hold at

longer investment horizons since these put more weight on the return distribution

in the bear state. Since the single-state model underestimates the probability of
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months with large negative returns, the average stock holdings are roughly twice as

large under no predictability as they are under regime switching and an investment

horizon of two years or longer.

3.3. State Beliefs and Horizon Effects

Assuming a time-invariant investment opportunity set and power utility, in a classic

paper Samuelson (1969) showed that optimal asset holdings are identical across dif-

ferent investment horizons. In our setup, the relationship between the investment

horizon and the optimal stock holdings is considerably more complicated since the

perceived investment opportunities change both with the underlying state proba-

bilities and with the investment horizon.

Figure 4 shows the interaction between the perceived bull state probability and

the investment horizon in determining optimal stock holdings. This Þgure tracks

the effect on the optimal stock holdings of changing either the probability of being

in the bull state or the investment horizon. The remaining parameters are set at

their end-of-sample estimates.9

Holding the state probability Þxed, the optimal stock holdings can be either

constant, rising or declining as a function of the investment horizon. The intuition

for these Þndings is as follows. Since bull markets are more persistent and likely in

steady-state than bear markets, at long horizons stocks offer a high risk premium

and relatively low volatility. At shorter investment horizons the risk-return trade-

off offered by stocks changes signiÞcantly with the underlying state.

When the probability of being in a bear state is perceived to be high (as it

was in the late eighties), stocks are unattractive to investors with a short horizon.

These investors see a high chance of experiencing low and volatile stock returns in

the event of several months spent in the bear market. Since the bear state is only

moderately persistent, at longer horizons stocks again become attractive and the

optimal allocation to stocks is an increasing function of T.

In contrast, when markets are dominated by uncertainty about the nature of

the current regime, ßat or even non-monotonic shapes are possible. For example,

when the state beliefs are set at their steady-state values, the stock investment

9In this and all other exercises the bull state probability is the probability of starting from the

bull state. It is not the probability of remaining in the bull state during the entire investment

period.
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schedule is ßat and independent of T.

Finally, when the probability of being in a bull market is perceived to be high

(as happened most of the time between 1989 and 2000), investors with a short

horizon have strong incentives to aggressively buy stocks to exploit the very high

persistence of bull markets. Although current beliefs may deem bear markets highly

unlikely, as T grows the occurrence of bear market spells must be factored in. This

explains the negative relation between horizon, T , and stock holdings.

If instead we Þx the investment horizon and vary the state probability, the

optimal allocation to stocks increases as the perceived bull state probability goes

up. At short horizons the rise in stock holdings is very steep when the bull state

probability increases, but it gets much ßatter at the longest horizons considered

here. This is due to the mean reversion in the state process, St, which implies that

the current state matters less at long investment horizons.

3.4. Effects of Risk Aversion

So far we have Þxed the coefficient of risk aversion at γ = 5. To study the effect on

optimal stock holdings of different coefficients of relative risk aversion, we vary γ

between 1 and 20. We show results for three different conÞgurations of the initial

state probabilities, (�πt, 1−�πt) corresponding to a bull state (1, 0), a bear state (0, 1)
and a state with high uncertainty about the state (0.8, 0.2). We chose the latter

probabilities to be close to the steady state probabilities and not too dissimilar

to the state probabilities that were actually observed throughout the sample. For

comparison we also report optimal stock holdings under no predictability. Figure

5 shows the outcome of this exercise using a short (T = 1) and a long (T = 120)

horizon.

First consider the results in the left column of Figure 5 which assume a short

investment horizon. As γ rises, the optimal stock holdings decline monotonically.

In the bull state, at low levels of risk aversion (γ ≤ 4) more than 90% of the

portfolio is allocated to stocks, but this number declines gradually to around 30%

for γ above 10. In the bear state stock holdings are at or below 40% for very small

values of γ and quickly drop to less than 5% when γ ≥ 4. Stock holdings are also
very small for γ ≥ 4 when there is high uncertainty about the current state.
At the longer horizon, the effect on stock holdings of raising γ appears to be even

larger for values of γ between one and four. The optimal stock holdings go from
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close to 100 percent to around 40% in the bull state and decline from 90% to 30%

in the bear state or to 40% under high uncertainty. At the long horizon the two-

state asset allocations are always very different from those under no predictability,

whereas the two are very similar in the bull state when T = 1.

These Þndings show that the coefficient of risk aversion has a relatively large

effect on the optimal level of stock holdings, but that most of the effect occurs at

levels of risk aversion lower than our assumed value of γ = 5.

4. Stock Holdings Under Predictability from the Dividend Yield

Studies such as Barberis (2000), Brandt (1999), Campbell and Viceira (1999),

Kandel and Stambaugh (1996), and Lynch (2001) have considered optimal asset

allocation under predictability from the dividend yield so it is natural for us to

extend our results to allow for predictability from this regressor. We do this in two

steps. First, we consider the optimal asset allocation when the dividend yield is the

only predictor, basing the results on a VAR model similar to that used in earlier

studies. Having ensured comparability with existing results, we next introduce

regimes and investigate the results in the context of the two-state bivariate regime

switching model (3).

