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How Does East Asia Achieve  
Its High Educational Performance? 

Abstract 

East Asian students regularly take top positions in international league tables of 
educational performance. Using internationally comparable student-level data, I 
estimate how family background and schooling policies affect student performance 
in five high-performing East Asian economies. Family background is a strong 
predictor of student performance in South Korea and Singapore, while Hong Kong 
and Thailand achieve more equalized outcomes. There is no evidence that smaller 
classes improve student performance in East Asia. By contrast, school autonomy 
over salaries and regular homework assignments are related to higher student 
performance in several of the considered countries.  

JEL Classification: O15, I20, H52 

Keywords: education production function, East Asia, family background, class 
size, school autonomy 



Most of the high-performing East Asian economies have achieved universal enrollment 

of children in primary and secondary education. However, many people in these 

countries fear that their schooling systems do not provide the skills necessary to excel in 

a modern economy, such as analytical skills, creativity, and independence of mind (cf., 

e.g., Dosanjh and Richardson, 2001; Ward and Richardson, 2002). It has been 

commented that “it is ironic that this debate … is taking place at a time when many in 

longer-established developed economies are urging a return to traditional educational 

systems” (Richardson 1996, p. 22) emphasizing basic skills and general rather than 

highly specialized education. Certainly, a strong foundation in basic skills is a 

prerequisite for success in more ambitious tasks. And the East Asian countries actually 

seem to do very well with regard to general education: Their students repeatedly take 

top places in international comparative studies of cognitive achievement. For example, 

the first four places of 39 participating countries in the middle-school math test of the 

1995 Third International Mathematics and Science Study (TIMSS) are taken up by 

Singapore, Korea, Japan, and Hong Kong. This extraordinary performance of East 

Asian countries had already been evident in previous cross-country studies, and it has 

been repeated since.1 These achievement studies do not only test the basic knowledge of 

students, e.g. by multiple-choice questions, but also require students to accomplish a 

transfer and application of their knowledge to less familiar real-world tasks when 

solving more advanced open-ended questions. The lead of East Asian students over 

students from other continents is generally especially large in the latter, more difficult 

questions (cf. Beaton et al. 1996, pp. 57–98). Psychologists studying Asian and 

American metropolitan areas also conclude that “contrary to popular stereotypes the 

high levels of achievement in Asian schools are not the result of rote learning and 

repeated drilling … instead the students are led to construct their own ways of 

representing … knowledge.” (Stevenson 1992, p. 32) 

The crucial question thus is how the high-performing East Asian economies have 

achieved their high educational performance, and how they can sustain the quality of 

their knowledge foundation and ensure a high-quality education for all children for their 

                                                 
1  For example, middle-school Japanese children performed second in the first internationally 

comparative math study in 1964, and the two East Asian countries participating in the 2000 OECD study 
Programme for International Student Assessment (PISA), Japan and Korea, took the first two places in 
math and science.  
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future development into a skill-based economy. Outside the United States, in-depth 

evidence on the impact of family background and school policies in educational 

production is very limited (cf. Hanushek 2002, pp. 3–4, 43–5). To my knowledge, 

recent comparable empirical evidence does not exist for East Asian countries. This 

paper starts to provide such evidence by estimating the impact of family background, 

resources, and other educational policies on student performance in five East Asian 

countries.  

The evidence presented in this paper is based on student-level micro data from 

TIMSS, combining performance information with abundant data on students’ family 

background and schools’ resource endowments and institutional constraints (Section 1). 

The TIMSS database allows an estimation of education production functions for five 

East Asian countries: Hong Kong, Japan, South Korea, Singapore, and Thailand. 

Furthermore, the data and thus the estimated effects are directly comparable across 

these countries, as well as to countries in America and Europe. As discussed below, the 

multi-grade structure of the TIMSS sampling design also allows a credible 

identification of causal effects of class size on student performance in some of the 

countries.  

The first set of analyzed influence factors is the impact of family background on 

students’ educational performance in the different countries (Section 2). The research 

question is to what extent the different schooling systems provide equal educational 

opportunities for children from different family backgrounds. For example, the strong 

priority placed on education in South Korea since its earliest days stems largely from 

the desire to put “smallholders on an equal educational footing with the owners of larger 

farms – which was an important aspect of avoiding polarization in the countryside and 

of enabling migrants from the countryside to adapt relatively easily to urban and 

industrial life” (Ward and Richardson 2002, p. 17). The evidence presented in this paper 

suggests that the rural-urban performance difference is indeed relatively small in Korea. 

However, social background has a much larger impact on student performance in 

Korea, as well as Singapore, than in Hong Kong and Thailand.  

One response to the concerns about schooling quality in these countries has been to 

substantially increasing educational spending (cf., e.g., Wrigley and Richardson, 2001). 

All countries concerned in this paper have substantially lowered their pupil-teacher 
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ratios over recent decades (Gundlach and Wößmann, 2001). To see whether such 

policies can help to ensure a high-quality education, Section 3 analyzes the impact of 

resource endowments on students’ academic skills in the East Asian countries. Least-

squares estimates of the coefficient on several resource measures such as endowment 

with materials, instruction time, and teacher characteristics reveal few statistically 

significant correlations with student performance. However, as these standard estimates 

may be substantially biased by non-random resource endowments, the paper combines 

instrumental-variables with school-fixed-effects estimation to disentangle the causal 

effect of class size on student performance from any effects of placements of students 

into differently sized classes. Accounting for such resource endogeneity and omitted 

variable biases, class size does not seem to have a noteworthy causal effect on student 

performance in Japan and Singapore, the two countries for which the data allow a 

meaningful assessment.  

Given the dismal results for resource policies, the question arises whether other 

policy options affect educational achievement in the East Asian countries (Section 4). 

For example, one complaint often heart all over the region is “that the government’s 

administration of schools and universities is cumbersome, centralized and resistant to 

change” (Economist, 1997). Rather than centralized administration, giving more 

autonomy to schools may induce more creativity and make better use of localized 

knowledge on effective teaching techniques, particularly in school systems where 

performance is regularly accounted for in central examinations as in East Asia (cf. 

Wößmann, 2003). Accordingly, large positive effects of salary autonomy are found in 

Japan and Singapore, but no such effects are evident in Hong Kong and Korea. As 

another policy option, regular homework assignments have a statistically significant 

positive effect on student performance in Japan and Singapore.  

It should be noted that the evidence presented in this paper mainly allows answers to 

questions relating to within-country variations in student performance. Thus, it shows 

the importance of different sets of influence factors for the performance variation within 

each country, and it allows for a comparison of the size of these effects across countries. 

By contrast, for questions relating to the most important determinants of the cross-

country variation in test scores, the most promising way is to use the entire international 

dataset in order to link cross-country performance differences to cross-country 
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differences in potential determinants. Such cross-country analyses have been performed 

elsewhere, both at the country level (e.g., Lee and Barro, 2001) and at the student level 

(Wößmann, 2002). However, an analysis of the relative effects of the different influence 

factors on the within-country variation across countries can help to understand better 

how the East Asian countries achieve their high educational standards, and it can yield 

implications for educational and social policies both in these countries and in other 

countries that strive to learn from the East Asian education systems.  

1. The TIMSS Database for East Asian Countries 

The database used to estimate education production functions for the five East Asian 

countries draws from a large-scale cross-country comparative test of student 

achievement, the Third International Mathematics and Science Study (TIMSS). It 

combines individual student-level performance data with information from student, 

teacher, and school-principal background questionnaires for nationally representative 

samples of students in each of the countries. TIMSS was conducted in 1995 under the 

auspices of the International Association for the Evaluation of Educational 

Achievement (IEA), an independent cooperation of national research institutes and 

governmental research agencies. The target population of middle school students to 

which each participating country administered the test was defined as those students 

enrolled in the two adjacent grades that contained the largest proportion of 13-year-old 

students at the time of testing. These are the first two grades of secondary school in all 

the East Asian countries, representing the seventh and eighth year of formal education.  

