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Abstract:
We reformulate and extend the standard AS-AD growth model of the Neoclas-

sical Synthesis (stage I) with its traditional microfoundations. The model still has
an LM curve in the place of a Taylor interest rate rule, exhibits sticky wages as well
as sticky prices, myopic perfect foresight of current inflation rates and adaptively
formed medium-run expectations concerning the investment and the inflation cli-
mate in which the economy is operating. The resulting nonlinear 5D model of
labor and goods market disequilibrium dynamics avoids striking anomalies of the
standard AS-AD model of the Neoclassical synthesis (stage I). It exhibits instead
Keynesian feedback dynamics proper with in particular asymptotic stability of its
unique interior steady state for low adjustment speeds and with cyclical loss of
stability – by way of Hopf bifurcations – when some adjustment speeds are made
sufficiently large, even leading to purely explosive dynamics soon thereafter. In
such cases, downward money wage rigidity is of use to make the overall dynamics
bounded and thus viable.

In this way we obtain and analyze a baseline DAS-AD model with Keynesian
feedback channels with a rich set of stability features as sources of the business
cycle. These outcomes of the model stand in stark contrast to those of the currently
fashionable New Keynesian alternative (the Neoclassical Synthesis, stage II) that
we suggest is much more limited in scope.
———————
Keywords: DAS-AD growth, wage and price Phillips curves, real interest effects,
real wage effects, (in)stability, persistent business cycles, inflation and deflation.

JEL CLASSIFICATION SYSTEM: E24, E31, E32.

1



1 Introduction

In this paper1 we reformulate and extend the standard AS-AD growth dynamics of the
Neoclassical Synthesis (stage I) with its traditional microfoundations, as it is for exam-
ple treated in detail in Sargent (1987, Ch.5). Our extension does not yet replace the
LM curve with a now standard Taylor rule, as is done in the New Keynesian approaches
(this remains reserved for a future reconsideration of the present baseline model). The
model exhibits sticky wages as well as sticky prices, underutilized labor as well as capital,
myopic perfect foresight of current wage and price inflation rates and adaptively formed
medium-run expectations concerning the investment and inflation climate in which the
economy is operating. The resulting nonlinear 5D dynamics of labor and goods market
disequilibrium (with a traditional LM treatment of the financial part of the economy)
avoids striking anomalies of the conventional model of the Neoclassical synthesis, stage
I.2 Instead it exhibits Keynesian feedback dynamics proper with in particular asymptotic
stability of its unique interior steady state solution for low adjustment speeds of wages,
prices, and expectations. The loss of stability occurs cyclically, by way of Hopf bifur-
cations, when these adjustment speeds are made sufficiently large, leading eventually to
purely explosive dynamics.

Locally we thus obtain and prove in detail – for a certain range of parameter values –
the existence of damped or persistent fluctuations in the rates of capacity utilization of
both labor and capital, and of wage and price inflation rates accompanied by interest
rate fluctuations that (due to the conventional working of the Keynes-effect) move in
line with the goods price level. Our modification and extension of traditional AS-AD
growth dynamics, as investigated from the orthodox point of view in Sargent (1987),
see also Chiarella, Flaschel and Franke (2004, Ch.2), thus provides us with a Keynesian
theory of the business cycle. This is so even in the case of myopic perfect foresight,
where the structure of the traditional approach dichotomizes into independent supply-
side real dynamics – that cannot be influenced by monetary policy – and a subsequently
determined inflation dynamics that are purely explosive if the price level is taken as
a predetermined variable, turned by Sargent into an always convergent process by an
application of the jump variable technique of the rational expectations school (with
unmotivated jumps in the money wage level however). In our new type of Keynesian
labor and goods market dynamics we by contrast can treat myopic perfect foresight
of both firms and wage earners without any need for the methodology of the rational
expectations approach to unstable saddlepoint dynamics.

If this model loses asymptotic stability for higher adjustment speeds, it does so in a
cyclical fashion, by way of so-called Hopf-bifurcations, which may give rise to persistent
fluctuations around the steady state. However, this particular loss of stability (generated
if some of the speed of adjustment parameters become sufficiently large) is only of a local

1The formulation of the model presented here was first proposed in Chiarella, Flaschel, Groh and
Semmler (2003) in a short response to the comments of Velupillai (2003) on our earlier work. Due to
space limitations the model could however not be investigated there.

2These anomalies include in particular saddle point dynamics that imply instability unless some
poorly motivated (and in fact inconsistent) jumps are imposed on certain variables, here on both the
price and the wage level (despite the use of a conventional money wage Phillips curve).
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nature (with respect to parameter changes), since eventually purely explosive behavior
is the generally observed outcome, as can be checked by means of numerical simulations.
The considered model type therefore cannot be considered as being complete in such
circumstances, since some additional mechanism is required to bound the fluctuations
to economically viable regions. Downward money wage rigidity is the mechanism we use
for this purpose. Extended in this way, we therefore obtain and study a baseline model
of the DAS-AD variety with a rich set of stability implications for the various types of
business cycle fluctuations that it can generate.

