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Abstract :

To analyse the stability of a solution in normal form games of agreement formation, one has to

specify what players believe will happen after a deviation. One possibility is to specify the
conjectures that players may have in the rules of the game.  The objective of this paper is to make

the conjectures endogenous and consistent. To do this, I propose a normal form game in which

each player’s strategy is to say for each size of agreement whether it is acceptable or not. I
propose a refinement, which guarantees that each one of these choices is self-enforcing. For

general payoff functions, which exhibit positive externalities, I analyse situations in which
symmetric players have the possibility to reach a unique agreement. I prove the uniqueness of

this equilibrium. I give two specific examples: a cartel and an agreement to contribute to a public
good.

JEL Classification Numbers: C70, C72.

Key-words: Coalition formation, normal form games, agreement, cartel, environmental

agreement, public good.
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1 Introduction

Consider a situation in which several parties have to decide whether or not to sign an agreement

and that, if some of them reach an agreement, they will act in a way which will be beneficial for

everybody, even for those who are not partners. Furthermore, suppose that this positive effect of

the agreement increases with the number of partners. Obviously, in this kind of situation, before

deciding on whether or not to participate, each party will pose a certain number of questions such

as: How many people will sign with me? What happens if I do not sign? What should I announce

as my intentions? What is acceptable for me, for the others?

The literature on stable cartels deals with some aspects of such situations. Indeed, the formation

of a cartel in an oligopoly presents the kind of characteristics mentioned previously. For example,

when a coalition of firms decide to form a cartel in a Cournot oligopoly, they decrease their

production in order to increase the price. But the firms who remain independent benefit from this

decrease of competition as well. D’Aspremont et al. (1983) made a first step towards a game

theoretic analysis of this problem. In the case of symmetric firms forming a cartel, they propose a

concept of stability. They say that a cartel is stable if the size of this cartel is internally stable in

the sense that no partner has any incentive to leave it, and externally stable in the sense that no

independent firm has any incentive to join it. They show that stable cartels always exist.

When d’Aspremont et al’s model is reformulated as a game in which each player has a binary set

of strategies and says yes or no to joining the cartel, a stable cartel is generated by a Nash

equilibrium of this game. However, in their analysis, when a firm deviates, it does so on its own

and it conjectures that the rest of the cartel will remain together and that no independent firm will

react. In Thoron (1998), in order to take into account coalition deviations, I introduced a solution

called the coalition proof stable cartel, using a concept of coalition proof Nash equilibrium

(CPNE) proposed by Bernheim, Peleg and Whinston (1987). This refinement takes into account

not only deviations by individuals but those by coalitions and furthermore, imposes a consistency
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property on deviations. The idea is that a coalition deviation can only occur if it is credible, that is

if there will be no further deviation by the original deviating members. I showed that the solution

in the cartel game is unique. Note however, that this is only a step in the right direction since

consistency is only required of the behaviour of deviating players. In contrast to those who

deviate, the non-deviating players are assumed to be passive and not to modify their behaviour.

Non-deviating partners stay in the cartel and non-deviating independent firms stay independent.

Such behaviour corresponds to Nash conjectures. However, because of the positive externalities,

there is a free riding problem and a partner whose conjecture is that the cartel will remain in place

after her departure, may have an incentive to leave. In a Cournot game for example, the only

Coalition Proof Stable Cartel is of size 1.

The role of conjectures in this framework is crucial. Any satisfactory analysis should go further

and consider also the reaction of players other than those who initially deviate. To see this, we

can compare the previous result with those obtained by Salant Switzer and Reynolds (1983) even

though they use comparative static analysis rather than a game theoretic approach. In a symmetric

oligopoly, they say that a merger is profitable if the merger’s total payoff is larger than the sum of

the members’ payoffs before the merger, in the structure in which all the firms are independent.

That is, they compare the situation with the existing coalition to one in which the coalition

disappears. Using again the example of the Cournot oligopoly, they show that the profitable

mergers are the largest ones, including the grand coalition. In the game theory framework,

making their comparison, and looking for those cartels which are profitable in this sense, could

be interpreted as looking for a stable cartel in which any member conjectures that her own

deviation will provoke the complete collapse of the cartel. Thus, she has a specific conjecture

about how the non-deviating members of the cartel will react to her deviation. The source of the

difference between their results and those already mentioned (Thoron (1998)) is now clear. The

fact that large coalitions are stable can be simply explained by the fact that this conjecture

effectively dissuades any partner from deviating.
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It should be clear now that the way in which we model games of agreement formation is still not

fully satisfactory. What one would like is that conjectures about the reactions of other players

should, in some sense, be rational. Up to this point only coalition deviations have been required

to be rational or consistent. But one would also like these conjectures as to the reactions of all

players to a change should be consistent.

Diamantoudi (2001) addressed this question in the framework of the theory of social situations.

She modifies D’Aspremont et al (1983)’s internal and external stability concepts to propose a

solution concept in the spirit of the abstract stable set. She envisages a sequence of reactions to an

individual deviation. A cartel is internally stable if there does not exist a finite sequence of stable

cartels such that a partner deviating from the initial cartel is, after the sequence of reactions,

better off. External stability is revised in the same way. Applying this concept to a partition

function derived from the original D’Aspremont et al. oligopoly in which the cartel is a price

leader, she shows that there is a unique set of stable cartels.

In this paper, I want to deal with the problem of conjectures in the non-cooperative framework of

strategic games. I propose a normal form game in which arbitrary conjectures about other

players’ reactions to deviations are no longer needed as a result of a richer specification of the

strategy spaces. The idea is simple. Given the rules of the game, the strategy profile should allow

one to determine what happens if a player or a group deviates.

To this end, I introduce a new notion of strategy, which is, for each player, to say, in the list of all

the possible agreements, which ones are acceptable to her. This is rather natural since any player

may find several different agreements acceptable. Indeed, in many situations in which a player is

ready to negotiate an agreement, it is easy to imagine that she is willing to accept several possible

agreements. Her objective is to reach the best choice available but since she does not know, a
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priori, which agreement will form, she has an interest at the outset in specifying those which are

acceptable. This is also the idea of the normal form game in which the players have to choose

their strategies simultaneously.

Hence, for a given strategy profile, different sizes of agreements will be acceptable and feasible.

However, it is assumed that the only feasible agreements which will be realised are those which

are Pareto efficient. What happens if a player or group deviates from this strategy profile? She, or

they, will do so by choosing a strategy which no longer results in the current agreements. Given

that all the players have listed the agreements that they are prepared to accept, the new

agreements which are now feasible are determined. Therefore, the new agreements which will be

achieved depend on the new strategies of the deviating players, but also on the strategies of the

non-deviating players. I introduce a specific refinement of the Nash equilibrium which ensures

that the complete strategy of each player is self enforcing.