Each participating country randomly sampled the schools to be tested in a stratified 

sampling design, and within each of these schools, generally one class was randomly 

chosen from each of the two grades and all of its students were tested, yielding a 

representative sample of students within each country. The number of sampled schools 

that participated in the TIMSS test in each country is about 150, with the exception of 

Hong Kong, where it is 86.2 Sample sizes range from 5827 students in Korea to 11643 

students in Thailand.  

                                                 
2 In Singapore, all eligible schools were included in TIMSS (Martin and Kelly 1998, p. B-23).  
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TIMSS gave rigorous attention to quality control, using standardized procedures to 

ensure comparability in school and student sampling, to prevent bias, and to assure 

quality in test design and development, data collection, scoring procedures, and 

analysis. The TIMSS achievement tests were developed through an international 

consensus-building process involving inputs from international experts in math, science, 

and measurement, and were endorsed by all participating countries. Students were 

tested in a wide array of content dimensions, expecting skills that range from routine to 

complex procedures. A quarter of the test items (meant to cover a third of the testing 

time) were in free-response format, sometimes requiring extensive responses, while the 

remainder of the items were multiple-choice questions. A test-curriculum matching 

analysis which restricted the analysis to items definitely covered in each country’s 

curriculum showed that the overall achievement patterns in TIMSS were hardly affected 

by this restriction.  

Student performance is measured on an international achievement scale with scores 

having an international mean of 500 and an international standard deviation of 100. The 

mean math performance in the East Asian countries ranges from 508.3 test-score points 

in Thailand to 622.3 in Singapore. The variation in performance as indicated by the 

standard deviation of test scores in each country is relatively low in Thailand at 83.4, 

and it is relatively high in Korea at 107.8.3  

The performance data are merged with the specific background data from three 

different TIMSS background questionnaires for each individual student. From the 

student background questionnaires, I draw information on age and sex of the student, on 

whether the student was born in the country and lives with both parents, the level of the 

parents’ education, and the number of books at home. The teacher background 

questionnaires contain data on the actual class sizes, as well as on teacher 

characteristics such as sex, years of experience, and education level. They also report 

the amount of homework assignments per week and whether teaching was thought to be 

limited by uninterested or interested parents. The school-principal background 

questionnaires provide information on the community location of the school, shortage 

                                                 
3 For detailed descriptive statistics on all variables used in this paper, as well as for background 

information on the East Asian schooling systems, see [the working-paper version of this study]. [Note to 
referees: The tables with descriptive statistics are reported as a non-publishable appendix at the end of 
this version.] 
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of materials, instruction time, average class sizes in the two relevant grades, and on 

whether the school had responsibility for determining teacher salaries. Most of these 

background variables based on qualitative survey data were transformed into dummy 

variables for the estimations of this paper.  

Complete performance data is available for all the students participating in TIMSS. 

In the background questionnaires, however, some students, teachers, and school 

principals failed to answer some questionnaire items. Since dropping all students with 

missing data on some explanatory variables from the analyses deletes the information 

available on the other explanatory variables, reduces the sample size, and might 

introduce bias if observations are not missing at random, I chose instead to impute 

missing values within each country for the analyses in this paper.4 I use a set of 

“fundamental” explanatory variables F with original data available for virtually all 

students to impute missing data on each variable M for each student i within each 

country. Let S denote the set of students j with available data for M. Using the students 

in S, the variable M is regressed on F:  

  (1) SjSjSj FM ∈∈∈ += εφ

The regression model is a weighted least-squares estimation (weighting each student by 

its sampling probability) if M is a discrete variable, a weighted probit model if M is a 

dichotomous (binary) variable, and a weighted ordered-probit model if M is a 

polychotomous qualitative variable with multiple categories. The coefficients φ from 

these regressions and the data on Fi are then used to impute the value of Mi for the 

students with missing data: 

  (2) φSiSi FM ∉∉ =~

For the probit models, the estimated coefficients were used to forecast the probability of 

occurrence associated with each category for the students with missing data, and the 

category with the highest probability was imputed. For the purposes of this paper, this 

data imputation technique is applied within each country individually, resulting in a 

complete data set for all the students sampled in TIMSS.  

                                                 
4 See [the working-paper version of this study] for details on missing data and the imputation 

method.  
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Given the international standardization of the test results, the cooperative nature of 

the test development, its endorsement by all participating countries, and the substantial 

efforts to ensure high-quality sampling and testing in all countries, the TIMSS student 

performance and background data should be comparable across countries. This should 

also make the empirical estimates presented in this paper directly comparable across the 

different countries. This makes the database uniquely capable of using student, class, 

and school level data to analyze the determination of student performance in the five 

East Asian countries. 

2. Family Background and Student Performance in East Asia 

2.1. The Empirical Model 

To assess the influence of the students’ family background on their educational 

performance in the different East Asian countries, I estimate education production 

functions for each country of the following form:  

 ( ) icsics
B
ics

B
icsicsics BDDBT εδδα +++= 211   , (3) 

where T is the test score of student i in class c in school s and B is the vector of family 

background variables. The coefficient vectors α1, δ1, and δ2 are to be estimated. The 

inclusion of the imputation controls DB and the structure of the error term ε are 

discussed below. The estimation does not control for other school characteristics, such 

as schools’ resource endowments or teaching policies, because in this section I am 

interested in the total impact of family background on student performance, including 

any effect that might work through families’ differential access to schools or their 

influence on school policies.  

It helps to clarify in advance what the estimates of the coefficients α1 on the family-

background variables (and of the coefficients on the other explanatory variables in later 

sections), and especially differences in the estimates across countries, mean and do not 

mean. Because the TIMSS data were generated by the same data-generating process in 

the different countries and are therefore directly comparable across countries, the prior 

from a technical point of view should be that the coefficient estimates should be the 

same everywhere. Given the technical constraints on the pedagogical process, the size 
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of the effect of any family-background characteristic on students’ educational 

performance should be expected to be the same in any school system. If this is not the 

case, this implies that there must be differences in how the school systems work. This 

does not reflect different distributions of family-background characteristics in the 

different populations. Different distributions of family-background characteristics 

would not be an a priori reason for the gap in student performance between students 

with two different characteristics to be different. For example, the performance gap 

between children of parents with university degrees and children of parents without 

secondary education may be expected to be independent of the relative number of 

parents with different educational degrees in the population. If this gap is 25 TIMSS 

test-score points in one country but 50 points in another country, this would rather be a 

sign that the school systems work differently in the two countries, resulting in a 

different effect of parental education on student performance.  

As discussed in the previous section, some of the data are imputed rather than 

original. Generally, data imputation introduces measurement error in the explanatory 

variables, which should make it more difficult to observe statistically significant effects. 

Still, to make sure that the results are not driven by imputed data, a vector of dummy 

variables DB is included as controls in the estimation. The vector DB contains one 

dummy for each variable in the family-background vector B which takes the value of 1 

for observations with missing and thus imputed data and 0 for observations with 

original data. The inclusion of DB as controls in the estimation allows the observations 

with missing data on each variable to have their own intercepts. The inclusion of the 

interaction term between imputation dummies and background data, DBB, allows them 

to also have their own slopes for the respective variable. These imputation controls for 

every variable with missing values ensure that the results are robust against possible 

bias arising from data imputation.  