4.1. Predictability from the Dividend Yield

We use our more general model (3) to both consider a linear VAR and a regime-

switching VAR with the dividend yield added as a predictor variable. Separate

models Þtted to the dividend yield and to excess returns suggested a two-state

speciÞcation with almost identical state variables. We therefore continue to work

with a two-state model extended to incorporate a lag to accommodate the strong

evidence of a Þrst-order autoregressive component in the yield.

Table 3 presents the full-sample parameter estimates for the bivariate model

assuming either a linear or a two-state speciÞcation with an autoregressive compo-

nent. In the linear model, the autoregressive terms are highly signiÞcant both in

the equation for excess returns and in the equation for the dividend yield.

Turning to the two-state model, stock market volatility continues to be low in

the Þrst state (4.4% per month), while state 2 is a high volatility state (11.3%

per month), albeit with less extreme volatility than we found in the univariate
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model for excess returns. The dividend yield is also far more volatile in state 2

and frequently undergoes rapid moves in this state. The persistence of the dividend

yield remains very high in the Þrst state (0.98) but is somewhat lower in the second

state (0.79).10

Interestingly, once regime-switching is accounted for, the dividend yield ceases

to have predictive power over stock returns as shown by the insigniÞcance of the

coefficient on this regressor in the two-state model. There is no evidence of serial

correlation in returns in the bull state, but the serial correlation is relatively strong

and statistically signiÞcant in the bear state.

The lower graph in Figure 6 plots the smoothed state probabilities for the

bivariate model Þtted to stock returns and the dividend yield. Compared with

Figure 1 there are now many more periods where the process is deemed to be in

the high volatility bear state, such as in 1971, 1997 and, with less certainty, during

some further months at the end of the sample.

4.2. Stock Holdings when the Dividend Yield is the only Predictor

Earlier papers on optimal stock holdings under predictability from the dividend

yield all assume a single state. To compare our results to this literature and to

disentangle the effect on stock holdings of predictability from the dividend yield

and the presence of two regimes, we Þrst constrain the general model (3) to k = 1,

so that lagged values of the dividend yield is the only source of predictability and

the model simpliÞes to a bivariate VAR:Ã
rt

dyt

!
=

Ã
µr
µdy

!
+

pX
j=1

Ã
ar,rj ar,dyj

ady,rj ady,dyj

!Ã
rt−j
dyt−j

!
+

Ã
εr,t

εdy,t

!
. (12)

We further constrain the model to match the assumptions in Barberis (2000) and

Lynch (2001) by setting p = 1, and ar,rj = ady,rj = 0 and estimating (12) by applying

OLS equation by equation.

Figure 7 (upper window) shows the real-time optimal stock holdings at four

different horizons. These holdings are very different from those obtained under the

10The strong negative simultaneous correlation between innovations to the dividend yield and

stock returns reßects the fact that positive news that lead to higher stock prices (and hence

positive returns) tend to simultaneously lower the dividend yield which has the stock price in the

denominator.
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two-state model in Figure 3. The short sales constraint is now binding in many

periods. At the longest 10-year horizon, it is optimal to invest all money in stocks

until 1997. The slow and persistent moves in the dividend yield are easy to detect

in the stock holdings derived for the short and medium horizons: stock holdings

rise after the October 1987 stock market crash and start coming down again after

1991 as the yield declines. At the shortest investment horizons, the model suggests

going entirely out of stocks after 1993.

Figure 8 (upper window) shows the effect of the investment horizon on the

real-time stock holdings during selected periods with different values of the yield.

Optimal stock holdings vary signiÞcantly over the sample. Periods with low div-

idend yields (to the right of the Þgure) give rise to relatively ßat horizon curves,

while periods with high dividend yields (to the left of the Þgure) generate steeper

investment curves. All investment curves are monotonically increasing.

4.3. Regimes and Dividend Yield Effects

We next consider the real-time optimal stock holdings in the general model that

incorporates predictability from the dividend yield and allows for two states. The

lower window in Figure 7 shows that introducing states in the extended model

leads to signiÞcant changes in the optimal stock holdings. In stark contrast to

the case with a single state, the long-horizon (T = 120) stock holdings are now

very low between 1987 and 1990, high between 1990 and 1994 and high again

around 1996 before they decline. Despite the extra uncertainty associated with the

introduction of regimes, their effect is not to simply reduce stock holdings at all

points in time. Rather, regimes reduce stock holdings at some times (near bear

states) while increasing them at others.

The extended model with two regimes also leads to very different investment

advice towards the end of the sample. Even at the short investment horizons, the

model only suggests to exit stocks as late as in 1997. This is in contrast with the

model that ignored the presence of regimes and suggested an exit from the stock

market as early as 1993, at least for investors with short horizons.

Turning next to the optimal stock holdings as a function of the investment

horizon, Figure 8 (lower window) shows that introducing regimes in the model

with the dividend yield as a predictor variable leads to non-monotonic investment

curves. For example, near bear states there were many occasions where the optimal
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stock holding was high at the 1-month horizon, declined for horizons between 1 and

10 months and increased uniformly at longer horizons.