I specify rather weak general assumptions on payoff functions exhibiting positive externalities.

Such functions may describe many examples other than cartels or mergers in which an agreement

generates positive externalities. The same kind of phenomenon occurs, for example, when the

agreement involves contributions to the production of a public good. That is why I will

systematically use the generic term of agreement. Whatever the context, for any function

satisfying these conditions, I can prove the uniqueness of the stable agreement and I give an

algorithm to determine its size.

The properties of the general payoff function are presented in the following section. In Section 3,

I present the game G of agreement formation and the results when Nash, Strong Nash and CPNE

equilibrium are applied. Section 4 is devoted to the presentation of the strong Nash equilibrium in

restricted games, the proof of its uniqueness and the algorithm which can be used for its

characterisation. Section 5 clarifies the relationship between the game G and extensive form
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games. Two examples with specific payoff functions, which satisfy the properties described in

Section 2, are presented in section 6. Section 7, contains a discussion on a more general literature

of coalition formation, on the assumptions made in the various approaches and on the possibility

of extensions of the game G. I conclude in Section 8.

2 Payoff function With Positive Externalities

Consider a set of n symmetric players: N = 1,...,n{ } . They obtain a payoff which depends on how

they are partitioned. In particular, I assume that the only partitions allowed are those with one

coalition of k players and n-k independents. As a consequence of the symmetry of the players and

this assumption of a unique agreement, the payoff of each player depends only on the size of the

agreement and whether she is a partner to the agreement or independent. If she signs the

agreement with k - 1 partners, 1 ≤ k ≤ n −1, her payoff is denoted by ΠP k( ) . On the other hand, if

she is independent when k other players are partners in an agreement, her payoff is denoted by

ΠI k( ) .

The game is said to be essential: that is, there is at least one agreement of size k, which generates

gains for its participants. Formally:

∃k, 2 ≤ k ≤ n  ΠP k( ) > ΠI 1( ) .

Assume that the payoff function ΠI k( )  satisfies two externality properties:

(P1) ΠI k( ) > ΠI k −1( ),∀k = 2,...,n −1.

(P2) Π I 1( ) = ΠP 1( )  and Π I k( ) > ΠP k( ),∀k = 2,..., n −1.

The first Property (P1) says that the payoff of an independent individual increases with the size of

the agreement. This is the first effect of positive externalities. When the number of partners
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increases, the agreement is more and more beneficial for those who remain independent. In fact,

the agreement is beneficial for everybody. However it is also costly for the partners. Property

(P2) means that whatever the size of the agreement, an independent individual always receives

more than the partners to the agreement.

Now, consider the following definition:

Definition 1 An agreement of size k is advantageous if the per member payoff is larger than the

payoff in a society where all players are independent:

ΠP k( ) ≥ ΠI 1( ) .

This definition corresponds to the notion of profitability introduced by Salant, Switzer and

Reynolds [1983] in the framework of merger analysis. Here, I use it to define a third Property.

Before I give the definition of this property, note that, because the game is essential,

advantageous agreements exist and denote by k1
∗  the smallest of these. Given this, I require the

payoff function ΠP k( )  to satisfy the following property:

(P3) ΠP k +1( ) > ΠP k( ),   ∀k,  k ≥ k1
∗ .

The payoff function ΠP k( )  is not required to be increasing everywhere. However, Property (P3)

guarantees increasing returns to collaboration from this minimum critical size k1
∗ . Note that I do

not impose any restriction on the second derivative of the payoff functions. These functions can

be convex or concave or they may even have a non-monotonic second derivative, an s-shape

function for example. I give two standard examples in Section 6, which satisfy these three

Properties: a linear Cournot game and a public good contribution game.
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 3 The Game

In this Section, a normal form game of agreement formation denoted by G is presented. The set

of n,n ≥ 2  players is N = 1,...,n{ } . They have to decide whether or not to sign an agreement. The

outcome will be that at most one agreement will be signed. We saw in the previous section that,

because the game is symmetric the players’ payoffs can be defined as a function of the size of the

agreement and of the position, partner or independent, of the player. Therefore, the number of

partners in the agreement is the only relevant variable for each player’s decision about her

partnership. I assume that her strategy is to say which agreements she is willing to be a member

of in terms of size. This means in particular that it is possible that a player is willing to sign

agreements of different sizes. Formally, her strategy σ i  is an n-1 vector in which the kth-

component σ ik  is equal to one if i finds it acceptable to sign an agreement with k -1 other

partners or is equal to zero if she is not willing to do so. Therefore, the sets of strategies are:

∀i ∈N,     Σ i = σ i = σi2 , ...,σ in( )  σij = 0 or 1 for j = 2,...,n{ }

If, for a given player, her strategy is a n -1 vector of zeroes, this means that this player is not

willing to sign any agreement and that she wants to remain independent.

Each strategy profile σ  is a matrix in which the row i is the strategy of player i and the

component σ ij  is the choice of player i as to her partnership in the agreement of size j.

  

σ =

σ1

M

M

σ n

 

 

 
 
 
 
 

 
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 
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Definition 2 Given a strategy profile σ ,

 i. An agreement of size k ≥ 2  is said to be feasible if: σ iki∈N∑ ≥ k .

 ii. It is just feasible if: σ iki∈N∑ = k .

The meaning of this definition is that an agreement of size k is said to be feasible when at least k

players find it acceptable and are willing to sign. Given this, the problem is now to know what is

the outcome of the game? The first question that arises is to know what happens when the

agreement of size k is feasible but not just feasible? In this case, more than k players would be

willing to sign a k person agreement. I assume in this case, that the partners are picked at random

among the players who find the agreement acceptable and that the payoffs are the expected

payoffs before the members are chosen. Thus we have:

(1) ˜ Π i k σ( )( ) =
ΠI k σ( )( )  if σik σ( ) = 0

ρ k σ( )( )ΠP k σ( )( ) + 1- ρ k σ( )( )( )ΠI k σ( )( ) if σ ik σ( ) = 1

 
 
 

  

where ρ( k(σ))  is i-player’s probability of being a member of the agreement of size k(σ) when

she finds it acceptable: ρ k σ( )( ) =
k σ( )

σ ik σ( )i=1
n∑

.

In order to define the outcome of the game, another question has to be answered. For a given

strategy profile, several sizes of agreement can be feasible. Which one will be formed

effectively? I assume a rule of efficiency. The Pareto efficient feasible agreements are the only

ones, which have any chance of being signed, and if several agreements are efficient, each of

them has the same probability. Given a strategy profileσ, denote by k σ( )  a feasible

agreement, F σ( )  the set of feasible agreements and Fe σ( )  the set of Pareto efficient feasible
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agreements defined in the following definition. Denote by π k( )  the structure composed by an

agreement of size k and n – k independent players.