Further problems in the econometric estimation equation (3) are that the explanatory 

variables in this study are measured at different levels, with some of them not varying 

within classes or schools; that the performance of students within the same school may 

not be independent from one another; and that the primary sampling unit (PSU) of the 

two-stage clustered sampling design in TIMSS was the school, not the individual 

student (see Section 1). As shown by Moulton (1986), a hierarchical structure of the 
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data requires the addition of higher-level error components to avoid spurious results. 

Therefore, the error term ε of equation (3) has a school-level and a class-level element 

in addition to the individual-student element:  

   , (4) icsics υνηε ++=

where η is a school-specific error component, ν is a class-specific error component, and 

υ is a student-specific error component. Clustering-robust linear regression (CRLR) is 

used to estimate standard errors that recognize this clustering of the survey design. The 

CRLR method relaxes the independence assumption and requires only that the 

observations be independent across the primary sampling units, which are schools in the 

case of TIMSS. By allowing any given amount of correlation within the primary 

sampling units, CRLR estimates appropriate standard errors when many observations 

share the same value on some but not all independent variables (cf. Deaton, 1997).  

Finally, TIMSS used a stratified sampling design within each country, which 

produced varying sampling probabilities for different students (Martin and Kelly, 1998). 

To obtain nationally representative coefficient estimates from the stratified survey data, 

weighted least squares (WLS) estimation using the sampling probabilities as weights is 

employed. The WLS estimation ensures that the proportional contribution to the 

parameter estimates of each stratum in the sample is the same as would have been 

obtained in a complete census enumeration (DuMouchel and Duncan, 1983; 

Wooldridge, 2001).  

2.2. Results 

Table 1 presents the results of an estimation of equation (3) for each of the sample 

countries for TIMSS math performance.5 To allow a comparison of the East Asian 

findings to countries from other regions in the world, all estimations are also executed 

for the United States and France, the latter being a European country with reasonably 

complete TIMSS data. With respect to students’ characteristics, students in the upper 

grade (eighth grade) perform statistically significantly better than students in the lower 

grade (seventh grade) in all countries, with the gap being largest in Singapore and 

                                                 
5 All the results shown here for math are also reported for science in [the working-paper version 

of this study].  
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smallest in Japan. In Japan, much of the superior performance of older students seems 

to be captured by students’ age rather than grade level, as older students perform 

statistically significantly better in both subjects in Japan. In Hong Kong, Korea, and 

Singapore, older students perform statistically significantly worse once the grade level 

is held constant.  

In Hong Kong, Japan, and Korea, girls perform substantially worse than boys – a 

result similarly found in the two advanced economies (United States and France). 

Singapore and Thailand show no such performance difference between genders, with 

girls performing statistically insignificantly better than boys. The performance gap 

between native and immigrant children is quite different between the East Asian 

countries. In Korea and Thailand, children born in the respective country performed 

better – although the share of immigrant children is very low in these two countries. But 

in Hong Kong, children not born in the country actually performed better. No 

statistically significant performance difference between natives and immigrants is found 

in Singapore. Students living with both parents perform better in Hong Kong and 

Korea.6  

Two sets of dummy variables reflect the educational background of the students’ 

families: the highest level achieved by the parents and the number of books in the 

students’ home. For both categorical variables, the lowest category – primary education 

and less than one shelf of books, respectively – was dropped as residual category in the 

estimation. In all the countries, children from more favorable backgrounds on both 

measures perform consistently better. The largest performance difference between 

children of parents with a university degree relative to children of parents without 

secondary education are found in Singapore. The same is true when comparing parents 

who finished university to parents who finished secondary school. The size of the 

coefficient says that, for example, the performance gap between students of parents with 

a university degree and students of parents without secondary education in Singapore in 

math was 52.7 test-score points – slightly more than half an international standard 

deviation in TIMSS test scores, and slightly less than the average difference in 

performance between seventh and eighth grade in Singapore.  

                                                 
6 In Japan, much of the family-background data are reported as being not administered or not 

internationally comparable. 
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Because parental education levels may be slightly differently defined in the different 

countries, possibly reflecting different years and courses of education, it is illuminating 

to look at the performance levels of students with different numbers of books at home, 

which can work as an internationally comparable additional proxy for the educational 

background of a student’s family. Using this measure, the impact of family background 

on students’ educational achievement is again substantially larger in Korea and 

Singapore than it is in Hong Kong and Thailand. This is true irrespective of whether one 

compares the highest category of books at home to the lowest one, the highest one to 

some intermediate one, or an intermediate one to the lowest one. On this measure, the 

impact of family background in Korea is even stronger than in the United States, a 

country with a schooling system generally known to produce relatively large 

performance differences between students from different backgrounds. In Hong Kong 

and Thailand, the measure points to a smaller impact of family background than the one 

found in the two advanced economies.  

The statistically significant and quantitatively substantial coefficients on the family-

background variables cannot necessarily be interpreted in the sense that, for example, 

increasing parental education for the whole population in the different countries would 

increase educational performance of the students by the amount estimated. Rather, the 

coefficient estimates may to some extent reflect heritable ability in that more able 

parents, who may have obtained more education because of their higher ability levels, 

have more able children, who then perform better on the performance tests. Heritable 

ability has been shown to be a likely source of the whole correlation between the 

quantitative educational attainment of mothers and their children in data on Minnesota 

twins (Behrman and Rosenzweig, 2002). This was not true for fathers, however, and 

other evidence shows that there was a causal impact of increased women’s schooling on 

their children’s schooling, working through home teaching, in the setting of rural India 

during the green revolution (Behrman et al., 1999). Whatever the sources and channels 

of transmission may be, the reduced-form results of Table 1 still represent the observed 

performance gap between children from different family backgrounds in the schooling 

systems of the different East Asian countries.  

Student performance also differs by community location in most of the East Asian 

countries. In Hong Kong, Korea, Singapore, and Thailand, students in schools close to 
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the center of a town perform statistically significantly better than students in schools 

located in villages or at the outskirts of a town (the residual category). This rural-urban 

performance gap is smaller in Korea than in the other three countries, and it is not 

statistically significant in Japan, France, and the United States. Student performance in 

geographically isolated areas is generally even worse than performance in village or 

outskirt areas, although except for Thailand, none of the TIMSS samples in the East 

Asian countries contains a noteworthy share of geographically isolated schools.7  

The explanatory power of the family-background regressions, as measured by the 

proportion of the variation in test scores explained by the family-background variables 

(the R2), ranges from 10.2 percent in Hong Kong to 16.9 percent in Singapore (without 

considering the variation “explained” by the imputation controls).8 The standard finding 

of a large residual in microeconometric student-level estimations may be attributed to 

unobserved heterogeneity in the innate ability of students entering the error term in 

student-level education production functions. Across the East Asian countries, the 

explained performance variation is relatively small in Hong Kong and Thailand, both in 

comparison to Korea and Singapore and to the more advanced economies.  

3. Resource Endowments and Student Performance in East Asia 

3.1. Least-Squares Coefficients on Resources and Teacher Characteristics 

The standard procedure to estimate the relationship between schools’ resource 

endowments and their students’ performance is to simply introduce resources into the 

previously estimated equation (3):  

 ( ) ( ) icscs
R
cs

R
csics

B
ics

B
icscsicsics RDDBDDRBT εδδδδβα ++++++= 654312   , (5) 

where R is a vector of resource measures such as class size, the availability of 

instructional materials, and teacher characteristics. The imputation controls DR again 

ensure that the results are robust against possible bias arising from missing and thus 

imputed data in the resource variables.  