Figure 9 sheds light on the complex interaction between the perceived bull state

probability and the dividend yield, using a short (T = 1) and a long investment

horizon (T = 120). The perceived state probability is varied between zero and one

while the dividend yield varies in the interval [dy − 2�σdy, dy + 2�σdy], where dy is
the unconditional sample mean of the dividend yield (4.6%) and �σdy is its standard

deviation (1.34%).

At the short horizon the optimal allocation to stocks is zero for values of the

dividend yield below 2.8%. It grows to 100% for values of the yield above 6.2%,

so clearly the optimal allocation to stocks increases steeply in this range of yield

values. Keeping the dividend yield Þxed there is also a strong effect from changes

in the state probability. For instance, when the dividend yield equals 4.5%, it is not

optimal to hold stocks in the bear state, whereas the optimal allocation to stocks

is 86% in the bull state.

At the long horizon the dividend yield has a strong effect on the optimal stock

holdings which go from 34 to 100 percent as the yield moves from 2 to 4.2 percent.

There is still an effect on stock holdings from the state probability, but this is

clearly smaller than at the short horizon.11

The intuition for these results is that both the state variable and the dividend

yield track mean reverting components in stock returns. However, whereas the

dividend yield variable captures a slow-moving mean reverting factor - as witnessed

by the very high persistence of this variable - the regime variable captures mean

reversion at a higher frequency. This means that the state probability has a stronger

effect, the shorter the investment horizon while the dividend yield variable has its

strongest effect at the longest horizons.

5. Portfolio Rebalancing

So far we have ignored the possibility of rebalancing. This may be realistic for

an investor who faces high transaction costs and only gets to adjust the portfolio

11It should also not be forgotten when interpreting these Þgures that whereas the dividend yield

moves relatively smoothly and typically does not jump from one month to the next, in contrast

the perceived state probability often undergoes sudden shifts, changing from zero to one over a

span of one or two months.
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weights infrequently. It also may be plausible for investors such as pension funds

whose strategic asset allocation is constrained by trustees to lie within relatively

narrow bands which precludes the fund manager from adjusting portfolio weights

in the short run. For other investors this assumption is likely to be unrealistic so

this section studies the effects of rebalancing.

Suppose that investors can adjust portfolio weights every ϕ = T
B
months at B

equally spaced points t, t+ T
B
, t+2T

B
, ..., t+(B−1)T

B
and let ωb (b = 0, 1, ..., B−1) be

the portfolio weights on the risky assets at these rebalancing times. When B = 1,

ϕ = T and the investor simply implements a buy-and-hold strategy. Under power

utility the derived utility of wealth conveniently simpliÞes to (c.f. Ingersoll (1987,

page 242))

J(Wb, R
s
b,θb,πb, tb) =

W 1−γ
b

1− γQ(R
s
b,θb,πb, tb). (13)

Investors are assumed to update their beliefs about the underlying state at each

point in time using the formula (c.f. Hamilton (1989)):

πtb+1(
�θt) =

πtb(
�θt)�P

ϕ(b+1)
t ¯ η(Rstb+1; �θt)

(πtb(
�θt)�P

ϕ(b+1)
t ¯ η(Rstb+1; �θt))0ιk

, (14)

where η(Rstb+1;
�θt) is the predictive density of the stock return at time tb + 1 and

�P
ϕ(b+1)
t is the updated ϕ(b+1)-step ahead transition probability matrix, �P

ϕ(b+1)
t ≡Qϕ(b+1)

i=1
�Pt.

12 We choose ωb to maximize

Etb

h©
(1− ωb) exp

¡
ϕrf

¢
+ ωb exp(R

s
b+1(sb))

ª1−γ
Q(πjb+1, tb+1)

i
. (15)

We solve this equation numerically by discretizing the domain of each of the state

variables on G equi-distant points and using backward induction methods. The

multiple integral deÞning the conditional expectation is again calculated by Monte

Carlo methods. For each πb = πjb, j = 1, 2, ..., Gk−1 on the grid we draw in

calendar time N samples of ϕ−period excess returns {Rb+1,n(Sb)}Nn=1 from the

regime switching model, where Rb+1,n(Sb) ≡
Pϕ

i=1Rtb+i,n(Sb). The expectation

(15) is then approximated as

N−1
NX
n=1

h©
(1− ωb) exp

¡
ϕrf

¢
+ ωb exp(R

s
b+1,n(sb))

ª1−γ
Q(π

(j,n)
b+1 , tb+1)

i
, (16)

12The symbol ¯ denotes element by element multiplication.

18



where π
(j,n)
b+1 denotes the element π

j
b+1 on the grid used to discretize the state space.

G = 10 delivers sufficient precision and at the same time keeps the computational

burden at a feasible level.

Table 4 reports the outcome of this exercise. Again we study the optimal stock

holdings under three scenarios for the state probabilities. For each value of �π we

consider a range of rebalancing frequencies, ϕ = 1, 3, 6, 12, 24, and T months and

we report optimal weights for investment horizons T = 1, 6, 12, 24, 60, and 120

months. To save space we only report results for the two-state regime switching

model without the dividend yield.

Several interesting results emerge. Our earlier Þnding that investment schedules

(as a function of T ) are downward sloping in the bull state and upward sloping in

the bear state continues to be supported under rebalancing. However, investment

schedules become ßatter, the higher is ϕ.13 In the limit with rebalancing every

month (ϕ = 1), the state probabilities and asset allocations are updated at the

same frequency so the investment schedules are completely ßat.