The dynamic outcomes of this baseline disequilibrium AS-AD model can be usefully
contrasted with those of the currently fashionable microfounded New Keynesian alter-
native (the Neoclassical synthesis, stage II) that in our view is more limited in scope, at
least as far as interacting Keynesian feedback mechanisms and thereby implied dynamic
possibilities are concerned. This comparison reveals in particular that one does not al-
ways end up with the typical (in our view strange) dynamics of rational expectation
models, due to certain types of forward looking behavior, if such behavior is coupled
with plausible backward looking behavior for the medium-run evolution of the economy.
Furthermore, our dual Phillips curves approach to the wage-price spiral indeed performs
quite well also from the empirical point of view,3 and in particular does not give rise to
the situation observed for the New (Keynesian) Phillips curve, found to be completely
at odds with the facts in the literature.4 In our approach standard Keynesian feedback
mechanisms are coupled with a wage-price spiral having a considerable degree of inertia,
with the result that these feedback mechanisms work as is known from partial analysis
in their interaction with the added wage and price level dynamics.

In the next section we briefly reconsider the fully integrated Keynesian AS-AD model
of the Neoclassical Synthesis, stage I, and show that it gives rise to an implausible
real/nominal dichotomy – with an appended nominal dynamics of purely explosive type
– when operated under myopic perfect foresight with respect to the price rate of inflation.
Furthermore, money wage levels must then be allowed to jump just as the price level,
despite the presence of a conventional money wage Phillips curve, in order to overcome
the observed nominal instability by means of the rational expectations solution method-
ology (which indeed makes this solution procedure an inconsistent one in the chosen
framework). We conclude from this that this model type is not suitable for a Keyne-
sian approach to economic dynamics which should allow for myopic perfect foresight on
inflation rates without much change in its structure under normal circumstances. In
section 3 we then briefly discuss the New Keynesian approach to economic dynamics
and find there too, that it raises more questions than it helps to answer. Section 4 pro-
poses on this basis a new and nevertheless traditional approach to Keynesian dynamics
proper, by taking note of the empirical facts that both labor and capital can be under- or
overutilized, that both wages and prices can be sticky and that there are certain climate
expressions surrounding the current state of the economy which add sufficient inertia to
the considered dynamics.

3See Flaschel and Krolzig (2003), Flaschel, Kauermann and Semmler (2004) and Chen and Flaschel
(2004).

4In this connection, see for example Mankiw (2001) and with much more emphasis Eller and Gordon
(2003), whereas Gali, Gertler and Lopez-Salido (2003) argue in favor of a hybrid form of the New
Phillips Curve in order to defend the New Phillips curve.
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The resulting 5D model type is analyzed with respect to its stability features in section
5 and shown to give rise to local asymptotic stability when certain Keynesian feedback
chains – to some extent well-known to be destabilizing from a partial perspective – are
made sufficiently weak, including a real wage adjustment mechanism that is not so well
established in the literature. The there presented somewhat informal analysis is made
rigoros in an appendix to this paper, where the calculation of the Routh-Hurwitz condi-
tions for the involved Jacobians is considered in great detail and where the occurrence of
Hopf bifurcations, i.e., in particular cyclical loss of stability is also reconsidered. Section
6 of the paper concludes and provides an outlook on numerical, empirical and policy
analyses of the model of this paper to be undertaken in two companion papers to the
present one.

2 Traditional AS-AD under myopic perfect foresight.

The ‘rational expectations’ supply side solution

In this section we briefly discuss the traditional AS-AD growth dynamics with prices
set equal to marginal wage costs, and nominal wage inflation driven by an expectations
augmented Phillips curve. Introducing myopic perfect foresight (i.e., the assumption of
no errors with respect to the short-run rate of price inflation) into such a Phillips curve
will alter the dynamics implied by the model in a radical way, in fact towards a globally
stable (neo-)classical real growth dynamics with real wage rigidity and thus fluctuating
rates of under- or over-employment. Furthermore, price level dynamics no longer feed
back into these real dynamics and are now unstable in the large. The accepted approach
in the literature is then to go on from myopic perfect foresight to ‘rational expectations’
and to construct a purely foreword looking solution (which incorporates the whole future
of the economy) by way of the so-called jump-variable technique of Sargent and Wallace
(1973). This represents in our view however not a consistent solution to the dynamic
results obtained in this model type under myopic perfect foresight, as we shall show in
this paper.