                                                 
7 The number schools classified as being located in geographically isolated areas is only 2 in the 

Hong Kong sample, 1 in Korea, 4 in Japan, and 0 in Singapore.  
8 The low R2 of the Japanese regression obviously reflects the fact that most of the family 

background data are missing in Japan.  
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Under the assumption that the resource endowment is exogenous to student 

performance – an assumption shown to be wrong in the next section at least in the case 

of class sizes in most countries – the coefficient vector β1 estimated in a least-squares 

regression would reflect the impact of resources on student performance. The 

coefficient vector on resources obtained by this standard procedure may be substantially 

biased, however. One potential reason for bias is that the resource endowment may to 

some extent be endogenous to student performance, for example if weaker students are 

sorted into smaller classes (cf. West and Wößmann, 2003). Another potential reason for 

bias is the impact of further omitted variables which, like sorting, could be related to the 

resource endowment.  

Table 2 presents the estimated least-squares coefficients on resources, controlling for 

all the family-background variables reported in Table 1 and for all the imputation 

controls. Class size is measured in natural logarithm units because the proportional 

impact of a one-student reduction in class size is greater the smaller the initial size of 

the class. Except for Thailand and Korea, the estimated coefficients on log class size are 

statistically significant and positive in the East Asian countries; that is, higher test 

scores are related to larger classes. If one were to interpret these coefficients causally, 

as much previous work for other countries has done (cf., e.g., Hanushek, 2002; Krueger, 

2003), one would come to the counterintuitive conclusion that in most East Asian 

countries, students learn more in larger classes.  

Students whose school principal reported no shortage of instructional materials 

perform statistically significantly better in some of the East Asian countries than 

students whose principal reported some shortages. However, students whose principal 

reported a lot of shortage do not perform statistically significantly worse, and in Japan, 

they even perform statistically significantly better. Only in Thailand is the length of 

instruction time statistically significantly related to student performance.  

With respect to teacher characteristics, students of female teachers performed 

statistically significantly worse than students of male teachers in Japan. Teacher 

experience, measured in logs so as to allow for decreasing returns to experience, is 

statistically significantly positively related to student performance in Singapore and 

Thailand; in Korea, there is a statistically significant negative relation. Teachers’ 

educational levels also do not seem to be strongly related to student performance. In 
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Thailand, students of teachers with the equivalent of a BA actually performed 

statistically significantly lower than students of teacher with less education than a BA.9  

In conclusion, there is basically not much of a positive relationship between student 

performance and additional units of any of the measured resource variables. These 

findings mirror prior research in this field that found no strong or systematic 

relationship between larger resource endowments and student performance in the 

United States and in several developing countries (Hanushek, 2002). Note also that the 

increase in the explained proportion of the test-score variation (R2) relative to the 

family-background regressions of Table 1 is minimal in most cases, and where it is not, 

this is nearly exclusively driven by the counterintuitive correlation between student 

performance and class size.  

3.2. School-Fixed-Effects Instrumental-Variables Estimates of Class-Size Effects 

While the family-background measures B in the estimated equations (3) and (5) can 

reasonably be expected to be exogenous to student performance because there appears 

to be no plausible inverse link from student performance to family background, there 

may potentially be endogeneity of schooling resources R. The quantitative estimates of 

the resource effects will be biased if the resources spent on students are determined by 

student performance T, that is if additional schooling resources are systematically 

allocated either to above-average performing students or to below-average performing 

students. The estimates of resource effects would also pick up the correlation between 

student performance and any omitted variable that is correlated with resource 

endowment. In both cases, unbiased econometric estimates can only result if the 

endogenous nature of schooling resources is properly accounted for (Hoxby, 2000).  

In the case of the estimated coefficients on class size, I can exploit specific 

characteristics of the TIMSS data in a quasi-experimental estimation design in order to 

obtain unbiased estimates of the effects of class size on student performance. Akerhielm 

(1995) suggests to instrument the actual class size Ccs (one vector in the resource matrix 

Rcs of equation (5)) by the average class size in the school As in a two-stage least-

squares estimation to control for the problem of endogenous resource allocation within 

                                                 
9 The residual category that drives the statistically significant coefficients in Korea is made up of 

only one teacher.   
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schools.10 The grade-average class size promises to be a valid instrument for actual 

class size: It is generally strongly linked to the size of the class actually tested in 

TIMSS; within each school, it is exogenous to the performance of the students 

(although this might not be the case between schools, a fact that I will return to shortly); 

and there is no reason to expect that it affects student performance in any other way 

than through the size of the class in which they are actually taught.11 The first-stage 

estimation regresses (log) Ccs on (log) As and all other exogenous variables Xics: 

   , (6) icsicsscs XAC µχχ ++= 21

where Xics includes the family-background measures and the imputation controls. The 

second stage then employs  instead of Cicscscs CC µ−=ˆ cs in lieu of Rcs in the 

estimation of equation (5). This specification eliminates any bias in the estimated class-

size effects that would result from within-school sorting of low-performing students, at 

a given grade level, to smaller classes.  

However, these IV estimates may still be biased by between-school sorting effects. If 

parents tend to send low-performing children to schools with smaller classes, the 

estimated resource effect would again be biased downward. But it could also go the 

other way if parents tend to send high-performing children to schools with smaller 

classes. Between-school sorting might also be relevant if students are tracked into 

different schools according to their ability, as is the case in Singapore.  

In order to exclude any effects of either within- or between-school sorting from the 

estimates of class-size effects, Wößmann and West (2002) suggest an identification 

strategy specifically designed to exploit the multi-grade nature of the TIMSS database. 

They combine the aforementioned IV strategy with a school-fixed-effects estimation 

which disregards any between-school variation, as this may reflect between-school 

sorting effects. The combined school-fixed-effects instrumental-variables (SFE-IV) 

estimation then is:  

                                                 
10 Akerhielm (1995) also uses the overall grade-level enrollment of a school as a second instrument 

in addition to average class size. However, this may be a false instrument as there might be a direct 
relationship between overall enrollment and student performance that is unrelated to differences in class 
size (Angrist and Lavy, 1999). Moreover, none of the coefficients on enrollment in Akerhielm’s first-
stage regressions are statistically significant, suggesting that it is anyway not a good instrument.  

11 See Wößmann and West (2002) for a more detailed discussion of the validity of the instrument.  
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   , (7) ( ) ( ) icscs
C
cs

C
csics

B
ics

B
icsscsicsics CDDBDDSCBT εδδδδϕβα +++++++= 1098723

ˆ

where Ss is a complete set of school dummies and C  is again the result of a first-stage 

regression that instruments actual class size by grade-average class size and all other 

exogenous variables as in equation (6).12 Because equation (7) includes school fixed 

effects, and because every class size at a given grade level is instrumented by the same 

average class size, this SFE-IV strategy requires comparable information on student 

performance from more than one grade level in each school. This is exactly the structure 

of the TIMSS data.  

cs
ˆ

The grade-level dummy included in the background measures B controls for the 

average difference in performance between students from the two adjacent grades. 

Therefore, the remaining performance difference between students from the different 

grades is idiosyncratic to each school. Equation (7) relates this idiosyncratic variation in 

student performance to that part of the actual class-size difference between the two 

grades that is due to differences in average class size between the two grades. Thereby, 

the SFE-IV identification strategy effectively excludes both between-school and within-

school sources of student sorting: Between-school sorting is eliminated by controlling 

for school fixed effects; within-school sorting is filtered out by instrumenting actual 

class sizes by grade-average class size. Arguably, the remaining variation in class size 

between classes at different grades of a school is caused by random fluctuations in 

cohort sizes between the two adjacent grades in each school, presumably reflecting 

natural fluctuations in student enrollment. The coefficient estimate β2 can thus be 

interpreted as an unbiased estimate of the causal impact of class size on student 

performance.13  

Table 3 reports the coefficient estimates on class size obtained by implementing the 

different identification strategies for the East Asian countries. The first row presents the 

                                                 
12 The imputation dummies DC for the class-size variable used in this section equal 1 if either the 

observation on actual class size or the observation on grade-average class size (the instrument) is 
imputed. In the IV and SFE-IV regressions, in addition to instrumenting class size, the interaction term 
DCC between the imputation dummy and actual class size is also instrumented, using an interaction term 
DCA between the imputation dummy and grade-average class size as an additional instrument.  