Definition 3 For each efficient feasible agreement of size ′ k ∈Fe σ( ) ,

 i. ∀ ′ ′ k ∈Fe σ( ) , it is impossible to increase one player’s payoff without decreasing that of

another, by changing from π ′ k ( )  to π ′ ′ k ( ) .

 ii. ∀ ′ ′ k such that ′ ′ k ∈F σ( ) , but ′ ′ k ∉Fe σ( ) , it is always possible to increase at least one

player’s payoff without decreasing another player’s payoff, by changing from π ′ ′ k ( )  to

π ′ k ( ) .

Definition 4 Efficiency Rule

For a given strategy profileσ, all the elements of Fe σ( )  are generated with equal probability.

We denote by # Fe σ( )  the cardinal of the set Fe σ( ) . As a consequence of the efficiency rule and

equation (1), we can define player i’s payoff for a given strategy profileσ:

(2) ˜ ˜ Π i σ( ) =
˜ Π i k( )k∈Fe σ( )∑

# Fe σ( )
.

Now that the normal form of the game is defined, I shall next look for the equilibria. As a first

step, I characterise the set of stable agreements generated by the Nash equilibria of the game G,

denoted by N.

Definition 5

i. A strategy profileσ∗is a Nash equilibrium in the game G if and only if:

˜ ˜ Π i σ i
* ,σ −i

∗( ) ≥ ˜ ˜ Π i σi ,σ −i
∗( ), ∀i ∈N ,  ∀σi ∈Σ i
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in which σ−i  is a vector giving each the strategy of each player except that of i.

ii. An agreement of size k is stable if there exists a Nash equilibrium in the game G, σ∗ , such

that k ∈Fe σ *( ) .

A first obvious necessary condition is given by the following lemma. It is a consequence of the

fact that there is a minimum payoff that a player can guarantee for herself. Indeed, she can decide

not to play the game and obtain in that case at least ΠI 1( )  since, according to property (P1), the

payoff of an independent individual is an increasing function of the size of the agreement which

is signed.

Lemma 1 A stable agreement is always advantageous.

Proof First, note that, for a given strategy profile σ, each player’s expected payoff is a weighted

sum of payoffs ΠI k( )  and/or ΠP k( )  with k ∈Fe σ( ) . Therefore, her expected payoff increases if

the player can eliminate the smallest of these payoffs.

Consider a strategy profile σ , and assume that ∃k1, ...,km ,  such that ∀t =1,...,m , kt ∈Fe σ( )  and

kt  is not advantageous. This means that for each kt , ΠP kt( ) < Π I 1( ) , and for every other size

k ∈Fe σ( ),k ≠ kt , ΠP k( ) ≥ ΠI 1( ) . Now, each player who has chosen to be a partner in some of

these non advantageous agreements can always increases her expected payoff by saying that

these agreements are not acceptable. Indeed, by doing so, she eliminates the smallest possible

payoffs ΠP kt( )  and increases the probability of larger payoffs: ΠI kt( )  or ΠP k( )  and ΠI k( )

when an advantageous agreement k is formed. Therefore,σ  cannot be a Nash equilibrium. p

In spite of the fact that the efficiency rule permits a strategy profile to generate several

agreements, the following lemma shows that in fact there will only be one agreement at the
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equilibrium. For a given equilibrium strategy profile, there is only one Pareto efficient agreement,

which is the largest feasible agreement when there are several of these.

Lemma 2 At the equilibrium σ∗ ,

 i. No more than one feasible agreement can be Pareto efficient: # Fe σ*( ) ≤1.

 ii. If several agreements are feasible, the Pareto efficient agreement is the largest one:

If k* ∈Fe σ *( ) , then k∗ = Max k,k ∈F σ ∗( ){ } .

Proof

i. Consider a given strategy profile σ . Assume that there is more than one Pareto efficient

feasible agreement generated by σ , # Fe σ( ) >1. From lemma 1, all these agreements are

advantageous. Consider the smallest of these agreements, ˜ k = Min k, k ∈Fe σ( ){ } .

As a consequence of property (P2): ΠP ˜ k ( ) < Π I ˜ k ( ) .

As a consequence of property (P3): ΠP ˜ k ( ) < Π P ′ k ( ) < ΠI ′ k ( ),∀ ′ k ∈Fe σ( ), ′ k ≠ ˜ k .

For each player who finds ˜ k  acceptable in σ , ΠP ˜ k ( )  is the smallest payoff she can obtain.

Therefore, she has an incentive to deviate BY saying that ˜ k  is not, in fact, acceptable and σ

cannot therefore be an equilibrium.

ii. For a given equilibrium strategy profile σ∗ , suppose that several agreements are feasible,

that is, # F σ*( ) >1. Consider ˆ k = Max k, k ∈F σ *( ){ }  the largest feasible agreement and assume

that the unique Pareto efficient agreement is k∗ ∈F σ *( ), k∗ < ˆ k . This means that it is possible to

increase at least one player’s payoff without decreasing another player’s payoff, by changing
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from π ˆ k ( )  to π k∗( ) . However, this is impossible since, as a consequence of (P1) and (P3), the

independent individuals in π ˆ k ( )  prefer this structure to π k∗( ) , whatever their position in π k( ) :

ΠI ˆ k ( ) > ΠI k∗( ) > ΠP k∗( ). p

The following proposition shows that the obvious necessary condition given in lemma 1 is also

sufficient.

Proposition 1 The set of stable agreements is the set of advantageous agreements.

N= k  n ≥ k ≥ k1
*{ }

Proof. Consider an equilibrium strategy profile σ∗ , which generates a set of just feasible

agreements, F σ *( ) = k1 ,k2 , ...,kˆ l { } , k1 < k2 < ... < kˆ l 
. From lemma 2, Fe σ*( ) = kˆ l { } . Assume

that all the other agreements k, k ≠ kt ,t =1,..., ˆ l  are unanimously considered as not acceptable:

σik = 0,∀i ∈N . Then, the only way a player i alone could improve her payoff, would be, when

she finds kˆ l 
 acceptable, to provoke the collapse of this agreement and to become an independent.

Since, then, Fe σi ,σ −i
*( ) = kˆ l −1{ }, there is no incentive for player i to deviate if:

ΠP kˆ l ( ) ≥ ΠI kˆ l −1( ) .

But for each advantageous agreement kˆ l , it is always possible to find kˆ l −1 such that this

inequality is verified, since it always holds for kˆ l −1 =1. p

Note that, in the Example 2 presented in the previous section, which describes a contribution

game to a public good, this implies in particular, that all the agreements are stable. At this point, a

first question has to be answered. Is this result a consequence of the restriction to individual
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deviations? With a Nash equilibrium concept, we cannot take into account deviations to form a

larger agreement. However, in a game of coalition formation, it seems natural to use a concept

taking into account coalition deviations. We have different choices among which the most

famous are the Strong Nash Equilibrium and the Coalition Proof Nash Equilibrium (CPNE). The

Strong Nash Equilibrium guarantees that no coalition can deviate, by changing the strategies of

its members, when the strategies of the non-deviating players remain fixed.

