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1 Introduction

Lobbying, sports events or promotions can be viewed as contests in which competitors
spend resources in hope of winning a prize. There is a large body of literature on
the optimal design of contests. Previous authors investigate, for example, contest
design as a principal-agent problem (Singh and Wittman, 2001), the optimal choice
of several prizes (Glazer and Hassin, 1988) and the optimal design of rent-seeking
contests (Kohli and Singh, 1999). Other studies look at the optimal contest success
function (Dasgupta and Nti, 1998) and the optimal structure of multi-stage contests
(Gradstein, 1998, Gradstein and Konrad, 1999, Amegashie, 1999, 2000). The contest
designer is usually supposed to maximize expected profit which equals expected total
output (performance) of the contestants less payments (prizes) to the contestants.!

An important aspect in many contest design problems is that a close contest is often
more exciting for the audience and attracts more attention than a unbalanced contest.
The designer’s payoff is then increasing not only in the contestants’ performance, but
also in the closeness of the contest or, in other words, in competitive balance between
contestants. Obvious examples are sports or song contests which are financed by ad-
vertising or admission fees. The closer such a contest is, the larger is the viewers’
and the firms’ willingness-to-pay for watching and sponsoring it and the larger is the
designer’s revenue. Less obvious but also important examples can be found in the
political economy of fiscal federalism, e.g. if the central government allocates grants to
regional governments which lobby for the grants. The voters represent the ’audience’
in this contest and the central government should care about ’balanced’ lobbying, since
otherwise it may be punished by voters in the next election.

An interesting study of the implications of competitive balance for optimal contest
design is provided by Singh and Wittman (1998). They consider a two-player contest

with private information about the abilities of the players. The designer chooses the

! Gradstein (1998) and Gradstein and Konrad (1999) focus on effort-maximizing contests, since in
their models a contestant’s output is determined by effort and the prize is fixed. Dasgupta and Nti
(1998) additionally take into account that the designer herself may value the prize. In rent-seeking
contests, the designer is often assumed to minimize effort expenditures of the contestants, since these

expenditures are regarded social waste (e.g. Amegashie, 1999, 2000).



prize awarded to the winner. Her objective is increasing in total performance of the
contestants and in competitive balance. The latter is measured by the difference in the
contestants’ performance. The optimal prize is shown to fall short of the optimal prize
in case the designer’s payoff depends on total performance only.?

The paper at hand further investigates optimal contest design when the designer’s
objective is influenced by competitive balance. A contest model is presented which dif-
fers from the Singh-Wittman model mainly in two respects. First, competitive balance
is not measured by the difference in performances. In the view of spectators, a contest
is close if the outcome is uncertain and this uncertainty is the highest if all players
have an equal chance of winning. We therefore measure competitive balance by the
difference in winning probabilities of the contestants. It will be shown that, in general,
both measures are not equivalent. Second, changing the measure of competitive bal-
ance complicates the analysis. In order to keep the analysis tractable, the assumption
of asymmetric information is therefore dropped. Contestants are assumed to differ in
abilities or, equivalently, in effort costs which are common knowledge. A symmetric
information structure is assumed by many of the authors mentioned above.

Under these alternative assumptions, the first aim of the paper is to reexamine how
the inclusion of competitive balance in the designer’s objective changes the optimal
prize. The result turns out to depend on the shape of the so-called contest success
function (CSF) which links a contestant’s winning probability to effort levels of all
contestants. For a specific functional form of the CSF, including competitive balance
in the designer’s objective lowers the optimal prize. This is in line with the result of
the Singh-Wittman model. But other specifications of the CSF lead to the opposite
result. Moreover, we fully characterize the class of CSFs for which the optimal prize
is independent of competitive balance. This independence result is of special interest,
since the class of CSFs derived contains the power function which is frequently used in
contest theory (e.g. Tullock, 1980, Gradstein and Konrad, 1999, Amegashie, 2000).

Besides the optimal prize policy, the second aim of the paper is to investigate the

designer’s optimal regulation of the contestants’ effort costs. It is assumed that the

2A discrete version of this model is analyzed in Singh and Wittman (1988). Equity aspects are
also discussed in the interest group model of Kohli and Singh (2001). But their framework is quite
different from the model of Singh and Wittman (1998) and the one presented here.



designer can increase effort costs, but that it is impossible to discriminate between
contestants. Cost regulation of this kind can be interpreted as a tightening of the
contest rules. It is observed, for example, in contests where the contestants use technical
equipment like cars in motor racing. Another interpretation of non-discriminatory
cost regulation is the prohibition of doping. Intensifying doping controls increases the
expected cost of doping for all contestants. Our analysis shows that there is no scope for
cost regulation, if the designer’s objective depends on performance only. Tightening
the contest rules harms performance of the contestants and decreases the designer’s
payoft. However, reducing the contestants’ abilities may render the contest closer.
Cost regulation may therefore be optimal, if competitive balance matters.

It should be noted that competitive balance of contests is also discussed in the
rapidly growing literature on sport economics. For excellent surveys see Fort and Quirk
(1995) and Szymanski (2003). But the focus in this literature slightly differs from the
one considered here. A great part of the articles is not concerned with general prize
and cost regulation, but investigates specific sport policy instruments like e.g. revenue
sharing or rookie draft. Those studies which focus on prize and cost policy usually
investigate other kinds of this policy as, for example, the division of a given trophy
money on a first and second prize as in Szymanski and Valletti (2002). Moreover, a
systematic analysis of the impact of different CSFs on optimal contest design in the
presence of competitive balance is missing also in the sport economic literature.