13 As there is no comparable quasi-experimental identification strategy for the other resource 
measures, these are not included in equations (6) and (7). Therefore, the resulting coefficient estimates on 
class size should be interpreted as the effect on student performance of class size and any other resource 
with which class size may be associated.  
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standard weighted least-squares (LS) estimates, where the slight differences to the 

coefficients reported in Table 2 stem from the exclusion of the other resource 

variables.14 The second row reports results of the straight IV regression without 

controlling for school fixed effects, which should exclude biases due to within-school 

sorting but not due to between-school sorting. The third row reports results of a least-

squares regression that does not instrument for class size but includes the whole set of 

school fixed effects (SFE), which excludes any effects of between-school sorting but 

might still be biased by within-school sorting effects. And finally, the fourth row reports 

results of the combined SFE-IV identification strategy that excludes both between- and 

within-school sorting effects.  

The SFE-IV estimation is extremely demanding in terms of data requirements, 

because the variation on which it is based excludes both any between-school variation 

and any within-grade variation within schools. If the remaining within-school between-

grade variation is low, this will be reflected in imprecise estimates of the class-size 

coefficient estimated by the SFE-IV strategy (cf. Wößmann and West, 2002). This is the 

case in Hong Kong and Thailand, where the standard errors of the SFE-IV estimates are 

too large to make any confident statement about the existence or magnitude of class-

size effects in these countries. By contrast, in Japan and Singapore the SFE-IV 

estimates are very precise, with standard errors of about 20. These standard errors are so 

small that if a 10 percent reduction in class size were to change TIMSS test scores by 

just 4 test-score points or 4 percent of an international standard deviation, the change 

would be statistically significant at the 5 percent level. In other words, the random 

variations in class size identified by the SFE-IV strategy have considerable power to 

detect class-size effects in these two countries.  

The SFE-IV estimates of the causal effect of class size on student performance are 

statistically indistinguishable from zero in Japan and Singapore. Given the precision of 

their estimation, they are equivalent to what Hoxby (2000, p. 1280) calls “rather 

precisely estimated zeros.” These results suggest that there is no causal effect of class 

size on student performance in Japan and Singapore. By contrast, the SFE-IV estimate 

                                                 
14 In order to be able to implement the school-fixed-effects strategy, I also had to exclude one 

school from the Hong Kong sample and one from the Thai sample which tested only classes at one of the 
two grade levels. In the United States and France, this exclusion rate was slightly larger.  
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for France in math is marginally statistically significant (at the 15 percent confidence 

level) and negative, suggesting a potential beneficial effect of reduced class sizes there.  

The strong prevalence of statistically significant positive estimates of the coefficient 

on class size in least-squares estimations in East Asian countries is clearly linked to the 

endogeneity of class size with respect to student performance. The differences in the 

estimated coefficients between the four estimation strategies reported in Table 3 imply 

that there is substantial sorting of students into differently sized classrooms based on 

their achievement levels in the East Asian school systems. Particularly in Japan and 

Singapore, the differences between the LS and the SFE estimates suggest that low-

performing students are sorted into schools with smaller classes.15 Once the estimation 

is based on credibly exogenous variations in class size in the SFE-IV estimation, no 

statistically significant effect of class size on student performance is found in the East 

Asian countries. While the existence of any sizable causal effect of class size on student 

performance can be rejected in Japan and Singapore, no confident evaluation is possible 

in the other three countries given the imprecision of their SFE-IV estimates.  

4. Institutional Features and Student Performance in East Asia 

The lack of consistent evidence that resource endowments matter for student 

performance suggests that resources are inefficiently used in the school systems 

analyzed. In other countries, such inefficiencies have been related to the lack of suitable 

performance incentives in the school system (e.g., Hanushek et al., 1994). This opens 

the possibility for other schooling policies that focus on institutions rather than on 

resources to affect student performance. Theoretical work suggests that the institutional 

structure of the school system generates the incentives that drive actors’ behavior in 

educational production and thus the performance achieved (cf., e.g., Bishop and 

Wößmann, 2003).  

Because institutional features generally do not vary substantially within school 

systems, but rather across countries, empirically the institutional effects should be 

mainly an issue in cross-country rather than within-country research. Wößmann (2002) 

                                                 
15 See West and Wößmann (2003) for a detailed analysis of the pattern of sorting between and 

within schools.  
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shows that many schooling institutions are strongly linked to the cross-country variation 

in student performance. The TIMSS background data reveal that some institutional 

features do also vary within some of the East Asian systems. Particularly, there is some 

limited variation in schools’ autonomy in salary decisions, homework policies, and 

parental involvement in the education process. This section analyzes whether these 

within-country differences in institutional schooling policies add to an understanding of 

the within-country differences in student performance in East Asia.  

As institutional features of the school systems may be viewed as largely exogenous 

to student performance, reasonable estimates of institutional effects may be obtained by 

adding the vector of institutional measures I as explanatory variables to the education 

production function of equation (5):  

   . (8) ( ) ( ) ( ) icscs
I
cs

I
cscs

R
cs

R
csics

B
ics

B
ics

cscsicsics

IDDRDDBDD

IRBT

εδδδδδδ

γβα

+++++++

++=

161514131211

34

DI is again a set of imputation dummies to control for possible effects of the data 

imputation. The estimation keeps controlling for all family background and resource 

variables of Tables 1 and 2, as well as for their respective imputation controls.16  

The coefficient estimates on the institutional variables are reported in Table 4. 

Students in schools that had autonomy in determining their teachers’ salaries performed 

statistically significantly better than students in schools without salary autonomy in 

Japan and Singapore. In these countries, school autonomy in determining teacher 

salaries seems to positively affect students’ educational performance.  

The amount of homework assigned by the teacher is statistically significantly and 

positively related to performance in Japan and Singapore. Thus, to the extent that 

teachers’ homework assignments can be viewed as exogenous to student achievement, 

they seem to favorably affect achievement in the East Asian countries, excepting Korea 

and Thailand. The estimates on homework assignments should be interpreted with care, 

however, as they may be particularly prone to endogeneity and omitted-variable biases.  

                                                 
16 Excluding the resource variables and their imputation controls, because their estimation may be 

biased by sorting effects, does not make any qualitative difference to the estimated coefficients on the 
institutional variables.  
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In Hong Kong, students whose teachers reported that their teaching was limited by 

parents uninterested in students’ progress performed statistically significantly worse 

than students whose teachers did not report limitations by uninterested parents. 

Interestingly, students whose teachers reported that their teaching was limited by 

interested parents performed statistically significantly better than students whose 

teachers did not report such limitations. Apparently, even though teachers judged the 

interventions of interested parents as limiting their teaching, this “limitation” was 

positively related to the performance of their students – a result similarly found in the 

United States.17  

5. Conclusions 

Given the pivotal role of students’ educational performance for the future economic 

prospects of societies, the empirical results of education production functions estimated 

for the five high-performing East Asian countries in this paper could have substantial 

implications for educational and social policies in the region and in other, lower-

performing countries alike. For the East Asian countries, the evidence for the first time 

reveals the impact of family background and schooling policies in the different school 

systems. And by examining how the East Asian countries achieved their high 

educational performance, other countries can learn for their own educational 

production.  