Definition 6

(i) (Aumann (1959)) σ∗is a Strong Nash Equilibrium in the game G if:

/ ∃ M ⊂ N and σM  such that :

∀i ∈M,  Π i σ M ,σ −M
∗( ) > Π i σ M

∗ ,σ −M
∗( ).

with σM  the strategies of the M- members and σ− M  the strategies of the other players.

(ii) k∗  is a strongly stable agreement if and only if there is a Strong Nash Equilibrium σ∗  of the

game G such that k* ∈Fe σ *( ) .

The following proposition gives the results when we apply this equilibrium concept to the game

G. As far as notation is concerned, remember that k1
∗ , defined in section 2, is the smallest

advantageous agreement. Now, I introduce a new specific size. Let kn  be the first integer such

that the inequality ΠI kn( ) > ΠP n( )  is verified. Finally, let SN denote the set of strongly stable

agreements

Proposition 2 The set of strongly stable agreements of the game G is:

SN= k  n ≥k ≥ Max kn,k1
∗{ }{ } .



16

Proof. Consider a Nash equilibrium σ∗ , as defined in the Proof of Proposition 2, such that

Fe σ∗( ) = kˆ l , with kˆ l ≥ Max kn ,k1
∗{ } .

From (P3), when a player is partner in an advantageous agreement, her payoff increases with the

size of the agreement. Therefore, no partner of the agreement kˆ l  wants to deviate to be in a

smaller advantageous agreement. Furthermore, as a consequence of Property (P2), no

independent player wants to be a partner in a smaller agreement. Formally:

˜ ˜ Π i σ ∗( ) =

ΠP kˆ l ( )
or

ΠI kˆ l ( )

 

 
 
 

 
 
 

   but   ΠI kˆ l ( ) ≥ ΠP kˆ l ( ) ≥ Π P k( ),  ∀k ≤ kˆ l .

On the other hand, no independent player wants to deviate to be in a larger agreement. Indeed, by

definition of kn  we know that:

∀kˆ l ≥ kn ,  ∀k > kˆ l ,  Π
I kˆ l ( ) ≥ ΠI kn( ) > Π P n( ) ≥ ΠP k( ) .

Therefore, each agreement of size k ≥ Max kn ,k1
∗{ }  is strongly stable.

Now, consider the case in which kn > k1
∗ . Consider a Nash equilibrium σ∗ , such that

Fe σ∗( ) = kˆ l , with kˆ l < kn . Then, a coalition with all the partners in kˆ l  and all the independent

player is ready to deviate from such an agreement since:

∀k < kn ,ΠP k( ) ≤ ΠI k( ) ≤ ΠI kn − 1( ) < ΠP n( ) .

Therefore, the agreements of size k ≥ Max kn ,k1
∗{ }  are the only strongly stable agreements. p

Definition 7 (Bernheim, Peleg, Whinston (1987))

σ∗is a Coalition Proof Nash Equilibrium (CPNE), in the game G if and only if:

σi
* ∈argmaxσ i ∈Σi

Πi σi ,σ−i
*( )       ∀i ∈N
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And for all M ⊂ N such that # M = m , assuming that CPNE has been defined for games played

by members of coalition J with fewer than m players, given σ− J
* , then,

• σM
*  is self-enforcing; i.e., ∀S ⊂ M , σS

*  is a CPNE in the game played by the

members of S, given σ−S
* ,

• there does not exist another self-enforcing strategy profile σM ∈Σ M , such that

∀i ∈M,  Πi σ M ,σ− M
∗( ) > Πi σ M

∗ ,σ− M
∗( ).

Definition 8 k∗  is a coalition proof stable agreement if and only if there is a CPNEσ∗  of the

game G such that Fe σ*( ) = k*{ } .

 When they proposed this concept, Bernheim, Peleg, and Whinston (1987) wanted to take into

account the fact that, in a non-cooperative framework, a deviation can only occur if it is credible,

in the sense that it is itself immune against further deviations. I show in the following proposition

that, taking into account this credibility does not change the results in the game G.

Proposition 3 An agreement is coalition proof stable if and only if it is strongly stable.

CN = SN

Proof. We know that the Strong Nash equilibria are coalition proof (see Bernheim et al. (1987),

p.7). Now, consider, when they exist, the agreements k ∈ k1
* ,kn[ ] .  I showed in the Proof of

Proposition 2 that these agreements are not strongly stable because players have an incentive to

deviate all together to form the grand coalition. Here, I can add that this deviation is credible in

the sense of the CPNE, since the new agreement signed by the grand coalition is itself a CPNE. p
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These last two results are rather strong. They mean that, in general, in the game G, taking into

account coalition deviations is not enough to shrink the set of equilibria. We will see in the

example given in Section 6, that it may happen that the three sets of Nash, Strong Nash and

Coalition Proof Nash equilibria coincide exactly. Indeed, this is true as soon as kn ≤ k1
∗ .

4 Restricted Games

In the game G, the problem, which arises when we apply the Nash equilibrium, is not only the

problem of individual deviations. The characteristic features of this game are that, each player’s

strategy is to give a list of acceptable agreements and that, as we saw in the previous section, at

the equilibrium, no more than one of these agreements will be formed. However, how can we

interpret the other feasible agreements which do not have any direct effect on the final payoffs,

and do we need to impose any requirements on them?

Consider the class of Nash equilibria characterised in the proof of Proposition 1. The idea is that

when a player envisages leaving the agreement which is currently formed, her conjecture is that

the agreement will disappear and therefore she does not move, simply to avoid finding herself in

the  situation in which all the players are independent. However, the player might reflect a little

more and realise that since no player wants to wind up in this situation, the threat of the coalition

breaking up is not credible.

Indeed, the other feasible agreements which are not formed at the equilibrium and have no direct

effect on equilibrium payoffs, determine the conjectures of deviating players. Because we use a

Nash equilibrium concept, when we consider a deviation, at the level of strategies, the conjecture

is, of course, that the strategies of the others remain unchanged. However, even though other

players do not change their strategies the coalition structure may still be modified.  Players must

then, have conjectures about how the structure would be modified after their move. I will require
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that these conjectures be consistent. In order to deal with this problem, I introduce the notion of

restricted games , defined on a set of strategies in which the maximum size of the coalition to

which a player can choose to belong is limited.