The paper is organized as follows. Section 2 presents the contest model, derives an
equilibrium and conducts comparative statics. Sections 3 and 4 consider the designer’s
optimal prize policy and cost regulation, respectively. In Section 5, the designer deter-

mines both the prize and the cost regulation parameter. Section 6 concludes.

2 Asymmetric Contest

Consider a contest with two risk-neutral contestants competing for a prize v > 0. The
contestants take the prize as given. Contestant ¢ = 1,2 expends effort x; > 0 in hope
of winning the prize. The probability that contestant ¢+ wins the contest is

P'(i,z5) = H(z;) + H(z;)

i # Jy (1)
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with H(z) > 0 and H'(z) > 0 for all z > 0. H(z) can be interpreted as the output
or performance of a contestant who expends effort z. The winning probability of
contestant ¢ then equals the ratio of ¢’s performance to total performance of both
players. Skaperdas (1996) refers to P! as the contest success function (CSF), while in
Dasgupta and Nti (1998) the function H represents the CSF. We refer to both P* and
H as CSF, since P is determined by H alone. The specification in (1) ensures that
the CSF satisfies the axioms (A1) to (A5) imposed by Skaperdas (1996).

Contestants differ in the costs of effort. Unit cost of contestant ¢ is ¢; > 0. Con-
testant 1 is the low-cost player and contestant 2 the high-cost player, i.e. ¢; < co.
In addition, the contestants’ unit costs are influenced by a uniform cost parameter 7.
This parameter is under the control of the contest designer and is taken as given by
the contestants. Total effort cost of contestant ¢ is (¢; + 7)z;. Contestant i’s expected

profit equals the expected prize less effort cost, i.e.
T (i, 25) = PY(i,25) v — (ci+ )i, i # . (2)

Notice that such a contest with asymmetric costs is equivalent to a contest with asym-
metric abilities. To see this, consider a contest with the CSF Hla;(7)e;] where e;
represents contestant ¢’s effort expenditure and a;(7) indicates 4’s ability as a function
of the parameter 7. Profit of contestant 7 is then TI(e;, ;) = Pi[a;(7)e;, a;(T)e;] v — €.
This profit function is equivalent to (2), if we define z; := a;(7)e; and a;(7) := 1/(¢;i+7).
Hence, the contest with asymmetric costs can be interpreted as a contest with asym-
metric abilities, where contestant 1 is more able than contestant 2 and an increase in
7 harms the contestants’ abilities to transform effort into performance.

The first- and second-order conditions for an interior (pure-strategy) Nash equilib-
rium of the contest are, respectively,

H'(z;)H(a)
[H (z:) + H (z;)]

Hii(fﬂi,lﬂj): ;v —(ci+7)=0, i # 7 (3)

H" () [H (x;) + H(x;)] — 2[H'(2;)]
[H(z;) + H(z;)]?

H(z;)v <0, i#£7. (4

It is assumed throughout that an equilibrium exists so that (3) and (4) are satisfied
and the equilibrium profits of both contestants are positive. Equilibrium effort levels

are functions of v and 7, i.e. zt = X'(v,7) and 25 = X?(v, 7). Whether an equilibrium
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really exists, depends on the shape of the CSF. Existence will therefore explicitly be
proven when we introduce specific functional forms of the CSF (see footnote 4 and 5).

For the time being, we only need the condition
H(z)H"(z) — [H'(z)]? <0  forall z>0 (5)

which is necessary for the existence of an equilibrium.®> This can be proven by con-
tradiction. Suppose an equilibrium exists and (5) is not satisfied. Equation (3)
yields (co + 7)H'(z1)H(z3) = (cy + 7)H'(x3)H (x}). ¢ < ¢ implies H'(z%)/H(z}) <
H'(x3)/H (z3). If (5) is not satisfied, H'(x)/H(x) is non-decreasing in z and we obtain
¢} < z3. But it can then be shown that II} , (2},23) > 0, i.e. contestant 1 does not
attain a profit maximum and there does not exist an equilibrium. This contradicts the
initial assumption. Hence, if an equilibrium exists, condition (5) has to be satisfied.

H'(z)/H(z) is then decreasing in z and we obtain z} > z3. This immediately implies

Proposition 1. Equilibrium effort, performance and winning probability are larger for

the low-cost contestant than for the high-cost contestant for all v and 7.

The intuition of Proposition 1 is obvious. Contestant 1 is more able than contestant 2,
since she achieves every given effort level at lower cost. She employs this cost advantage
in order to realize higher effort and performance with the consequence that her chance
of winning is larger than for contestant 2. Using the terminology of Baik (1994) and
Nti (1999b), contestant 1 is the favorite and contestant 2 the underdog.

For further use, a comparative static analysis of the Nash equilibrium is needed.
Of interest is the impact of v and 7 on equilibrium effort levels z; = X*(v,7), ag-
gregated performance and competitive balance. Aggregated performance is defined as

a = H(zy) + H(zz). In equilibrium, it becomes
a* = H[X'(v,7)] + H[X?(v,7)] =: A(v, 7).