Although the fact that all East Asian countries performed extraordinarily well in 

international comparisons of student performance seems to suggest that they are very 

homogenous, the evidence presented in this paper reveals that their schooling systems 

actually feature a lot of heterogeneity. For example, family background is a much 

stronger predictor of children’s educational performance in Korea and Singapore than in 

Hong Kong and Thailand, both in terms of estimated effect sizes and explanatory 

power. If providing more equal opportunities for successful learning independent of 

parental education and social status is an important goal of the education systems, the 

different size of family-background effects across countries reveals that the different 

                                                 
17 The large negative coefficient on interested parents in Japan in math is due to only 2 teachers 

reporting limitations by interested parents.  
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schooling systems achieve this goal to a different extent. Furthermore, the evidence 

from the different countries suggests that those school systems that allow family 

background to exert its beneficial impact on student performance achieve the highest 

overall performance levels. In reverse, this may mean that although school systems that 

try to equalize educational performance for students from different backgrounds may be 

able to lower the variation in educational performance in the population, the overall 

educational performance of the system may suffer.  

The high educational performance of East Asian countries also suggests that their 

schooling systems are highly efficient. While this is true in the sense of a cross-country 

comparison between East Asian countries and countries from other parts of the world, 

the internal efficiency of the East Asian school systems is less clear. The evidence 

presented in this paper reveals that resource endowments and especially class sizes do 

not seem to be strongly related to students’ educational achievement. As in many other 

countries in the world, East Asian schools that are better equipped with educational 

resources do not seem to make efficient use of the additional resources. This cross-

sectional finding mirrors the time-series evidence of Gundlach and Wößmann (2001) 

that increased spending and smaller class sizes did not lead to substantially better 

performance over time in the analyzed East Asian school systems.  

With respect to other, more institutional schooling policies, giving schools autonomy 

in their salary decisions might strengthen educational performance, especially in Japan 

and Singapore. Given that performance standards are centrally set and examined in all 

the East Asian systems considered, additional autonomy might allow schools to find the 

best ways of how to achieve these standards. Additional focus on homework policies, 

which allow students to practice their knowledge at home, might be a worthwhile policy 

option, especially in Hong Kong, Japan, and Singapore. In Hong Kong, increased 

parental involvement in the teaching process also promises superior student 

performance.  

Most of the results reported here for math performance also hold for science 

performance (cf. [the working-paper version of this study]). It remains to be seen 

whether the conclusions of this paper also apply for other subjects and skills than 

middle-school mastery of math and science. Some evidence suggests that East Asian 

students are not just capable of rote learning, but also do well in more creative tasks. 
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Learning the cognitive foundations is certainly a prerequisite for the mastery of more 

advanced applications, so that the two are complements rather than substitutes. To 

sustain the quality of this knowledge base and to tap the full potential of their student 

populations, East Asian school systems would be well advised to ensure an excellent 

educational performance for students from all family backgrounds and to care more for 

policies that ensure efficient educational production than for resource policies.  
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Table 1: Family Background and Student Performance 
Least-squares regression within each country, weighted by students’ sampling probabilities.  

Dependent variable: TIMSS math test score. Clustering-robust standard errors in parentheses.  

 HON   JAP   KOR   SIN   THA     USA   FRA   
Upper grade 37.795 * 10.636 + 38.731 * 61.346 * 26.377 * 45.988 * 67.387 * 
  (6.040)   (4.502)   (4.406)   (5.021)   (4.296)     (4.439)   (4.359)   
Age -11.571 * 23.389 * -4.601  -14.685 * 1.802   -22.088 * -24.737 * 
 (2.881)  (3.850)  (3.975)  (1.922)  (2.180)   (2.610)  (2.358)  
Female -13.519 + -10.385 * -15.926 * 1.643  3.194   -9.006 * -10.691 * 
  (6.433)   (3.254)   (3.182)   (4.320)   (3.121)     (2.335)   (2.044)   
Born in country -17.544 *             –  26.578  -5.065  28.679 * 1.565         –  
 (5.204)    (17.753)  (3.914)  (9.100)   (4.566)    
Living with both parents 9.258 +             –  9.156 + 5.222  0.400   15.476 * 7.819 * 
  (4.285)       (4.395)   (3.977)   (2.847)     (2.888)   (2.461)   
Parents' education                 
  Some secondary 0.019         –  0.738         –  1.204   11.061  8.377  
 (3.185)    (6.294)    (3.872)   (8.632)  (6.642)  
  Finished secondary 13.341 *             –  12.408 ° 13.754 * 15.808 * 17.203 ° 19.628 * 
 (3.716)    (6.410)  (3.008)  (5.596)   (8.831)  (6.884)  
  Some after secondary 29.154 *             –  0.419  41.491 * 39.924 * 31.478 * 21.237 * 
 (6.997)    (7.844)  (4.520)  (6.283)   (8.288)  (7.155)  
  Finished university 34.259 *             –  41.639 * 52.672 * 40.557 * 52.663 * 38.249 * 
  (6.215)       (7.218)   (5.738)   (9.150)     (9.160)   (6.936)   
Books at home                 
  One shelf (11-25) 17.943 *             –  19.571 * 8.573 + 3.373   9.746 + -4.621  
 (4.487)    (6.704)  (3.597)  (2.208)   (3.779)  (4.977)  
  One bookcase (26-100) 23.566 *             –  57.779 * 32.684 * 9.736 * 34.571 * 8.747 ° 
 (4.774)    (4.997)  (3.611)  (3.076)   (3.560)  (4.672)  
  Two bookcases (101-200) 18.297 *             –  84.691 * 43.718 * 13.437 * 53.481 * 16.634 * 
 (5.353)    (5.344)  (4.851)  (3.468)   (4.229)  (4.927)  
  More than two bookcases 21.669 *             –  97.397 * 47.075 * 10.980 * 62.607 * 11.165 + 
   (>200) (5.908)       (5.235)   (5.387)   (3.930)     (4.747)   (5.234)   
Community location                 
  Close to town center 25.968 ° -7.190  12.042 * 16.791 + 34.353 + -4.106  2.253  
 (14.083)  (6.467)  (3.589)  (8.124)  (13.548)   (6.639)  (5.232)  
  Geographically isolated -49.538 ° -18.230  0.659         –  -10.975   -28.904 *             –  
  (25.728)   (20.163)   (3.923)       (7.237)     (7.948)       
Imputation controls yes  yes  yes  yes  yes   yes  yes  
Students [Unit of observation] 6752   10271   5827   8285   11643     10973   6014   
Schools [Unit of clustering] 86  151  150  137  147   183  134  
R2 0.144  0.038  0.179  0.154  0.119   0.185  0.230  
R2 (without imput. controls) 0.102   0.037   0.169   0.152   0.115     0.175   0.211   
Significance levels (based on clustering-robust standard errors): * 1 percent. – + 5 percent. – ° 10 percent. 

 

 



Table 2: Resources, Teacher Characteristics, and Student Performance 
Least-squares regression within each country, weighted by students’ sampling probabilities.  

Dependent variable: TIMSS math test score. Clustering-robust standard errors in parentheses.  