At all investment horizons the possibility of rebalancing makes an investor use

information about the current state relatively aggressively for portfolio selection

purposes. In bull states, �ωt is uniformly increasing in ϕ. Indeed, while under buy-

and hold the long-horizon optimal weight (less than 40%) is roughly half of its level

when predictability is ignored, when ϕ = 1 the optimal stock holding is very close

to the IID level (81%).

In bear states ωt is a uniformly decreasing function of ϕ. Indeed, while un-

der buy-and-hold the long-horizon optimal weight (32%) is still substantial, under

monthly rebalancing, the optimal weight is very small (4%). Long-run buy-and-

hold investors anticipate the end of the bear market and know that the bear state

will occur infrequently in the long run. They are therefore willing to hold large in-

vestments in stocks even in the bear market. However the possibility of rebalancing

makes it optimal even for long-run investors to drastically reduce the commitment

to stocks in a bear state.

Under high uncertainty about the current state, stock holdings are at interme-

diate levels. The main difference is now that the investment curves are almost ßat

irrespectively of the investment horizon. Since investors are unsure of the current

13Of course, for ϕ ≥ T , by construction the buy-and-hold and rebalancing results coincide.

This explains why some entries are identical in the table.
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state of the stock market, they are unwilling to take extreme positions that con-

dition on very good (bull state) or very poor (bear state) prospects for the stock

market.

We conclude from this analysis that the possibility of frequent rebalancing

makes an investor use the information provided by the state probability estimates

more aggressively. In the bear state, the higher is ϕ, the more drastic is the reduc-

tion in the optimal allocation to stocks. Conversely, at times when the market is

perceived to be in the bull state, an investor increases the optimal weight in stocks

more the higher the rebalancing frequency.

6. Welfare Costs of Ignoring Regimes

An economic assessment of the costs from ignoring regimes in stock returns is

best conducted using a metric based on expected utility. In our setting this is

equivalent to maximizing utility subject to constraining investors to choose at time

t an optimal allocation ωIIDt under the assumption that stock returns simply follow

a normal distribution with mean vector �µt, and variance �σ
2
t . In this case the

portfolio choice and savings ratio are independent of the investment horizon and

the value function for the constrained investor is

JIIDt ≡ 1

1− γ
BX
b=0

βbEt
£
W 1−γ
b

¤
Wb = Wb−1

£
(1− ωIIDt ) exp

¡
ϕrf

¢
+ ωb exp

¡
Rb+1 + ϕr

f
¢¤
.

The assumption of independent and identically distributed returns is a constrained

case of the model with regime switching and predictor variables so, by construction,

we have

JIIDt ≤ J(Wt, rt, zt,θt,πt, t).

We compute the increase in initial wealth ηIIDt an investor would require to derive

the same level of expected utility from the constrained and unconstrained asset

allocation problems. ηIIDt therefore solves the following equation:

(1 + ηIIDt )1−γ
BX
b=0

βbEt
£
(Wb)

1−γ¤ = Q(Rb, zb,θb,πb, tb),
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with solution

ηIIDt =

(
Q(Rb, zb,θb,πb, tb)PB
b=0 β

bEt [(Wb)1−γ]

) 1
1−γ

− 1. (17)

This expression is relatively easy to calculate sinceQ(rb, zb, θb,πb, tb) is a by-product

of the numerical solution to the investor�s portfolio choice.
PB

b=0 β
bEt [(Wb)

1−γ] can
be computed through either Gaussian quadrature or Monte Carlo methods.

Table 5 reports implied welfare costs for the three conÞgurations of the initial

state probabilities considered in our earlier analysis. Again we consider rebalancing

at different frequencies, ϕ, and investment horizons, T . The cost of ignoring regimes

increases uniformly as a function of the investment horizon, T , but decreases in the

rebalancing frequency, ϕ, provided that ϕ > T . Welfare costs increase in the invest-

ment horizon because the present value of having a suboptimal asset allocation is

higher the longer this position is locked in. Conversely, the shorter the rebalancing

frequency, ϕ, the more valuable it is for investors to use their information about

the underlying state. For example, they can react more aggressively in reducing

stock holdings in the short-lived bear state provided that rebalancing is possible.

For this reason the welfare costs are at their highest in the bear regime under

frequent rebalancing both because the return distribution in this state is most

different from the average return distribution and because this state is short-lived.

At their highest level, welfare costs amount to 4% of the initial portfolio value at

the longest investment horizon. Welfare costs are comparatively smaller in the bull

regime, but clearly cannot be ignored even in this state where they peak at 3%.14

These costs are sufficiently large to be economically relevant to investors with

a long horizon such as a pension fund. While we have ignored transaction costs,

these can reasonably be assumed to be an order of magnitude lower than the

estimated potential gains, partly because bear states do not occur all that often and

also because a shift between T-bills and stocks can be inexpensively implemented

through positions in futures contracts.