A natural measure of competitive balance is the variance of the contestants’ winning
probabilities. The more equally distributed winning probabilities are, the closer is the

contest and the better is competitive balance. In a two-player contest, the mean of

31t is also necessary for the stability condition derived by Nti (1999a, Proposition 3).



winning probabilities is 1/2 and the variance reads 0% = Y-, (P — 1/2)?/2. Taking
into account P! + P? = 1, it is straightforward to show that the variance equals
0% = (P'— P*)?/4. The standard deviation of winning probabilities is ¢ = (P'— P?)/2.
Competitive balance may thus be measured by the difference in winning probabilities,
b= PY(zy,z2) — P*(x9,2;). In equilibrium, this difference can be written as

H[XY(v,7)] — H[X?(v,T)]

V= X0, )]+ HIX?(0,7)]

=: B(v, 7).

Proposition 1 implies * > 0 for all v and 7. If b* increases (decreases), then equilib-
rium competitive balance is worsened (improved). Notice that measuring competitive
balance by the difference in performances, ¢* = H(x}) — H(z3), is not equivalent to
measuring competitive balance by b*. If the favorite expends more (less) effort and the
underdog less (more), then both ¢* and b* increase (decrease). But if effort levels move
into the same direction, then it is possible that b* rises while ¢* falls et vice versa.

Totally differentiating the first-order conditions (3) yields the Jacobian determinant

’U2H1H2 ’U2(HIHI)2(H1 - H2)2
U T (gr(H, + H) — 2(H! 2] 1152 0 6
(7, o L0 1) =201+ SR s >0, )

A =

where, for notational convenience, H; := H(z}), H] := H'(z}) and so on. The sign of
the Jacobian follows from the second-order conditions (4). With respect to the prize

v, the following comparative static results are obtained:

vH;HY | (H)? — H;HY |

X (v,7) AHE ) D (7
Ay(v,7) = H X! (v,7)+ H}X2(v,7), (8)
Buor) = 2 () - py), ©)

where the subscript v denotes the partial derivative with respect to the prize and

H () H' ()

Fo) = "y

Attention is restricted to CSFs for which F(z) is monotone. (7) to (9) then yield*

4The CSF (10) is twice differentiable and satisfies H(0) = 0, H'(z) > 0 and H"(z) < 0 for all



Proposition 2. (a) An increase in the prize v enhances equilibrium effort and perfor-
mance of both contestants and equilibrium aggregated performance.

(b) An increase in the prize v improves equilibrium competitive balance if
H(z) = kIn(1 + z) with k>0, (10)
It worsens equilibrium competitive balance if
H(z) = exp{z*} with  k €]0,1]. (11)
Equilibrium competitive balance is independent of the prize v if and only if
H(z) = [(1 — K )koz + (1 — kl)kg,] FE with k<1, k> 0, ks > 0. (12)

Proof: Taking into account (5) in (7) yields Xi(v,7) > 0 which by (8) implies
Ay(v,7) > 0. This together with H' > 0 proves (a). For proving (b), suppose first H
takes on the functional form (10). Then F(z) = —In(1+z) and F'(z) = —1/(14z) < 0.
z; > x3 implies F(z}) < F(z}) and B,(v,7) < 0, i.e. an increase in v improves
competitive balance. If H is defined by (11), then F(z) = (k — 1 + ka*)/kz* and
F'(z) = —(k — 1)/z*"! > 0 according to k €]0,1[. Taking into account z} > z% yields
F(z}) > F(x3) and B,(v,7) > 0, i.e. an increase in v reduces competitive balance.

It remains to prove under which conditions competitive balance is independent of
v. According to (9), B,(v,7) = 0 if and only if F(z}) = F(23). Since F(z) is assumed

to be monotone, F'(z}) = F(z}) if and only if F'(x) = k; = constant or, equivalently,
H(z)H"(z) — k1 [H'(z)]> = 0. (13)

ki has to be smaller than one, since otherwise (5) is violated. (13) is a second-order

differential equation in H(x). The general solution is obtained as follows. Define

z > 0. According to Szidarovszky and Okuguchi (1997), this is sufficient for the existence of a contest
equilibrium. Under the CSF (12), we can explicitly solve for the equilibrium effort levels. It is then
straightforward to show that an equilibrium exists, if the contest is not ’too’ asymmetric and if ks
is not larger than a threshold value. Under the CSF (11), it is not possible to analytically solve for
the equilibrium effort levels. But numerical simulations show that there are parameter constellations
which ensure existence of an equilibrium. For example, if £ = 0.5, v = 10, ¢; = 0.5, ¢ = 1.5 and
7 = 0.5, then z} ~ 1.33, 23 ~ 0.33, II}_, (a},23) ~ —2.89, II2_ . (23, 2}) ~ —2.94, II' (2, z3) ~ 5.08

and I1?(z}, ;) = 2.94. Details on these computations can be obtained upon request.
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K := H' so that H" = dK/dz = H' - (dK/dH) = K - (dK/dH). Inserting this into
(13) and taking into account K = H' > 0 yields

dK
Hom = kK =0 (14)