 HON   JAP   KOR   SIN   THA     USA   FRA   
Class size (log) 106.206 * 123.908 * -3.469  137.201 * 7.850   -3.716  63.962 * 
  (35.471)   (36.010)   (4.188)   (11.681)   (7.408)     (6.441)   (18.845)   
Shortage of materials                 
  None 16.000  7.754 ° 0.921  13.521 ° 24.237   -1.669  7.886  
 (12.714)  (4.360)  (3.680)  (7.151)  (18.338)   (6.055)  (5.076)  
  A lot -29.598  20.216 + -0.087  -7.418  7.108   -28.585 + 4.839  
  (32.201)   (9.986)   (5.036)   (9.545)   (6.085)     (11.636)   (5.848)   
Instruction time -3.288         –  -0.769  7.376  4.473 ° -1.939  1.030  
  (5.108)       (1.358)   (5.474)   (2.367)     (1.608)   (1.794)   
Teacher characteristics                 
  Female teacher 0.867  -9.718 + 3.898  2.989  -9.153   8.819 ° 5.556  
 (9.028)  (4.051)  (3.133)  (4.766)  (6.275)   (5.278)  (3.943)  
  Teacher's experience (log) -2.638  -0.387  -3.771 ° 8.191 * 9.181 * 2.873  2.370  
  (4.339)   (3.212)   (1.974)   (2.589)   (3.223)     (2.979)   (2.290)   
  Teacher's education                 
    Secondary only        –         –         –  12.496         –          –  59.804 * 
       (9.451)        (13.942)  
    BA or equivalent -10.856         –  46.182 * 16.233  -18.566 °        –  52.564 * 
 (9.264)    (6.495)  (10.260)  (10.569)      (14.666)  
    MA/PhD 13.777         –  47.056 * 11.998  -7.008   9.954 ° 53.272 * 
  (21.598)       (8.427)   (14.651)   (21.552)     (5.880)   (15.372)   
Family background controls yes  yes  yes  yes  yes   yes  yes  
Imputation controls yes  yes  yes  yes  yes   yes  yes  
Students [Unit of observation] 6722   10271   5827   8285   11643     10973   6014   
Schools [Unit of clustering] 86  151  150  137  147   183  134  
R2 0.203  0.063  0.182  0.278  0.159   0.203  0.259  
R2 (without imput. controls) 0.150   0.062   0.172   0.270   0.141     0.187   0.229   
Significance levels (based on clustering-robust standard errors): * 1 percent. – + 5 percent. – ° 10 percent. 

 

 



Table 3: The Coefficient on Log Class Size 
Regressions within each country, weighted by students’ sampling probabilities.  

Dependent variable: TIMSS math test score. Controlling for family-background variables  
and imputation controls. Clustering-robust standard errors in parentheses.  

 HON   JAP   KOR   SIN   THA     USA   FRA   
LS 107.924 * 126.077 * -5.566  138.002 * 10.742   -3.294  60.824 * 
 (30.775)  (39.352)  (4.538)  (11.984)  (8.680)   (6.656)  (21.424)  
IV 261.893  151.598 * 66.028 + 155.356 * -1926.856   -25.978  -13.591  
 (160.843)  (53.952)  (27.462)  (16.581)  (4666.453)   (25.666)  (32.477)  
SFE 96.727 * -10.286  -13.245 + 89.849 * 4.899   -0.808  43.019 ° 
 (20.298)  (15.222)  (5.547)  (15.366)  (5.999)   (7.903)  (21.838)  
SFE-IV 249.479  1.509  -46.547  11.093  -585.839   52.385  -81.209  
 (752.850)  (21.177)  (40.134)  (20.792)  (2075.300)   (42.658)  (53.996)  
Students 6712   10271   5827   8285   11610     10831   5669   
Schools 85   151   150   137   146     179   119   
Methods of estimation: LS = Least squares. – IV = Instrumental variables. – SFE = School fixed effects. – SFE-IV = Combination of 
school fixed effects and instrumental variables. – See text for details on the four methods of estimation. 
Significance levels (based on clustering-robust standard errors): * 1 percent. – + 5 percent. – ° 10 percent. 

 
 
 
 
 

Table 4: Institutions and Student Performance 
Least-squares regression within each country, weighted by students’ sampling probabilities.  

Dependent variable: TIMSS math test score. Clustering-robust standard errors in parentheses.  

 HON   JAP   KOR   SIN   THA     USA   FRA   
School responsibility for 0.537  64.160 * 0.113  60.400 * 18.209   3.000         –  
     determining teacher salaries (13.839)   (13.400)   (3.771)   (9.993)   (11.780)     (8.805)       
Homework 6.121  8.547 + 1.936  4.177 + -1.952   14.265 * 4.582  
  (4.408)   (4.218)   (1.323)   (1.628)   (1.399)     (2.381)   (2.813)   
Teaching limited by                 
  Uninterested parents -62.004 *             –  4.348  -10.258  4.247   -17.825 + -17.097 + 
 (17.329)    (7.662)  (7.962)  (8.411)   (7.057)  (7.067)  
  Interested parents 58.296 * -46.875 * -13.949  14.285  19.899   34.660 +             –  
  (21.940)   (18.010)   (9.189)   (16.046)   (12.724)     (16.754)       
Family background controls yes  yes  yes  yes  yes   yes  yes  
Resource controls yes  yes  yes  yes  yes   yes  yes  
Imputation controls yes  yes  yes  yes  yes   yes  yes  
Students [Unit of observation] 6722   10271   5827   8285   11643     10973   6014   
Schools [Unit of clustering] 86  151  150  137  147   183  134  
R2 0.239  0.094  0.183  0.299  0.164   0.231  0.267  
R2 (without imput. controls) 0.180   0.090   0.172   0.292   0.149     0.207   0.235   
Significance levels (based on clustering-robust standard errors): * 1 percent. – + 5 percent. – ° 10 percent. 

 

 



Appendix Tables: Descriptive Statistics 

(Only for reference to the referees and editors, not for publication in the journal.) 

 

Table A1: Descriptive Statistics: Sample Size and Student Performance 
Sample size: Absolute numbers. – Student performance: International test scores.  

Standard deviation in parentheses.  Standard deviation in percent of country mean test score in brackets.  

  HON JAP KOR SIN THA   USA FRA 
Sample size         
   Students 6752 10271 5827 8285 11643  10973 6014 
   Classes 171 302 300 274 293  529 253 
   Schools 86 151 150 137 147   183 134 
Student performance         
   Math score 575.8 588.3 592.3 622.3 508.3  487.8 514.4 
      Standard deviation (100.8) (100.5) (107.8) (93.2) (83.4)  (90.9) (78.3) 
      Standard deviation/score (in percent) [17.5] [17.1] [18.2] [15.0] [16.4]  [18.6] [15.2] 

   Science score 508.7 551.5 550.1 576.2 508.9  521.4 473.9 
      Standard deviation (88.7) (90.4) (93.9) (102.7) (72.6)   (106.2) (78.9) 
      Standard deviation/score (in percent) [17.4] [16.4] [17.1] [17.8] [14.3]  [20.4] [16.7] 
Position in international ranking         
   Math, 7th grade (out of 37 countries) 4 3 2 1 17  22 19 
   Math, 8th grade (out of 39 countries) 4 3 2 1 19  27 13 
   Science, 7th grade (out of 37 countries) 15 4 2 1 17  11 28 
   Science, 8th grade (out of 39 countries) 23 3 4 1 20  16 27 

 

 



Table A2: Descriptive Statistics: Student and Family Background 
Country means. Standard deviations in parentheses. – Only non-imputed data. Weighted by sampling 

probabilities. 