When a game is restricted in the sense just described, the strategy space is modified. I will

therefore need some new terminology to describe the components of the modified strategy

spaces. Given σ i , a player i’s strategy in the game G, a k–restricted strategy, denoted byσ i
k , with

k such that 2 ≤ k ≤ n , is a restriction of the vector σ i  to its k - 1 first components. It is also called

a k–restriction of σ i . Given a strategy profile σ  in the game G, a k–restricted strategy profile

denoted by σ k , is a profile which associates to each player the k–restriction of her strategy. It is

also called a k–restriction of σ.
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k

M

M

σn
k

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

=

σ12  KK σ1k

 M    O N  M

 M   N O  M

σn2 LL σ nk

 

 

 
 
 
 
 

 

 

 
 
 
 
 

                              n × k − 1( )

Definition 9 For each k,2 ≤ k ≤ n , a restricted game Gk  of the game G is a game with the same

set of players N and the same payoff functions but in which, for each player i, the set of strategies

is now:

Σ i = σ i = σ i2 , ...,σik( )  σij = 0 or 1, j = 2,..., k{ }

Definition 10

(i) A strategy profile is an Equilibrium in Restricted Games (Nash, strong Nash or CPNE) of

the game G if and only if ∀k,2 ≤ k ≤ n , the k–restricted strategy profile is an Equilibrium

in the restricted game Gk .
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(ii) An agreement k is stable in restricted games (stable, strongly stable or coalition proof

stable) if there is an equilibrium (Nash, strong Nash or CPNE) in restricted games σ∗

such that k ∈Fe σ ∗( ) .

Let N* be the set of stable agreements in restricted games. As we will see in the following

proposition, taking into account individual deviations in restricted games is not sufficient to

shrink the set of equilibria.

Proposition 4 The set N* of stable agreements in restricted games is equal to the set N of stable

agreements which is the set of advantageous agreements:

N* =N= k  n ≥ k ≥ k1
*{ }

Proof. Consider an equilibrium strategy profile σ∗ , which generates a set of just feasible

agreements, F σ *( ) = k1, k2 ,..., kˆ l { } , k1 < k2 < ... < kˆ l . This is a Nash equilibrium in restricted

games if and only if the condition defined in the proof of Proposition 1 is verified in every

restricted game. For a given restricted game k, consider kl  the largest just feasible agreement not

larger than k. The condition becomes ΠP kl( ) ≥ ΠI kl−1( ) . Therefore,σ∗  is a Nash equilibrium in

restricted games if: (1) ΠP k1( ) ≥ ΠI 1( )  and  ΠP kl( ) ≥ ΠI kl−1( ) , ∀l = 2,..., ˆ l .

However, if kˆ l 
*  is advantageous, it is always possible to find a set of just feasible agreements

F σ *( ) = k1, k2 ,..., kˆ l { } , such that this is verified. The simplest example is F σ *( ) = kˆ l { } .r

This first result might seem, at first sight, to be disappointing. However, as we will see in the next

proposition, when restricted games and coalition deviations are combined, we can actually get

uniqueness of equilibrium.
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To do this I will first prove the following lemma, in the proof of which I characterise a specific

sequence of critical sizes which I will use in Proposition 5. This is the sequence in which the first

component is the smallest advantageous agreement and the other components are defined

recursively. The size kl  is the smallest integer such that the payoff to a player who is in this

agreement when it is formed is larger than an independent player’s payoff when the agreement

kl−1  is formed. In other words no individual in the agreement has an incentive to leave it and to

become independent. This sequence is unique.

Lemma 3 Under Properties (P1)-(P3), there is a unique sequence of critical sizes (integers)

S∗ = k1
∗,k2

∗,...,kˆ l 
∗{ } , in which the first component is the smallest advantageous agreement k1

∗  and

the other components are recursively defined as follows:

∀l = 2,..., ˆ l ,  ΠP kl
∗( ) ≥ ΠI kl−1

∗( ) and Π P kl
∗ −1( ) ≤ Π I kl−1

∗( ) .

The largest component of the sequence, kˆ l 
∗ , is such that: kˆ l +1

∗ > n ≥ kˆ l 
∗ 1.

Proof. Because the game G is essential, there exists at least one advantageous agreement and k1
∗

is the smallest one. Following Proposition (P2),ΠP k1
∗( ) < ΠI k1

∗( ) . However, (P3) says that

ΠP k + 1( ) ≥ ΠP k( ),   ∀k,  k ≥ k1
∗ .

Now consider the following algorithm:

Denote by k2
∗  the smallest integer k such that ΠP k( ) ≥ ΠI k1

∗( ) . If k2
∗ > n  the sequence has only

one component, k1
∗ , otherwise it has at least two components, k1

∗  and k2
∗ . Then, continue to find

k3
∗  in the same way and so on. p

                                                
1 When the payoff functions are concave, it can happen that kˆ l +1

∗ → ∞ .
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I give different examples in the following figures to illustrate Lemma 3:

Figures 1,2,3

Denote by SN* (respectively CN*) the set of strongly (coalition proof) stable agreements. The result

of the following proposition is that, when we combine restricted games and coalition deviations,

we obtain uniqueness of the equilibrium. Indeed, the agreement of size kˆ l 
∗  is then the unique

strongly stable agreement in restricted games, and the unique coalition proof stable agreement in

restricted games.

Proposition 5 There is a unique strongly (and coalition proof) stable agreement in restricted

games, which is the largest element of the sequence S∗ .

SN* = CN* = kˆ l { }

Proof.  i. Consider an equilibrium strategy profile σ∗ , which generates a set of just feasible

agreements, F σ *( ) = k1, k2 ,..., kˆ l { } , k1 < k2 < ... < kˆ l . As we saw in the proof of Proposition , σ∗

is a Nash equilibrium in restricted games if and only if:

(1) ΠP k1( ) ≥ ΠI 1( )  and  ΠP kl( ) ≥ ΠI kl−1( ) , ∀l = 2,..., ˆ l .

In the proof of Proposition 2, I showed that, from a Nash equilibrium, the only possible group

deviation is the joint deviation of independent players and the partners in kˆ l  to form a larger

agreement. The condition kˆ l ≥ kn , where kn  is the first integer such that the inequality

ΠI kn( ) ≥ ΠP n( )  is verified, guarantees that this cannot occur in the game G. Indeed, we have in

that case ΠI kˆ l ( ) ≥ ΠI kn( ) ≥ ΠP n( )  and the independent players do not want to deviate.

For each given restricted game Gk , where kˆ l ≤ k < n , it is still true that no deviation is possible

since an independent player could have at most ΠP k( ) < ΠP n( ) .
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For each given restricted game Gk , with kˆ l −1 ≤ k < kˆ l , the condition becomes: kˆ l −1 ≥ k* , with

k*  the first integer such that the inequality ΠI k∗( ) ≥ ΠP k( )  is verified. Indeed, in that case we

have ΠI kˆ l −1( ) ≥ Π I k∗( ) ≥ Π P k( ) , and no group deviation is possible in the restricted game.