which is a first-order differential equation in K(H). If we separate variables, (14)
becomes dK/K = ki - ({H/H). Integrating both sides gives K(H) = koH"' as the
general solution to (14). ko > 0 ensures K = H' > 0. Furthermore, K = H' implies
koH* = H' which is a first-order differential equation in H(z). Separating variables,
integrating and solving for H yields (12). ks > 0 ensures H > 0. Thus, (12) is the
general solution to (13) and captures all specifications of H implying B,(v,7) =0. W
An increase in the prize makes the contest more attractive and induces both contes-
tants to increase effort and performance. According to Proposition 2 (a), this is true
independently of the functional form of the CSF. In contrast, Proposition 2 (b) shows
that the shape of the CSF is crucial for the impact of the prize on competitive balance.
If the CSF takes on the special form (10), then a higher prize increases effort levels
in such a way that the winning probability of the favorite declines and the winning
probability of the underdog rises. Competitive balance is improved. Conversely, if
the CSF is represented by (11), an increase in the prize makes it more likely that the
favorite wins. Competitive balance deteriorates. Finally, equation (12) fully charac-
terizes the class of CSFs under which winning probabilities and competitive balance
are independent of the prize. This independence result is of special interest, since for
ki = (r—1)/r, ko = 7 and k3 = 0 the function (12) encompasses as special case the
power CSF H(x) = z" that has frequently been used in the previous literature.

For all CSFs (10) to (12) it is straightforward to show that an increase in the
prize raises the favorite’s performance by more than the underdog’s performance. The
difference in performances, ¢* = H(z}) — H(z}), increases. But the increase in ¢* does
not necessarily imply a reduction in competitive balance, provided competitive balance
is measured by the difference in winning probabilities. The impact of the prize on b*
is not unique, but depends on the shape of the CSF. This insight of Proposition 2 is

important for the optimal contest design considered in the next sections.



The comparative static results with respect to the cost parameter 7 are

o | H;HY (H; + Hy) = 2H;(H})? — H{H}(H; — H;)|

Xi(v, 1) = NCASTAE . i, (15)
y B vy, Hil; [Hé’(Hi + Hj) - 2(H;~)2] + vH! Hy(H, — Hy)(H} — H!)
Ar) = A(H, + Hy)®
g g _ 1\2

v Hi|HH] - (H)?] .

A(H, + Hy)? )

_ HHH H T .
BT(/Uy 7—) - A(Hl + H2)4 |:G(:E2) G(IEI)] y (17)

where the subscript 7 denotes the partial derivative with respect to 7 and

H(z)H"(z) — [H'(z)]?
H(z)H!'(x)

G(z) =
Attention is restricted to CSFs implying G to be monotone. (15) to (17) then yield®

Proposition 3. (a) An increase in the cost parameter T reduces equilibrium effort
and performance of the favorite and equilibrium aggregated performance. The effect on
equilibrium effort and performance of the underdog is not unique.

(b) An increase in the cost parameter T improves competitive balance if H(x) is repre-

sented by (10), (11) or (12). It worsens competitive balance if

H(z) = exp {/ exp {—t*} dt} with k> 1. (18)
0
Equilibrium competitive balance is independent of T if and only if

H(z) = exp {eXp {kl(x; ks)} + k2}

with k1 <0,kg, k3 € R (19)

5Under the CSFs (18) and (19) it is again not possible to analytically solve for the equilibrium effort
levels. Existence of an equilibrium is therefore demonstrated by way of example. If the CSF is (18)
and if k = 2,v =10, ¢; = 0.5, ¢z = 1.5 and 7 = 0.5, then 2} ~ 0.95, 23 ~ 0.45,II} , (a},23) ~ —4.29,
2, ., (25, 27) ~ —2.22, II' (%, 23) ~ 4.87 and I1*(z3, z}) ~ 3.35. If the CSF is (19) and if k = —1,
ko = ks =0,v=10,¢; =0.5,c; = 1.5 and 7 = 0.5, then z} ~ 0.87, 23 ~ 0.18,II;_, (z},23) =~ —3.47,
02 . (x%,7%) ~ —2.23, 1! (z}, 24) ~ 5.16 and I1?(z3, z}) =~ 3.61.
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Proof: Proposition 1 implies H; — Hy > 0. Using this and (4) in (15) proves X!(v,7) <
0. The sign of X2(v,7) is ambiguous. This is shown by way of example. Suppose
H(z) = z" and ¢; = 0.5, cg = 3.5, v = 10 and 7 = 0.5. Then X2(v,7) =~ —0.039
if r = 0.4, whereas X2(v,7) & 0.020 if » = 0.8. To complete the proof of (a), we
have to show A (v,7) < 0. Consider first the case H"(z) > 0. z} > z} then implies
H, > H, and H] > H. Taking into account this and (4) in the first line of (16) yields
Ar(v,7) <0. For H"(z) <0, A;(v,7) < 0 follows immediately from the second line of
(16). In order to prove (b), consider first the CSF (10). Then

1+1n(1 + 2) _14+In(142) +[In(1+2))?