14We also computed the welfare costs under the real-time state probability and parameter

estimates and found effects that were very similar to those reported in Table 5. For instance at

the 120 month investment horizon with no rebalancing the average utility costs increased from

0.2 to around 0.8 percent when the initial bear state probability increased from zero to one.
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7. Conclusion

This paper found clear empirical evidence of regimes with very different volatility

and mean in UK stock returns. Our results suggest that a two-state speciÞcation

with a highly persistent low-volatility regime mixed with a less persistent high

volatility state capture important features of UK stock returns. Predictability from

the dividend yield by no means subsumes the effects of predictability due to the

presence of persistent bull and bear states in returns. However, the relative effects of

the two factors very much depends on the assumed investment horizon. The shorter

the investment horizon, the more important the perceived state probabilities are

relative to variations in the dividend yield.

One way to summarize the economic difference between our two-state model

and a model that assumes no predictability is by comparing the stock holdings

associated with these models at the end of our sample (2000). At this point, the

optimal stock holdings would have been close to twice as high under the single-

state model compared to the two-state model that considers the possibility of a

bad return state. Unsurprisingly in view of such differences, the expected utility

costs arising from ignoring regimes can be quite signiÞcant.

We have not explored the potential equilibrium implications of time-variations

in investors� asset allocation. Instead we considered the optimal asset allocation of a

small investor whose actions do not affect equilibrium rates of return. However, our

model is by no means inconsistent with equilibrium effects which could give rise to

regimes in stock returns. Whitelaw (2001) constructs an equilibrium model where

consumption growth follows a two-state process so that investors� intertemporal

marginal rate of substitution also follows a regime process. This environment is

consistent with the process for returns assumed in our paper and suggests that

regime-switching in returns is consistent with equilibrium and need not violate

efficiency in Þnancial markets.

Another issue that we intend to address in future work is how investors could

deal with estimation uncertainty. While our paper accounts for learning in the

sense that investors were assumed to optimally update their state beliefs, we did

not endow investors with prior beliefs over the current parameter values. Doing so

would require a Bayesian analysis and thus goes well beyond the current paper.

22



References

[1] Ang A., and G., Bekaert, 2001, �International Asset Allocation with Regime

Shifts�, forthcoming, Review of Financial Studies.

[2] Ang, A. and G., Bekaert, 2002, �Regime Switches in Interest Rates�, Journal

of Business and Economic Statistics, 20, 163-182.

[3] Barberis, N., 2000, �Investing for the Long Run When Returns Are Pre-

dictable�, Journal of Finance, 55, 225-264.

[4] Berkowitz, J., 2001, Testing Density Forecasts with Applications to Risk Man-

agement. Journal of Business and Economic Statistics 19, 465-474.

[5] Black, A., and P., Fraser, 1995, �UK Stock Returns: Predictability and Busi-

ness Conditions�, The Manchester School Supplement, 85-102.

[6] Brandt, M., 1999, �Estimating Portfolio and Consumption Choice: A Condi-

tional Euler Equations Approach�, Journal of Finance, 54, 1609-1645.

[7] Campbell, J., and R., Shiller, 1988, �The Dividend-Price Ratio and Expecta-

tions of Future Dividends and Discount Factors�, Review of Financial Studies,

1, 195-228.

[8] Campbell, J., and L., Viceira, 1999, �Consumption and Portfolio Decisions

when Expected Returns are Time Varying�, Quarterly Journal of Economics,

114, 433-495.

[9] Clare, A.D., S.H. Thomas and M.R. Wickens, 1994, �Is the Gilt-Equity Yield

Ratio Useful for Predicting UK Stock Returns?�, Economic Journal, 104, 303-

15.

[10] Diebold, F., Gunther, T., and A., Tay, 1998, �Evaluating Density Forecasts�,

International Economic Review, 39, 863-883.

[11] Driffill, J. and M., Sola, 1994, �Testing the Term Structure of Interest Rates

from a Stationary Switching Regime VAR�, Journal of Economic Dynamics

and Control, 18, 601-628.

23



[12] Durlauf, S., 1991, �Spectral Based Testing of the Martingale Hypothesis�,

Journal of Econometrics, 50, 355-376.

[13] Fama, E., and K., French, 1988, �Dividend Yields and Expected Stock Re-

turns�, Journal of Financial Economics, 22, 3-25.

[14] Gray, S., 1996, �Modeling the Conditional Distribution of Interest Rates as

Regime-Switching Process�, Journal of Financial Economics, 42, 27-62.

[15] Hamilton, J., 1988, Rational Expectations Econometric Analysis of Changes

in Regime: An Investigation of the Term Structure of Interest Rates. Journal

of Economic Dynamics and Control 12, 365-423.

[16] Hamilton, J., 1989, �A New Approach to the Economic Analysis of Nonsta-

tionary Time Series and the Business Cycle�, Econometrica, 57, 357-384.

[17] Ingersoll, J., 1987, Theory of Financial Decision Making, Rowman & Little-

Þeld.

[18] Jarque, C., and A., Bera, 1980, �Efficient Tests for Normality, Homoskedas-

ticity, and Serial Independence of Regression Residuals�, Economics Letters,

6, 255-259.

[19] Kandel, S., and R., Stambaugh, 1996, �On the Predictability of Stock Returns:

An Asset Allocation Perspective�, Journal of Finance, 51, 385-424.