From (P3) we know that his condition is verified in each restricted game Gk , with kˆ l −1 ≤ k < kˆ l 

iff: (2) ΠI kˆ l −1( ) ≥ ΠP kˆ l −1( ) .

Therefore, we want the set of feasible agreements F σ ∗( ) = k1 ,k2 , ...,kˆ l { }  to verify both (1) and

(2) conditions in each restricted game. As a consequence k1 = k1
∗ , and:

(3) ∀l = 2,..., ˆ l ,  ΠP kl( ) ≥ ΠI kl−1( ) and ΠP kl −1( ) ≤ ΠI kl−1( ) .

However, there is a unique set of feasible agreements that verifies these inequalities, this is the

sequence S∗ = k1
∗,k2

∗,...,kˆ l 
∗{ }  defined in lemma 3.

ii. Note that, if the condition (2) is not satisfied, the deviation can occur and it is credible

since no further deviation would be beneficial. r

Therefore, in the normal form game G, the uniqueness of the equilibrium agreement is obtained

using a specific refinement, the strong Nash equilibrium in restricted games. At this point, natural

questions would be: What is the relationship between this specific equilibrium refinement and

subgame perfection in an extensive form game? Does an extensive form game of agreement

formation exist, which coincides with the normal form game G?

Section 5 Relationship with Extensive Form Games

Indeed, as will be proved in the following proposition, this extensive form game exists, and is

specified as follows. Call this game ∆1 . The players are now ordered following a protocol ρ. The
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first player, player 1 in the protocol ρ, starts the game and chooses an integer k ∈ 1,...,n[ ] . If

k = 1, the player leaves the game and the player 2 has to choose an integer k ∈ 1,...,n −1[ ] . If the

player chooses an integer k > 1, a coalition of size k is formed with this player and the k – 1

following players in the protocol. The game stops as soon as one player has chosen an integer

larger than 1 or, if this does not happen, when all the players have made the choice k = 1.

Therefore, for player number m in the protocol, her strategy is the choice of an integer

k ∈ 1,...,n − m +1[ ] . The outcome is a structure with at most one coalition of size k and n – k

independent players.

The game ∆1  is a version of the game ∆ proposed by Bloch (1996): a bargaining game of

coalition formation between symmetrical players. His Proposition 4.2 p. 109 shows that, because

of the symmetry of the players, this game is equivalent to a more general bargaining game in

which the players may be heterogeneous. In this game, the players in the order determined by the

protocol make a proposition as to the coalition they wish to join. If the other members of a

proposed coalition accept, that coalition forms and leaves the game. The procedure is then

repeated with the remaining players. On the other hand, in the game ∆, as soon as a player

proposes an integer k, she can form a coalition with the k –1 following players (in the protocol)

because they automatically accept. The difference between the game ∆1  and Bloch’s game ∆ is

that, in the game ∆1 , the game stops when at most one coalition has been formed. I prove the

following proposition, which gives the relationship between the results of the extensive form

game ∆1  and the normal form game G presented before.

Proposition 6 The sub-game perfect equilibrium in pure strategies of the game ∆1  coincides with

the strong Nash equilibrium in restricted games of the game G. Both generate the agreement kˆ l 
∗ .
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Proof. I characterise the sub-game perfect equilibrium of the game ∆1  by backward induction.

The only possible strategy for the last player n is to remain alone. However, as long as k is not

advantageous, i.e. as long as k < k1
∗ , player number n – k +1 in the protocol, prefers also to

remain in the structure in which everybody is independent. She stays alone and knows that the

following players will do the same. Then, player n − k1
∗+1 chooses k1

∗  since it is better to be a

partner in this agreement than to be in the trivial structure. For any k larger than k1
∗  where

ΠI k1
∗( ) ≥ ΠP k( ) , player n – k +1 chooses 1, and waits for the formation of k1

∗ . Then, player n –

k2
∗  +1 chooses k2

∗ , which is the first integer such that ΠI k1
∗( ) < ΠP k2

∗( ) . Proceeding in this way,

we characterise the sequence S∗  defined in lemma 3 and the only coalition which is formed is kˆ l 
∗ ,

the first one to be proposed. r

Of course, it is always possible to express any given game, either in extensive form or in normal

form. However, although their equilibria coincide, the games ∆1  and G are not equivalent.

Usually, when we want to write the normal form of an extensive form game, we have to specify

each player’s strategy giving an action for each subgame in which she has to move. In the game

∆1 , each player moves in only one subgame. Remember that the game ∆1  is characterised by a

protocol. Denote by ∆1
ρ  the game characterised by the protocol ρ. When the player number m in

the protocol ρ moves, this is because the m – 1 first players in the protocol have chosen to remain

independent and there are n – m + 1 players left in the game. This characterises the sub-game. In

the game G there is no protocol, but we can view each player’s strategy as the choice of an action

for each protocol of the game ∆1 . When a player has to say if she finds acceptable to sign an

agreement of size k, this is as if n – k players have left the game.

To conclude this section, it is worth making the following remark. It might be tempting to

consider the sequence S* as corresponding to the sub-game perfect Nash equilibrium of an
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extensive form corresponding to G. To pursue this analogy, one would consider the restricted

games Gk  in increasing order which would consider with the idea of backward induction.

However, doing this does not yield the sequence S* and indeed, any advantageous agreement

becomes stable. What restricts the equilibria of the game G is not the order in which the restricted

games are considered but rather the introduction of coalition deviations and thus of a strong Nash

equilibria concept. Hence, a sub-game perfect Nash equilibrium of the bargaining game ∆1

coincides with a strong Nash equilibrium in restricted games of the normal form game G.

Section 6 Applications

In this section, I give two specific examples that yield payoff functions satisfying Properties (P1)-

(P3) and which are commonly used in the literature.

Example 1: Cournot game and cartel formation

Consider the simplest oligopoly game “à la Cournot” with zero cost, a homogeneous good, and a

linear demand function P = 1 - Q, where P is the price and Q is the total quantity produced.

Assume that there are n firms and that k of them form a cartel. As a result of the competition

between the cartel of k firms and the n – k  firms which remain alone, an independent firm's profit

is

ΠI k( ) =
1

n − k + 2( )2 ,

and a cartel member's profit is

ΠP k( ) =
1

k n − k + 2( )2 .

Properties (P1) and (P2) are obviously verified. Furthermore, ΠP k( )  is a convex function and

property (P3) is verified. Now compute k1
*  as a root of the following equality:

ΠP k( ) = Π I 1( ) ⇔ k n − k + 2( )2 = n + 1( )2
.
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We obtain:

k1
∗ =

2n + 3 − 4n + 5

2
.

By definition, we could find k2
*  by computing the root of the following equality:

ΠP k( ) = Π I k1
∗( ) .