@) =~aromats ™ O T aima+op

If H satisfies (11), then G(z) = (k — 1)/z and G'(z) = (1 — k)/z* > 0. For H
defined by (12), we obtain G(z) = —ky/(kez + k3) and G'(z) = k2/(kox + k3)? > 0.
Hence, if H takes on one of the functional forms (10) to (12), then G(z}) > G(z3)

> 0.

and B, (v,T) < 0, i.e. an increase in 7 improves competitive balance. H satisfying (18)
implies G(z) = —kz*~! and G'(z) = —k(k — 1)z*=2? < 0 according to k > 1. It follows
G(z3) > G(z3) and B,(v,7) > 0, i.e. competitive balance deteriorates as 7 increases.
Finally, we have to show under which functional forms of H the parameter 7 does not
influence competitive balance. From (17) follows B, (v,7) = 0 if and only if G(z}) =
G(z7). Since G(z) is assumed to be monotone, G(z}) = G(z7) if and only if G(z) =

ki = constant. (5) requires k; < 0. G(z) = k; is equivalent to
H(z)H"(z) - [H'(2)]" — k1 H(z)H'(z) = 0 (20)

which is a second-order differential equation in H(z). The general solution is obtained
by defining K := H' > 0. Taking into account H" = K - (dK/dH), (20) becomes

e K=k (21)

which is a first-order differential equation in K(H). Using the integrating factor y :=
exp{ — [dH/H} = 1/H, the general solution to (21) is

K = H' implies H' = k;HIn H — koH. Separating variables, using the transformation
U :=kInH — ky with dU/dH = k,/H and integrating yields U = exp{ki(z + ks3)}.

10



Resubstituting for U and solving for H gives (19). Hence, (19) is the general solution
to (20) and determines all functional forms of H implying B, (v,7) = 0. |
An increase in the uniform cost parameter makes it more costly for the contestants
to perform well in the contest. As a consequence, the favorite reduces effort and
performs worse. Although the underdog may increase effort, total performance of both
contestants declines. Proposition 3 (a) shows that this is true for every CSF. According
to Proposition 3 (b), however, the impact of the cost parameter on competitive balance
depends on the functional form of the CSF. If the CSF takes on one of the forms already
considered in Proposition 2, then an increase in the cost parameter makes it more likely
that the underdog wins. Competitive balance is improved. This result may be seen as
intuitively plausible and the only one possible, since an increase in the cost parameter
lessens the (relative) cost advantage of the favorite (i.e. (ca + 7)/(c1 + 7) falls). But
(19) fully characterizes the class of CSFs under which variations in the cost parameter
leave unaltered winning probabilities and competitive balance. Competitive balance
may even be worsened by an increase in 7, for example, under the CSF (18).

The insight that a reduction in the cost advantage of the favorite does not necessarily
improve competitive balance might be viewed paradoxical. What the decline in the
favorite’s advantage really induces is a reduction in the difference in performances,
¢* = H(x})— H(x}). This is true for every CSF as can be seen by employing (4), H; >
Hj and (15). But the decline in the difference in performances does not necessarily
come along with an improvement of competitive balance measured by the difference in
winning probabilities. Proposition 3 shows that an increase in the cost parameter may
leave unchanged or even increase the difference in winning probabilities.

A remark on the relation of Proposition 3 to comparative static results of previous
studies is useful. Stein (2002) investigates a contest with N > 2 players who differ in
their abilities. Focusing on the linear CSF, he shows that an increase in contestant ¢’s
relative ability enhances #’s winning probability, while reducing winning probabilities
of all other contestants (see his Proposition 5°). Although not explicitly analyzed, an
immediate consequence is that competitive balance deteriorates (improves) if i is the
strongest (weakest) player. This result is similar to the first statement in Proposition

3 (b). On the one hand, Stein’s result is more general than Proposition 3 (b), since he
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allows for more than two contestants. On the other hand, Proposition 3 (b) is more
general than the result of Stein, since it is true not only under the linear CSF, but
under all CSFs (10) to (12). Proposition 3 (b) also provides CSFs under which the
reversed result is obtained. Hence, Stein’s result and Proposition 3 (b) complement
each other. Furthermore, Baik (1994) analyzes a two-player version of Stein’s model.
He shows that aggregated effort and performance are maximized in the even contest
with both contestants having the same ability. At first glance, this result seems to
contradict the finding in Proposition 3 (a) where it has been shown that reducing the
advantage of the favorite lessens aggregated effort and performance. But in our model
the decline in the favorite’s advantage comes from a uniform decrease in the abilities
of both contestants, whereas in Baik’s model the decline comes from a reduction in the
favorite’s ability and/or an increase in the underdog’s ability. We will further discuss

this difference in Section 4 when optimal cost regulation is considered.

3 Optimal Prize Policy

Next, the designer’s problem of optimally designing the contest is considered. In this
section, it is assumed that the designer chooses the prize, but takes the cost parameter
as given. Cost regulation is considered in the next sections.

The designer’s revenue is denoted by R(a,b). It depends on aggregated performance

a and competitive balance b. R(a,b) is supposed to satisfy
Ry(a,b) > 0, Reo(a,b) <0, (22)
Ry(a,) 20 & bS0,  Ry(a,b) <0. (23)

Equation (22) states that an increase in the performance of the contestants enhances
the designer’s revenue at non-increasing rates. According to (23), the revenue func-
tion is inverted U-shaped with respect to the difference in winning probabilities with a
maximum at the point where the difference vanishes. Improving competitive balance
therefore increases the designer’s revenue and, for given performance, revenue is max-
imized in the even contest with both contestants having the same chance of winning.