[20] Lynch, A., 2001, �Portfolio Choice and Equity Characteristics: Characterizing

the Hedging Demands Induced by Return Predictability�, Journal of Financial

Economics, 62, 67-130.

[21] Perez-Quiros, G. and A., Timmermann, 2000, �Firm Size and Cyclical Varia-

tions in Stock Returns�, Journal of Finance, 55, 1229-1262.

[22] Pesaran, M.H. and A., Timmermann, 2000, �A Recursive Modeling Approach

to Predicting UK Stock Returns�, Economic Journal 110, 159-191.

[23] Rosenblatt, M., 1952, �Remarks on a Multivariate Transformation�, Annals

of Mathematical Statistics, 23, 470-472.

24



[24] Samuelson, P., 1969, �Lifetime Portfolio Selection by Dynamic Stochastic Pro-

gramming�, Review of Economics and Statistics 51, 239-246.

[25] Timmermann, A., 2000, �Moments of Markov Switching Models�, Journal of

Econometrics, 96, 75-111.

[26] Turner, C., R., Startz, and C., Nelson, 1989, �A Markov Model of Het-

eroskedasticity, Risk, and Learning in the Stock Market�, Journal of Financial

Economics, 25, 3-22.

[27] Whitelaw, R.F., 2001, Stock Market Risk and Return: An Equilibrium Ap-

proach. Review of Financial Studies 13, 521-548.

25



Table 1 

Specification Tests for Regime Switching Models 
The table reports tests for the transformed z-scores generated by univariate regime-switching models 

=tR µst ∑
=

− ++
p
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sjtjs tt

ya
1

σ εt 

where Rt is the excess return on the FTSE-All Share index. εt )1,(  I.I.D. ~ 0N  and st is governed by an unobservable, 
first-order Markov chain that can assume k distinct values (states). The sample period is 1970:01 � 2000:12. The tests 
are based on the principle that under the null of correct specification of the model, the probability integral transform 
of the one-step-ahead standardized forecast errors should follow an IID uniform distribution over the interval (0,1). A 
further Gaussian transform described in Berkowitz (2001) is applied to perform LR tests of the null that (under 
correct specification) the transformed z-scores are IIN(0,1) distributed. MSIAH(k,p) stands for Markov Switching 
Intercept Autoregressive Heteroskedasticity model with k states and p autoregressive lags. Simpler models with fewer 
letters do not allow for state dependency in the mean, autoregressive or volatility components. 

 

Model 
Number of 
parameters 

Jarque-
Bera test 

LR2 LR3 LR6 

Panel A � Univariate Models for Excess Stock Returns 
 Base model: MSIA(1,0) 

MSIA(1,0) 2 7.193 
(0.027) 

189.323 
(0.000) 

203.027 
(0.000) 

468.945 
(0.000) 

MSIA(1,1) 3 2,657.1 
(0.000) 

0.096 
(0.953) 

2.987 
(0.394) 

18.602 
(0.005) 

 Base model: MSIA(2,0) 

MSIA (2,0) 5 15.993 
(0.000) 

0.066 
(0.968) 

5.876 
(0.118) 

20.380 
(0.002) 

MSIA (2,1) 7 16.336 
(0.000) 

0.253 
(0.881) 

2.619 
(0.454) 

15.890 
(0.014) 

MSIH (2,0) 6 2.486 
(0.289) 

0.086 
(0.958) 

3.266 
(0.352) 

10.235 
(0.115) 

MSIAH (2,1) 8 3.393 
(0.183) 

0.097 
(0.953) 

2.061 
(0.560) 

13.099 
(0.041) 

MSIH (2,0) � AR(1) 7 3.364 
(0.262) 

0.084 
(0.959) 

2.003 
(0.572) 

12.748 
(0.047) 

 Base model: MSIA(3,0) 

MSIA (3,0) 10 13,411.1 
(0.000) 

3.390 
(0.184) 

5.348 
(0.148) 

25.691 
(0.000) 

MSIH (3,0) 12 2.138 
(0.343) 

0.046 
(0.977) 

2.917 
(0.405) 

10.014 
(0.124) 

 Base model: MSIA(4,0) 

MSIA (4,0) 17 55.872 
(0.000) 

0.244 
(0.885) 

3.432 
(0.330) 

14.516 
(0.024) 

MSIH (4,0) 20 0.531 
(0.767) 

0.005 
(0.998) 

4.002 
(0.261) 

12.632 
(0.049) 

 



Table 2 

Regime Switching Model fitted to Stock Returns  
This table reports maximum likelihood estimates for a single state model and a two-state regime switching model 
fitted to monthly excess returns on the FTSE All Share index. The regime switching model takes the form: 

tsst tt
R εσµ +=  

where εt )1,( ~ 0N  is an unpredictable return innovation. The sample period is 1970:01 � 2000:12.  