However, it is easy to verify that: Π I k1
∗( ) ≥ ΠP n( ) =

1

4n
. We deduce that k2

* > n  since ΠP k( )  is

an increasing function for k, k ≥ k1
∗ .

The other consequence is that kn  defined such that ΠP n( ) = ΠI kn( )  is smaller than k1
∗ .

Therefore, all the advantageous agreements of size k ≥ k1
∗  are strong Nash equilibria, whereas the

unique SNERG is k1
∗ =

2n + 3 − 4n + 5

2
.

Note that, in this case, the set of agreements sustained by a strong Nash equilibrium corresponds

to the set of profitable cartels, following the definition proposed by Salant, Switzer and Reynolds

(1983).

Note also that, the SNERG corresponds to the equilibrium of the bargaining game ∆ of coalition

formation proposed by Bloch (1996). When this game ∆  is applied to Cournot payoff functions,

only one coalition is formed. Then, as consequence of Proposition 6, this is the same coalition as

the coalition obtained with the game G (and hence ∆1).

Example 2: Contribution to a public good

In this example, I consider a classic model of public good agreement. This model has been

presented by Yi (1997) to illustrate cases in which there are positive externalities. Ray and Vohra

(2001) use this payoff function in their bargaining game of coalition formation. Each player is

endowed with 1 unit of a private good. At cost c xi( ) , agent i can provide xi  units of the public

good. Let X = xii=1,...,n∑  be the total amount of the public good. Each player enjoys the same

benefit from consuming the public good, g X( ) . Player i’s net utility is given by g X( ) − c xi( ) .
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Assume that: g X( ) = X  and c x( ) = cx2 , c > 0. Suppose that k players sign an agreement denoted

by K. As a consequence of this agreement, the members choose their provision of the public good

to maximise their joint utility: kg X( ) − c x j( )j∈K∑ . Simultaneously, each of the n – k non-

members chooses her provision of the public good to maximise her own net utility g X( ) − c xi( ) .

At the equilibrium, for a given k, a member’s payoff is:

ΠP k( ) =
1

4c
2 n − k + k 2( ) − k2{ }

and a non-member’s payoff is:

ΠI k( ) =
1

4c
2 n − k + k 2( ) −1{ } .

Obviously, Properties (P1), (P2), (P3) are verified. The two payoff functions are increasing and

for a given k,1 ≤ k ≤ n , ΠI k( ) ≥ ΠP k( ) .

We can find the strong Nash equilibria by solving the following equality:

ΠI kn( ) = ΠP n( ) .

This amounts to solving the following polynomial:

2kn
2 − 2kn − n −1( )2 = 0 .

The positive root is:

R1( ) kn =
1+ 1+ 2 n −1( )2

2
.

The set of agreements associated with the strong Nash equilibria is the set of agreements larger or

equal to kn  given by (R1).

We can find the different components of the sequence S∗ = k1
∗,k2

∗,...,kˆ l 
∗{ }  by solving the

following equation:

ΠP kl( ) = ΠI kl−1( ) ⇔ 2 n − kl + kl
2( ) − kl

2 = 2 n − kl−1 + kl−1
2( ) −1.
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This amounts to solving the following polynomial:

kl
2 − 2kl − F kl −1( ) = 0  with  F kl−1( ) = 2kl−1 kl−1 −1( ) −1

One of the two roots is always negative. Therefore, the solution is:

R2( ) kl = 1 + 2kl−1 kl−1 −1( ) = f kl−1( ) .

 In fact, of course, the elements of the sequence are integers. The smallest element is k1
* , the

smallest advantageous agreement. Let e x[ ]  be the largest integer smaller than x. For each

l,  1≤ l ≤ ˆ l , the lth element of the sequence is then:

R3( ) kl
∗ = e f kl−1

*( )[ ] +1.

 Note that the slope of the payoff functions does not depend on n and, as a consequence, the

different elements do not depend on n either. However, the size of the agreement associated with

a strong Nash equilibrium in restricted games, kˆ l 
∗ , depends on n. Indeed, this is the largest

element of the sequence smaller than n. I give the values of the first components in the following

table.

Table 1: Strong Nash equilibrium in restricted games

This table should be read as follows: the second row gives the value of the corresponding element

of the sequence. The third row gives the values of n such that the corresponding element is the

size of the stable agreement.

Here, we can make the following remark. For n < 9, this sequence corresponds to the special

collection of integers characterised by Ray and Vohra (2001). The equilibrium coalition structure

of their game is then what they call the decomposition of this special collection. By this they

mean the following. The outcome of their bargaining game is a coalition structure. At the

equilibrium, the coalitions which are formed are chosen from the coalitions of the sequence S* as

follows. Given n choose the largest integer k* ∈S* . This is kˆ l 
* . Eliminate this kˆ l 

*  players. Now,

choose the largest k* ∈S*  less than n − kˆ l 
*  and so forth. Thus, their equilibrium consists of
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specially selected elements of S* . However, this coincidence of the results is only true for small

values of n (n < 9).

In contrast to the Cournot case, the results of the two games do not always coincide because with

the contribution game, several coalitions can be formed. Because the payoff function is additive

in the way the public good affects the utility (Ray and Vohra (2001) p.1374 ) k1
∗  does not depend

on n and forms in each sub-game in which there are k1
∗  players left, whatever the coalitions

which have been formed already. However, when there are more than k1
∗  players left, the player

designed by the protocol may find it more beneficial to form another coalition with some of the n

- k1
∗  players or to wait for the formation of another coalition, rather than to propose a larger

coalition of size k2
∗. This explains, for example, the fact that when n = 12 the grand coalition is

an equilibrium in the game G and not in the game ∆. Indeed, in the game ∆, player 1, leaves the

game independent, knowing that two coalitions of size 3 and 8 will be formed. In the game G,

players do not have the possibility to form several coalitions. Therefore, player 1 compares her

payoff when she is independent when the coalition of size 8 is formed and her payoff in the grand

coalition. She proposes and forms the grand coalition.

6 Discussion

The introduction of this paper focuses on the theory of cartels since, like I do in this paper, this

literature deals with situations in which symmetrical players have the possibility to reach a

unique agreement, which generates positive externalities. However, it is part of a more general

literature on coalition formation. In the framework of non-cooperative game theory, we can find a

series of papers using extensive form bargaining games (Bloch (1996), Ray and Vohra (1999),

Ray and Vohra (2001)) and other papers using normal form games (Hart and Kurz (1986), Yi
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(1997)). In these papers, the outcomes of the game are coalition structures, the players are not

always symmetric and the payoffs are not always decided by a fixed decision scheme. However,

these games which are, from some points of view, rather general, have some underlying

assumptions which are, in fact, quite restrictive. The aim of this paper has been to present a new

framework which dispenses with these.