  HON JAP KOR SIN THA   USA FRA 
Upper grade 0.500 0.512 0.504 0.502 0.492  0.502 0.487 
 (0.500) (0.500) (0.500) (0.500) (0.500)  (0.500) (0.500) 
Age 13.688 13.902 13.710 13.939 13.884  13.735 13.805 
 (0.884) (0.576) (0.611) (0.835) (0.716)  (0.719) (0.910) 
Sex (female) 0.449 0.483 0.438 0.492 0.594  0.498 0.496 
  (0.497) (0.500) (0.496) (0.500) (0.491)   (0.500) (0.500) 
Born in country 0.870              – 0.991 0.920 0.989  0.926              – 
 (0.337)  (0.096) (0.272) (0.105)  (0.261)  
Living with both parents 0.901              – 0.876 0.907 0.852  0.791 0.862 
  (0.299)  (0.330) (0.290) (0.355)   (0.406) (0.345) 
Parents’ education          
  Primary 0.189              – 0.079 0.229 0.636  0.015 0.092 
 (0.392)  (0.269) (0.420) (0.481)  (0.122) (0.289) 
  Some secondary 0.394              – 0.178 0.000 0.113  0.059 0.246 
 (0.489)  (0.383) (0.000) (0.317)  (0.235) (0.431) 
  Finished secondary 0.280              – 0.414 0.565 0.114  0.192 0.334 
 (0.449)  (0.493) (0.496) (0.318)  (0.394) (0.472) 
  Some after secondary 0.053              – 0.090 0.134 0.027  0.375 0.145 
 (0.224)  (0.286) (0.341) (0.161)  (0.484) (0.352) 
  Finished university 0.084              – 0.238 0.072 0.111  0.359 0.183 
  (0.278)  (0.426) (0.259) (0.314)   (0.480) (0.387) 
Books at home          
  Less than one shelf (<=10) 0.208              – 0.088 0.108 0.187  0.081 0.054 
 (0.406)  (0.283) (0.310) (0.390)  (0.273) (0.226) 
  One shelf (11-25) 0.281              – 0.109 0.219 0.301  0.124 0.186 
 (0.450)  (0.312) (0.413) (0.459)  (0.330) (0.389) 
  One bookcase (26-100) 0.301              – 0.335 0.408 0.334  0.279 0.361 
 (0.459)  (0.472) (0.491) (0.472)  (0.449) (0.480) 
  Two bookcases (101-200) 0.103              – 0.240 0.145 0.093  0.209 0.196 
 (0.304)  (0.427) (0.352) (0.290)  (0.407) (0.397) 
   More than two bookcases  0.107              – 0.228 0.120 0.086  0.306 0.204 
      (>200) (0.309)  (0.420) (0.325) (0.280)   (0.461) (0.403) 
Community location          
  Geographically isolated 0.026 0.012 0.007 0.000 0.165  0.034 0.000 
 (0.160) (0.107) (0.081) (0.000) (0.371)  (0.180) (0.000) 
  Close to town center 0.679 0.382 0.540 0.392 0.234  0.442 0.391 
  (0.467) (0.486) (0.498) (0.488) (0.423)   (0.497) (0.488) 

 

 



Table A3: Descriptive Statistics: Resources 
Country means. Standard deviations in parentheses. – Only non-imputed data. Weighted by sampling 

probabilities. 

  HON JAP KOR SIN THA   USA FRA 
Math class size 38.838 36.556 55.934 33.196 53.591  27.400 25.376 
 (5.583) (4.026) (24.807) (7.074) (28.312)  (15.637) (3.277) 
Grade-average class size 40.136 36.302 49.893 32.515 42.804  25.624 25.357 
  (3.687) (4.584) (5.282) (6.251) (5.395)   (4.541) (2.570) 

         
  None 0.629 0.521 0.367 0.733 0.115  0.456 0.385 
 (0.483) (0.500) (0.482) (0.442) (0.319)  (0.498) (0.487) 
  A lot 0.058 0.071 0.180 0.024 0.452  0.064 0.178 
  (0.234) (0.256) (0.384) (0.153) (0.498)   (0.245) (0.383) 
Instruction time  8.625              – 9.247 8.366 9.947  7.683 7.039 
(in 100 hours of 60 minutes per year) (1.615)  (1.829) (0.512) (1.544)   (2.228) (1.506) 
Math teacher’s sex (female) 0.386 0.248 0.496 0.599 0.690  0.688 0.484 
 (0.487) (0.432) (0.500) (0.490) (0.463)  (0.463) (0.500) 
Math teacher’s experience 9.124 13.273 12.095 17.540 9.739  15.076 19.784 
(in years) (8.985) (9.166) (9.185) (12.378) (7.651)   (9.751) (10.297) 
Math teacher’s education          
    Less than secondary 0.000              –              – 0.089 0.000               – 0.007 
 (0.000)   (0.285) (0.000)   (0.086) 
    Secondary only 0.354              – 0.003 0.350 0.053               – 0.338 
 (0.478)  (0.058) (0.477) (0.224)   (0.473) 
    BA or equivalent 0.617              – 0.907 0.512 0.908  0.568 0.396 
 (0.486)  (0.291) (0.500) (0.289)  (0.495) (0.489) 
    MA/PhD 0.028              – 0.090 0.048 0.039  0.432 0.259 
  (0.166)  (0.286) (0.215) (0.194)   (0.495) (0.438) 

Shortage of materials 

 

Table A4: Descriptive Statistics: Institutional Features 
Country means. Standard deviations in parentheses. – Only non-imputed data. Weighted by sampling 

probabilities. 

  HON JAP KOR SIN THA   USA FRA 
School responsibility for  0.103 0.076 0.374 0.067 0.961  0.892 0.000 
  determining teacher salaries (0.305) (0.265) (0.484) (0.249) (0.194)   (0.310) (0.000) 
Math          
  Homework assignment 1.362 0.716 1.268 2.636 3.417  1.647 1.542 
  (in hours per week) (0.936) (0.747) (1.027) (1.444) (2.290)   (1.075) (0.693) 
  Teaching limited by          
    Uninterested parents 0.100              – 0.071 0.090 0.142  0.149 0.128 
 (0.299)  (0.257) (0.286) (0.349)  (0.356) (0.335) 
    Interested parents 0.055 0.008 0.021 0.030 0.062  0.043              – 
  (0.228) (0.089) (0.145) (0.170) (0.241)   (0.204)  
 

 



 

Table A5: Missing Values 
Unweighted percentage of students with missing data.  

  HON JAP KOR SIN THA   USA FRA 
Age 0.008 0.006 0.000 0.001 0.014  0.001 0.065 
Sex 0.001 0.000 0.000 0.000 0.009  0.000 0.035 
Born in country 0.028 1.000 0.019 0.006 0.011  0.018 1.000 
Living with both parents 0.018 1.000 0.001 0.008 0.006   0.020 0.037 
Parents’ education 0.122 1.000 0.058 0.003 0.069  0.101 0.450 
Books at home 0.020 1.000 0.003 0.007 0.017  0.023 0.044 
Community location 0.113 0.006 0.013 0.000 0.116   0.150 0.107 
Math class size 0.190 0.006 0.069 0.006 0.592  0.320 0.135 
Science class size 0.225 0.010 0.113 0.026 0.620  0.574 0.174 
Grade-average class size 0.111 0.000 0.009 0.003 0.136   0.205 0.122 
Shortage of materials 0.111 0.016 0.020 0.016 0.123  0.152 0.097 
Instruction time 0.218 1.000 0.064 0.000 0.162   0.320 0.396 
Math teacher characteristics          
  Teacher’s sex 0.064 0.006 0.036 0.006 0.355  0.138 0.074 
  Teacher’s experience 0.048 0.017 0.043 0.010 0.413  0.140 0.103 
  Teacher’s education 0.070 1.000 0.036 0.020 0.359   0.142 0.092 
School determines teacher salaries 0.123 0.020 0.020 0.007 0.308   0.172 0.123 
Math          
  Homework assignment 0.132 0.026 0.054 0.011 0.376  0.280 0.124 
  Uninterested parents limit 0.131 1.000 0.066 0.025 0.358  0.287 0.103 
  Interested parents limit 0.137 0.010 0.070 0.023 0.358   0.290 1.000 
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