 

Panel A � Single State Model 
Mean excess return 0.603* 
Volatility 6.175 

Panel B � Two State Model 
Mean excess return  
Regime 1 (bull) 0.716** 
Regime 2 (bear) -0.650 
Volatility  
Regime 1 (bull) 4.535 
Regime 2 (bear) 15.170 
Transition probabilities Regime 1 Regime 2 
Regime 1 (bull) 0.986 0.014 
Regime 2 (bear) 0.156 0.844 

 * = significant at 5% level; ** = significant at 1% level 
 



Table 3 

Estimates for a Bivariate Regime Switching Model 
This table reports maximum likelihood estimates for a bivariate VAR and a two-state regime switching model fitted to 
monthly excess returns and the dividend yield on the FTSE All Share index. The regime switching model takes the 
form 

=ty ∑
=

− ++
p

j
sjtjss ttt

ya
1

σµ εt , 

where yt is a vector collecting the excess return and the dividend yield, 
ts

µ  is an intercept vector in state st, 
ts

A1  is a 

matrix of first-order autoregressive coefficients in state st and εt ),(  I.I.D. ~]' [ 21 tstt N Ω= 0εε . st is governed by an 
unobservable, first-order Markov chain that can assume two distinct values. The data is monthly and covers the 
period 1970:01 � 2000:12. Panel A refers to the single state benchmark (k = 1) while panel B refers to the two-state 
model (k = 2). The values on the diagonals of the correlation matrices are volatilities, while off-diagonal terms are 
correlations. 
 

 Panel A � Single State Model 
 Excess stock returns Dividend yield 
Mean excess return 1.151** 0.073** 
VAR(1) coefficients   
Excess stock returns 0.114** 0.826** 
Dividend yield -0.006** 0.958** 
Correlations/Volatilities   
Excess stock returns 6.357  
Dividend yield -0.923 0.386 
 Panel B � Two State Model 
 Excess stock returns Dividend Yield 
Intercepts   
Regime 1 (bull) -1.221 0.081* 
Regime 2 (bear) -20.519** 1.246** 
VAR(1) coefficients   
Regime 1 (bull):   
Excess stock returns -0.001 0.404 
Dividend yield -0.0004* 0.980** 
Regime 2 (bear):   
Excess stock returns 0.241* 3.676 
Dividend Yield -0.014** 0.788** 
Correlations/Volatilities   
Regime 1 (bull):   
Excess stock returns 4.367  
Dividend yield -0.939 0.197 
Regime 2 (bear):   
Excess stock returns 11.349  
Dividend yield -0.964 0.887 
Transition probabilities Regime 1 Regime 2 
Regime 1 (bull) 0.970 0.030 
Regime 2 (bear) 0.205 0.795 

* = significant at 5% level; ** = significant at 1% level 

 



Table 4 

Optimal Asset Allocation � Effects of Rebalancing 
This table reports the optimal weight to be invested in equities as a function of the rebalancing frequency ϕ for an 
investor with power utility and a constant relative risk aversion coefficient of 5. Excess returns on the FTSE-All Share 
index are assumed to be generated by a univariate two-state regime-switching model. The table reports the optimal 
asset allocation assuming three possible values of the perceived probability of being in state 1, tπ�  = 1 (bull state), tπ�  

= 0 (bear state) and tπ�  = 0.8 (high uncertainty).  

 

Rebalancing Frequency ϕ Investment Horizon T (in months) 
 T=1 T=6 T=12 T=24 T=60 T=120 
 Bull state 

ϕ = T (buy-and-hold) 0.77 0.54 0.49 0.44 0.41 0.38 
ϕ = 24 months 0.77 0.54 0.49 0.44 0.44 0.44 
ϕ = 12 months 0.77 0.54 0.49 0.49 0.49 0.49 
ϕ = 6 months 0.77 0.54 0.52 0.50 0.50 0.50 
ϕ = 3 months 0.77 0.54 0.53 0.52 0.52 0.52 
ϕ = 1 month 0.77 0.77 0.77 0.77 0.77 0.77 

IID (no predictability) 0.81 0.81 0.81 0.81 0.81 0.81 
 Bear state 

ϕ = T (buy-and-hold) 0.06 0.09 0.12 0.19 0.28 0.32 
ϕ = 24 months 0.06 0.09 0.12 0.19 0.20 0.20 
ϕ = 12 months 0.06 0.09 0.12 0.16 0.16 0.16 
ϕ = 6 months 0.06 0.09 0.11 0.11 0.12 0.12 
ϕ = 3 months 0.06 0.08 0.10 0.10 0.10 0.10 
ϕ = 1 month 0.04 0.04 0.04 0.04 0.04 0.04 

IID (no predictability) 0.81 0.81 0.81 0.81 0.81 0.81 
 High uncertainty 

ϕ = T (buy-and-hold) 0.34 0.36 0.37 0.38 0.39 0.39 
ϕ = 24 months 0.34 0.36 0.37 0.38 0.38 0.38 
ϕ = 12 months 0.34 0.36 0.37 0.36 0.36 0.36 
ϕ = 6 months 0.34 0.36 0.36 0.36 0.36 0.36 
ϕ = 3 months 0.34 0.35 0.35 0.35 0.35 0.35 
ϕ = 1 month 0.34 0.34 0.34 0.34 0.34 0.34 

IID (no predictability) 0.81 0.81 0.81 0.81 0.81 0.81 
 



Table 5 

Expected Utility Costs  
The table reports the expected utility cost due to being constrained to take portfolio decisions on the basis of a model 
that ignores regimes for an investor with power utility and a coefficient of relative risk aversion γ = 5 . Excess returns 
on the FTSE-All Share index are assumed to be generated by a univariate two-state regime-switching model. Expected 
utility costs are identified with the compensatory variation, i.e. the percentage increase in initial wealth required by the 
investor in order to willingly ignore regimes. The table considers three possible values of the perceived probability of 
being in state 1, tπ�  = 1 (bull state), tπ�  = 0 (bear state) and tπ�  = 0.8 (high uncertainty).  