The literature on extensive form games of coalition formation made considerable progress on the

generalisation of the game ∆  described in the paper. Bloch (1996), who first proposed this game,

also proposed in the same contribution, a bargaining game in which players are not necessarily

symmetric. He proves several results on the relationship between the equilibria of this extended

game and different cooperative concepts. Ray and Vohra (1999) and (2001) drop the assumption

of fixed payoff division and, in the symmetric case, they obtain as a result, the equal division

which was assumed by Bloch.

However in all these games, the assumption is made that, once a coalition is formed, it is

irreversible. This means that, as soon as a player has proposed a coalition which has been

accepted by all the members, this coalition leaves the bargaining game. This assumption may

have strong effects on the results. To understand this, consider the example of the game ∆ applied

to Cournot payoff functions. Because of the positive externalities, which generate a free riding

problem, players prefer to be independent when a large coalition is formed. Thus, the first players

in the protocol leave the game as independents in order to induce the formation of the largest

possible coalition of the remaining players. The assumption that players can leave the game and

commit to remaining independent plays an important role here. Once the coalition has been
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formed, no re-negotiation is possible, in spite of the fact that these independent players may have

an incentive, ex post, to form another coalition2.

The advantage of normal form games is that there is no equivalent assumption. At the

equilibrium, the different coalitions of a structure are not binding, but generated by self-enforcing

choices. However in the game G, the assumption that only one coalition can be formed, in one

sense, plays the same role as the assumption of irreversibility. In the same Cournot example, the

independent players, by assumption, cannot form another coalition. The ideal answer would be to

find a normal form game thereby dispensing with the irreversibility assumption but without the

restriction to a single coalition. However, it is true that the problem will then arise of how to

avoid the non-existence of equilibria.

Another assumption which is made in Bloch (1996) and Ray and Vohra (1999) and (2001) is the

existence of a protocol which specifies the order in which players move. When players are

symmetric, the protocol gives an explanation of asymmetric equilibria. However, when the

players are different, we may want to distinguish the two sources of asymmetries: the intrinsic

characteristics of the players and their position in a protocol. We saw that, in the game G, there is

no specific protocol. Each strategy is a list of choices and each choice can be considered to be

specific to each protocol of a simple extensive form game. Such a framework seems to be

suitable for the analysis of agreements between heterogeneous players and a subject for future

research is to find an extension of the game G to deal with such asymmetric cases.

One might be tempted to think that, if the objective is to avoid the assumptions used in extensive

form games, it would be better to use more general normal form games such as those proposed

                                                
2 For example, if a second coalition of size k2  is formed, each member’s payoff in this new coalition will be

Π k2 k1, k2( ) =
1

k2 n − k1 − k2 + 3( )2  (see Bloch (1996), p. 113 for the general formula). When k2 = n − k1
* , it is easy
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for example by Hart and Kurz (1987). Indeed, these authors propose two normal form games of

formation of coalition structures. In both games, the strategy is, for each player, to give the

coalition to which she wants to belong. In fact, these strategies are only wishes and the strategy

profile a set of wishes, which are not necessarily consistent. Each game is then characterised by a

rule mapping each strategy profile to a coalition structure. In the Γ rule, a coalition is formed if

and only if all the members have chosen this coalition. In the ∆ rule, a coalition is formed if and

only if all its members have chosen the same coalition, even if this coalition cannot be realised.

Hence, the way the different wishes become consistent and generate a coalition structure is a rule

of the game and has nothing to do with the rationality of the players.

The rules of the game G play also a role in the determination of which agreements are feasible

and which ones will be realised. One definition says that an agreement is feasible if there are

enough players who find it acceptable and the rule of efficiency says that only Pareto efficient

feasible agreements can be achieved. However, these rules are not restrictive and it is difficult to

imagine realistic situations in which they would not be satisfied. Moreover, the point is that they

cannot oblige players to be in situations which they would rationally avoid. In particular, after a

deviation, the new agreements which will be achieved depend not only on the new strategies of

the deviating players, but also on the strategies of the non-deviating players. It is the Strong Nash

equilibrium in restricted games which ensures that the complete strategy of each player is self

enforcing.

Now, one might argue that it is too complicated to analyse conjectures about the reactions of non-

deviating players in a normal form game. In that case, and if we do not want to revert to extensive

form games, a possibility would be to use the framework of the theory of social situations

developed by Greenberg (1990). The contributions to the theory of coalition formation by Chwe

(1994) Mariotti (1997) or Xue (1998) are in this spirit. The players are able to foresee the

                                                                                                                                                             
to check that, Π I k1

*( ) < Πk2 k1
* , k2( )  as long as n < 41.
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consequences of their deviations. The general idea is that, as in non-cooperative game theory,

players are selfish and form non-binding agreements but they do not have to specify strategies for

the whole game. This is in one sense a stability analysis. This framework, therefore, allows us to

dispense with the definition of strategies, which is one of the main problems with extensive form

games as Xue (1998) points out. However, there is an ongoing and unresolved discussion about

the multiplicity of the consequences a player can forecast. The only way to solve this problem is

then to impose behavioural assumptions.

In contrast to the latter approach, in this paper, I have dealt with the problem of conjectures by

confining my attention to a normal form game and by focusing on the specification of the

strategy spaces. It turns out that, in my restricted framework, these strategies are simple to define

and have an intuitive interpretation.

7 Conclusion

To conclude, the approach developed in this paper can be summarised and interpreted as follows.

The objective is to find the solution to a bargaining problem involving the formation of an

agreement, which generates positive externalities on the non-members. I do not use an extensive

form bargaining game, which obliges one to give an explicit description of the process of

agreement formation and involves making some restrictive underlying assumptions. Instead, I use

a one shot normal form game in which each player’s strategy is to say for each size of agreement

whether it is acceptable or not. This means that the player will agree to sign any of the

agreements that she designates as acceptable and remains alone otherwise. Next, an equilibrium

refinement called the strong Nash equilibrium in restricted games is introduced, which guarantees

that every one of the choices making up each strategy is self-enforcing. Under general payoff
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functions, which exhibit positive externalities between the partners to the agreement and the

independent players, I prove the uniqueness of the equilibrium, which I can also characterise.

This analyses has been conducted in a framework which is simplified by a number of

assumptions such as, in particular, those specifying that only one agreement can be reached and

that players are symmetric. The ideal answer would be to find a normal form game, thereby

dispensing with the irreversibility and protocol assumptions but with asymmetric players and

without the restriction to a single coalition. However, it is true that the problem will then arise of

how to avoid the non-existence of equilibria.
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Table 1: Strong Nash equilibrium in restricted games

k1
∗ k2

∗ k3
∗ k4

∗ k5
∗ k6

∗ k7
∗ k8

∗ k9
∗

2 3 5 8 12 17 25 36 52

n=2 n =3,4 5≤n<8 8≤n<12 12≤n<17 17≤n<25 25≤n<36 36≤n<52 52≤n<-
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