The designer maximizes profit with respect to the prize v. In doing so, she takes into

12



account the impact of the prize on aggregated performance and competitive balance in

the contest equilibrium. The designer’s maximization problem reads

max II(v) = R[A(v), B(v)] — v, (24)

v
where 7 is suppressed in A(v) and B(v), since in this section it is taken as given. The

first-order condition for the designer’s profit maximum is
II,(v) =0 & R,[A(v), B(v)]A,(v) + Ry[A(v), B(v)]B,(v) = 1. (25)

A marginal increase in the prize influences the designer’s profit through three channels.
First, it increases the designer’s cost. This marginal cost is represented by the RHS of
(25). Second, it makes the contest more attractive and increases effort and performance
of the contestants such that the designer’s revenue is enhanced. This marginal revenue
is captured by R,(:)A4,(v) > 0 in (25). Third, it may also alter the designer’s revenue
through a change in competitive balance. This effect is represented by Ry(-)B,(v) in
(25). Ry(-) is negative, because the difference in winning probabilities is positive in the
contest equilibrium. Hence, if the marginal increase in the prize improves competitive
balance (B, < 0), then revenue is enhanced and Ry(-)B,(v) > 0 represents marginal
revenue. In case the marginal increase in the prize reduces competitive balance (B, >
0), revenue declines and R,(-)B,(v) < 0 represents marginal cost. If the prize increase
does not affect competitive balance (B, = 0), then the marginal effect R,(-)B,(v)
vanishes. In sum, condition (25) states that all marginal effects of the prize have to be
equalized in the profit maximum of the designer.

Of special interest is how the inclusion of competitive balance in the objective of
the designer influences the optimal prize. We therefore compare the case in which the
revenue function satisfies (23) with the case in which the revenue function does not

depend on competitive balance, i.e. Ry = 0. The result is contained in

Proposition 4. Suppose Ry satisfies (23). If H(z) takes on the functional form (10)
((11)), then the optimal price v* is larger (smaller) than in case of Ry = 0. The optimal
price v* is the same as in case of Ry = 0 if and only if H(z) satisfies (12).

Proof: The optimal prize v* is determined by (25). This equation can be written as
R, [A(v"), B(v")]Ay(v*) + dRy[A(v*), B(v*)|B,(v*) — 1 = 0. (26)

13



For § = 1 we are in the case where R, satisfies (23). § = 0 simulates the case R, = 0.
Implicitly differentiating (26) yields
dv*  Ry(-)By(v*)

-7 M 20

where Ry(-) < 0 owing to b* > 0. II,, has to be negative according to the second-
order condition of the designer’s profit maximization. If H(z) is represented by (10),
Proposition 2 shows that B, < 0 and (27) implies dv*/d§ > 0, i.e. the optimal prize
in the case where R, satisfies (23) is larger than in the case R, = 0. The reversed
argument applies if H(z) is represented by (11). Finally, dv*/dé = 0 is equivalent to
B, = 0. According to Proposition 2, B, = 0 if and only if H(z) satisfies (12). [
The intuition of Proposition 4 is as follows. If the CSF is represented by (10), then we
know from Proposition 2 that a marginal increase in the prize improves both aggre-
gated performance and competitive balance. The revenue of the designer is therefore
increased not only because the contestants perform better, but also because the contest
becomes closer. The designer accounts for this additional positive effect of a prize in-
crease and chooses a larger prize than in the case where her objective does not depend
on competitive balance. This argument is reversed if the CSF takes on the functional
form (11). For the class of CSFs described by (12), a marginal increase in the prize
leaves unaltered the winning probabilities and competitive balance. Hence, the optimal
prize setting behavior of the designer is as if her revenue does not depend on compet-
itive balance. This independence result is of special interest, since (12) comprises as
special case the often used power CSF H(z) = z".

The findings in Proposition 4 contrast the result of Singh and Wittman (1998). They
show that the inclusion of competitive balance in the objective of the contest designer
reduces the optimal prize. The reason for this difference in results lies in the measure of
competitive balance. If we follow Singh and Wittman (1998) and measure the closeness
of the contest by the difference in performances, then the optimal prize in our model
is also unambiguously reduced by the inclusion of competitive balance. Remember
that an increase in the prize raises the difference in performance independently of the
functional form of the CSF (see p. 8). But the impact of the prize on the difference
in winning probabilities depends on the shape of the CSF. Using this difference as

measure of competitive balance therefore generates ambiguous results.
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4 Optimal Cost Regulation

Suppose now the designer takes as given the prize and instead regulates the contestants’
costs. Since she cares about competitive balance, the designer might want to make the
contest closer by treating the contestants differently, i.e. by increasing the cost of the
favorite and reducing that of the underdog. But in our model the designer controls
the uniform cost parameter 7 only and treats contestants equally. This assumption
reflects the idea that the designer is not able to discriminate between contestants. A
reason may be, for example, that the audience cannot observe the contestants’ costs and
therefore regards a unequal treatment unfair. Moreover, our contest with asymmetric
costs is equivalent to a contest with asymmetric abilities where an increase in 7 harms
the contestants’ abilities. Hence, 7 can be interpreted as a parameter representing the
rules of the contest. These rules are usually the same for all contestants.