 

Rebalancing Frequency ϕ Investment Horizon T (months) 
 T=1 T=6 T=12 T=24 T=60 T=120 
 Bull state 

ϕ = T (buy-and-hold) 0.000 0.003 0.015 0.084 0.218 0.228 
ϕ = 24 months 0.000 0.003 0.015 0.084 0.220 0.251 
ϕ = 12 months 0.000 0.003 0.015 0.127 0.221 0.512 
ϕ = 6 months 0.000 0.003 0.031 0.156 0.612 1.261 
ϕ = 3 months 0.000 0.042 0.156 0.453 1.306 2.573 
ϕ = 1 month 0.000 0.048 0.187 0.549 1.453 2.980 

 Bear state 
ϕ = T (buy-and-hold) 0.028 0.118 0.227 0.421 0.692 0.764 

ϕ = 24 months 0.028 0.118 0.227 0.421 0.435 0.910 
ϕ = 12 months 0.028 0.118 0.227 0.341 0.674 1.299 
ϕ = 6 months 0.028 0.118 0.198 0.524 1.114 2.382 
ϕ = 3 months 0.028 0.108 0.327 0.895 2.016 3.169 
ϕ = 1 month 0.028 0.413 0.824 1.207 2.161 4.026 

 High uncertainty 
ϕ = T (buy-and-hold) 0.002 0.008 0.025 0.071 0.313 0.414 

ϕ = 24 months 0.002 0.008 0.025 0.071 0.342 0.430 
ϕ = 12 months 0.002 0.008 0.025 0.073 0.455 0.602 
ϕ = 6 months 0.002 0.008 0.072 0.299 0.918 1.929 
ϕ = 3 months 0.002 0.049 0.174 0.501 1.904 3.744 
ϕ = 1 month 0.002 0.123 0.397 0.931 2.101 3.999 

 



Figure 1 
Smoothed Bear State Probability from the Two-State Model Fitted to  

Stock (Excess) Returns  
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Figure 2 

Moments of Stock Returns as a Function of the Probability of Bull State (1) 
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Figure 3 

Real-Time Optimal Stock Holdings at Four Investment Horizons 
 
This figure plots the time series of optimal stock holdings for an investor with power utility and coefficient of relative 
risk aversion γ = 5. All allocations are based on recursively updated real-time parameter estimates from the two-state 
model of excess returns with state-dependent mean and variance. We also show optimal holdings under the 
assumption of no predictability. 
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Figure 4 

Probability Beliefs, Investment Horizon and Optimal Stock Holdings 
 
This figure plots the optimal allocation to stocks as a function of the investment horizon and the perceived probability 
of a bull state for an investor with power utility and coefficient of relative risk aversion γ = 5. 
 



Figure 5 

Effects of Relative Risk Aversion on Optimal Asset Allocation 
The graphs plot optimal stock holdings as a function of the coefficient of relative risk aversion (γ) for an investor with 
power utility.  
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Figure 6 

Smoothed Bear State Probability from the Bivariate Two-State Model Fitted to Excess 
Stock Returns and the Dividend Yield 
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Figure 7 

Real-Time Optimal Allocation to Stocks under Predictability from the Dividend Yield 
This figure plots the time series of optimal stock holdings for an investor with power utility and coefficient of relative 
risk aversion γ = 5, in the presence of predictability from the dividend yield. All allocations are based on recursively 
updated real-time parameter estimates from k-regime VAR(1) models fitted to joint process for excess returns and 
dividend yields. The upper plot assumes k = 2, the bottom one k = 1 (Gaussian VAR(1)) when the matrix of 
autoregressive coefficients is restricted as in Barberis (2000). The restrictions imply no serial correlation in excess 
returns and no effects from lagged excess returns on the current dividend yield. 
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Figure 8 

Optimal Stock Holdings For Different Values of  the Dividend Yield 
This figure plots the optimal allocation to stocks (as a proportion of the total portfolio) for various points in the 
sample selected to represent different values of the dividend yield. All allocations are based on recursively updated 
real-time parameter estimates from k-regime VAR(1) models fitted to the joint process for excess returns and 
dividend yields. The upper plot refers to k = 2, the bottom one to k = 1 (Gaussian VAR(1)) when the matrix of 
autoregressive coefficients is restricted to have zeros in the first column as in Barberis (2000). The restrictions imply 
no serial correlation in excess equity returns and no effects from lagged excess returns on the current dividend yield. 
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Figure 9 

Probability Beliefs, Dividend Yields and Optimal Stock Holdings 
 
This figure plots the optimal allocation to stocks as a function of the perceived probability of a bull state and the 
dividend yield for an investor with power utility and coefficient of relative risk aversion γ = 5. 
 

 
 

 

 