When the prize is taken as given, the designer maximizes profit by maximizing

revenue. The associated optimization problem reads
max II(7) = R[A(7),B(r)] st. 72>0. (28)

For two reasons the cost parameter is supposed to be non-negative. First, allowing
negative values of 7 causes existence problems. The designer can always increase profit
by reducing the contestants’ costs, because performance is then improved. Second,
increasing the contestants’ costs is often easier for the designer than reducing the
costs. For example, in motor racing it is straightforward to restrict the technically
properties of the cars such that their performance is reduced, but it is far more difficult
to provide the teams with performance improving appliances. The Kuhn-Tucker first-

order conditions for the solution of (28) are
I (1) = Ru[A(7), B(T)]A-(T) + Ry[A(7), B(7)| B, (1) <0, 7Il;(1) =0, 7>0. (29)

A marginal increase in the parameter 7 reduces the designer’s profit by a decline in
aggregated performance of the contestants. This marginal cost of 7 is represented by
R,(-)A,(7) < 0 in (29). Furthermore, the marginal increase in 7 may influence the
designer’s profit through a change in competitive balance. This effect is represented

by Ry(-)B-(7) in (29). Remember that Ry(-) is always negative due to b* > 0. Hence,
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if competitive balance is improved as 7 increases (B, < 0), then the designer’s revenue
increases and Ry(-)B;(7) > 0 represents marginal revenue of 7. The reversed is true if
competitive balance is worsened (B, > 0) such that R,(-)B,(7) < 0 indicates marginal
cost of 7. If changes in 7 do not influence competitive balance, then Ry(-)B.(7) = 0
and the designer’s revenue is altered through changes in aggregated performances only,
but not through changes in competitive balance.

It is again of special interest how the inclusion of competitive balance in the de-
signer’s objective influences the optimal contest design. This question is answered in

the next proposition, where 7* denotes the optimal value of the cost parameter.

Proposition 5. R, = 0 implies 7* = 0. The same holds if Ry satisfies (23) and H(z)
is represented by (18) or (19). If Ry satisfies (23) and H(x) is represented by (10), (11)
r (12), then T may be positive.

Proof: Inserting R, = 0 into (29) implies II, < 0, since Ry(-) > 0 and A, < 0
according to (22) and Proposition 3 (a). The slackness condition in (29) then yields
7* = 0 which proves the first part of Proposition 5. If H(z) is defined by (18) or
(19), we know from Proposition 3 (b) that B, > 0. Owing to Ry(-) < 0, (29) again
implies II; < 0 and 7* = 0. It remains to show that 7* may be positive if H(x) is
represented by (10), (11) or (12). Under these functional forms of H, Proposition 3 (b)
shows that B, < 0. Consequently, IL, in (29) is not necessarily smaller than zero and
7* may become positive. This can be proven by way of example. Suppose H(z) = z.
Equilibrium aggregate performance and equilibrium competitive balance can then be
computed from (3) as
v Co — €1

Sararer PO iiarar
If R(a,b) = aa — Bb% with a, 8 > 0, then the cost parameter 7 satisfying IT.(7) = 0 is

A(T) (30)

/3(02 — 01)2 _a + co

av 2 (31)

7=

If the model parameters satisfy 28(ca — ¢1)? > av(ci + ¢z2), then 7™ = 7 > 0. [
According to Proposition 5, there is no scope for cost regulation if the designer’s revenue
depends on performance of the contestants only. Increasing the cost parameter to a

positive value would harm performance and unambiguously reduce the designer’s profit.
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The picture is less clear in case the designer additionally cares about competitive
balance. If the CSF is (18) or (19), then we know from Proposition 3 (b) that an
increase in the cost parameter does not improve competitive balance. Hence, the
designer still cannot profit from cost regulation. In contrast, if the CSF takes on one of
the functional forms (10) to (12), then Proposition 3 (b) states that the contest becomes
closer as the cost parameter increases. Consequently, the designer has to balance the
negative effect of reducing performance of the contestants and the positive effect of
improving competitive balance. If the latter effect is strong enough, it is rational for
the designer to shift the cost parameter to a positive value. This case is of special
interest, since it is true also for the often used power CSF H(z) = z".

Proposition 5 provides the rationale for cost regulation by way of example ’only’.
It is therefore desirable to gather some information about the condition under which
such a result prevails. We do this by conducting a comparative static analysis in case
of the linear CSF and the linear-quadratic revenue function already employed in the

proof of Proposition 5. Differentiating (31) immediately yields

Proposition 6. Suppose H(z) = = and R(a,b) = aa — Bb* with o, 8 > 0. Then

7* > 0 is the more likely, the larger is (3, the smaller is a and/or the larger is co — c1.

To understand the intuition of this result, remember that under the linear CSF an
increase in the cost parameter reduces aggregated performance (A, < 0) and improves
competitive balance (B, < 0). If 8 increases and/or « decreases, then the designer
cares more about competitive balance and less about aggregated performance. Hence,
she places more weight on the positive effect of cost regulation on competitive balance
and less weight on the negative effect of cost regulation on aggregated performance.
As a consequence, it becomes more likely that the designer chooses a positive value
for the cost parameter. If the cost differential ¢, — ¢; is increased, competitive balance
in the contest equilibrium deteriorates. The designer compensates this negative effect
by increasing the cost parameter, because this partly offsets the increase in the cost
advantage of the favorite and renders the contest closer again. Hence, the more different

contestants are, the more likely is that the designer employs cost regulation.
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5 Optimal Mix of Prize Policy and Cost Regulation

Let us finally turn to the most realistic case where the designer sets both the prize and

the cost parameter. Her profit maximization problem then reads

max II(v,7) = R[A(v,7),B(v,7)]—v  s.t. T > 0. (32)

v, T

The Kuhn-Tucker first-order conditions can be written as

HU(U,T) = Ra(')Av(va) + Rb(')Bv(vaT) -1=0, (33)

I, (v,7) = Ry () A (v, 7) + Ry(+) B-(v,7) <0, 7 (v,7)=0, 7>0. (34

These conditions reflect the different channels through which changes in the prize and
the cost parameter influence the designer’s profit. With respect to the optimal cost
parameter, we obtain the same result as in Proposition 5. If the designer’s revenue does
not depend on competitive balance (R, = 0) or if an increase in the cost parameter does
not improve competitive balance (B, > 0), then (34) yields the corner solution 7* = 0,
i.e. cost regulation is not optimal. In such cases, the optimal prize v* is determined by
equation (33) which is the same as in Section 3. In contrast, if the revenue function
depends on competitive balance (R, satisfies (23)) and competitive balance is improved
as the contestants’ costs are regulated (B, < 0), 7* may be positive. The optimal prize
and the optimal cost parameter are then simultaneously determined by equations (33)
and (34), where in (34) the strict equality sign prevails.

For such a case, it will finally be investigated how changes in the model parameter

affect the designer’s optimal mix of prize policy and cost regulation.

Proposition 7. Suppose H(z) = z, R(a,b) = ay/a — 8b* with o, 8 > 0 and 7 > 0.
Then, T* is increasing in 8 and in co — ¢y, but decreasing in «. v* is decreasing in B

and in ¢y — ¢y, but increasing in «.

Proof: For H(z) = z, equilibrium aggregated performance and equilibrium competi-
tive balance are captured by (30). 7* > 0 implies that the first condition in (34) holds
as equality. v* and 7* can then explicitly be determined by computing the derivatives
of (30) and using R(a,b) = ay/a — Bb? in (33) and (34). The result is

. o o 48(co — ¢1)? _ato
"~ 328(cy — €1)?’ B a? 2

v (35)
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Differentiating with respect to 8, @ and ¢; — ¢; immediately proves Proposition 7. H
To understand this result, remember that under the linear CSF an increase in the prize
enhances aggregated performance (A4, > 0) while leaving unchanged competitive bal-
ance (B, = 0), and an increase in the cost parameter reduces aggregated performance
(A, < 0) while improving competitive balance (B, < 0). If 8 increases and/or « de-
creases, then the designer is concerned more with competitive balance and less with the
performance of the contestants. Hence, she reduces the cost advantage of the favorite
and renders the contest closer through a higher value of the cost parameter. Since
performance is less important, she also reduces her cost by decreasing the prize. If
co — ¢1 increases, competitive balance in the contest equilibrium declines. The designer
should then be more concerned with competitive balance and, thus, she tightens cost
regulation and reduces the prize.

These results are obtained by focusing on the linear CSF. But the optimal cost
parameter may be positive under all CSFs (10) to (12). Unfortunately, under these
functional forms the optimal contest design is analytically not tractable. But under
the CSF (12), the same results as in Proposition 7 are expected, since the effects of
the prize and the cost parameter on aggregated performance and competitive balance
are the same as for the linear CSF. It should also be possible to extent Proposition 7
to the CSF (11). The only difference to the linear CSF is that an increase in the prize
worsens competitive balance (B, > 0). Hence, as a reaction on an increase in S and
co — ¢y or a decrease in ¢, the designer reduces the prize not only because this lowers
her cost, but also because the contest becomes closer. Under the CSF (10), a prize
increase improves competitive balance (B, < 0) and, consequently, it is no longer clear

how the designer reacts on changes in the model parameters.

6 Conclusion

This paper investigates optimal contest design in case the designer’s objective function
depends on competitive balance. The optimal prize policy and optimal cost regula-
tion have been derived and compared with the case the designer’s objective is not
influenced by competitive balance. In contrast to previous models, the effect of com-

petitive balance on the optimal prize has been shown to depend on the shape of the
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CSF. Perhaps most interestingly, under the frequently used power CSF the inclusion
of competitive balance in the designer’s objective does not influence the optimal prize.
With respect to optimal cost regulation, it has been shown that it may become optimal
for the designer to increase the contestant’s effort costs (to decrease their abilities), if
competitive balance is an argument of the designer’s objective function.

The analysis proceeded on some assumptions which can serve as starting point for
further research. For example, the analysis in this paper considers simultaneous move
contests only. Both contestants simultaneously choose their effort levels. In many
contest, however, effort levels are chosen sequentially. Furthermore, we focused on
a two-player contest. But many contests have more than two contestants. It may
therefore be interesting to find out whether and, if so, how our results change in a

contest with sequential decision of the contestants and/or in a multi-player contest.
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