The case of myopic perfect foresight in a dynamic AD-AS model of business fluctuations
and growth has been considered in very detailed form in Sargent (1987, Ch.5). The
model of Sargent’s (1987, Ch.5) so-called Keynesian dynamics is given by a standard
combination of AD based on IS-LM, and AS based on the condition that prices always
equal marginal wage costs, plus finally an expectations augmented money wage Phillips
Curve or WPC. The specific features that characterize this textbook treatment of AS-
AD-WPC are that investment includes profitability considerations besides the real rate
of interest, that there is not immediately a reduced form PC employed in this dynamic
analysis, and most importantly that expectations are rational (i.e., of the myopic per-
fect foresight variety in the deterministic context). Consumption is based on current
disposable income in the traditional way, the LM curve is of standard type and there is
neoclassical smooth factor substitution and the assumption that prices are set according
to the marginal productivity principle and thus optimal from the viewpoint of the firm.
These more or less standard ingredients give rise to the following set of equations that
determine the statically endogenous variables: consumption, investment, government
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expenditure, output, interest, prices, taxes, the profit rate, employment and the rate
of employment C, I, G, Y, r, p, T, ρ, Ld, V l and on this basis the dynamically endogenous
variables: the capital stock, labor supply and the nominal wage level K, L, w, for which
laws of motion are provided in the equations shown below.

C = c(Y + rB/p − δK − T ) (1)

I/K = i(ρ − (r − π)) + n, ρ =
Y − δK − ωLd

K
, ω =

w

p
(2)

G = gK, g = const. (3)

Y
IS
= C + I + δK + G (4)

M
LM
= p(h1Y + h2(r0 − r)W ) (5)

Y = F (K, Ld) (6)

p
AS
= w/FL(K, Ld) (7)

ŵ
PC
= βw(V l − V̄ l) + π, V l = Ld/L (8)

π
MPF
= p̂ (9)

K̂ = I/K (10)

L̂ = n (= M̂ for analytical simplicity) (11)

We make the simplifying assumptions that all behavior is based on linear relationships in
order to concentrate on the intrinsic nonlinearities of this type of AS-AD-WPC growth
model. Furthermore, following Sargent (1987, Ch.5), we assume that t = (T − rB/p)/K
is a given magnitude and thus, like real government expenditure per unit of capital, g, a
parameter of the model. This excludes feedbacks from government bond accumulation
and thus from the government budget equation on real economic activity. We thus
concentrate on the working of the private sector with minimal interference from the side
of fiscal policy, which is not an issue in this paper. The model is fully backed-up by
budget equations as in Sargent (1987): pure equity financing of firms, money and bond
financing of the government budget deficit and money, bond and equity accumulation in
the sector of private households. There is flow consistency, since the new inflow of money
and bonds is always accepted by private households. Finally, Walras’ Law of Stocks and
the perfect substitute assumption for government bonds and equities ensure that equity
price dynamics remain implicit. The LM–curve is thus the main representation of the
financial part of the model, which is therefore still of a very simple type at this stage of
its development.

The treatment of the resulting dynamics turns out to be not very difficult. In fact,
equations (8) and (9) imply a real–wage dynamics of the type:

ω̂ = βw(ld/l − V̄ l), ld = Ld/K, l = L/K.

From K̇ = I = S = Y − δK − C − G and L̇ = nL we furthermore get

l̂ = n − (y − δ − c(y − δ − t)− g) = n − (1 − c)y − (1 − c)δ + ct − g,
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with y = Y/K = F (1, ld) = f(ld).

Finally, by eq. (7) we obtain

ω = f ′(ld), i.e. , ld = (f ′)−1(ω) = h(ω), h′ < 0

Hence, the real dynamics of the model can be represented by the following autonomous
2D dynamical system:

ω̂ = βw(h(ω)/l − V̄ l)

l̂ = n − (1 − c)δ − g + ct − (1 − c)f(h(ω))

It is easy to show, see e.g. Flaschel (1993), that this system is well–defined in the positive
orthant of the phase space, has a unique interior steady–state, which moreover is globally
asymptotically stable in the considered domain. In fact, this is just a Solow (1956)
growth dynamics with a real–wage Phillips curve (real wage rigidity) and thus classical
under- or over-employment dynamics if V̄ l < 1!). There may be a full–employment
ceiling in this model type, but this is an issue of secondary importance here.

The unique interior steady state of the considered dynamics is given by

yo =
1

1 − c
[(1 − c)δ + n + g − ct] =

1

1 − c
[n + g − t] + δ + t

ldo = f−1(yo), ωo = f ′(ldo), lo = ldo/V̄
l

mo = h1yo, p̂o = 0, ro = ρo = f(ldo) − δ − ωol
d
o

Keynes’ (1936) approach is nearly absent in this type of analysis, which seems to be
Keynesian in nature (AS–AD), but which – due to the neglect of short–run errors in
inflation forecasting – has become in fact of very (neo-)classical type. The marginal
propensity of consume, the stabilizing element in Keynesian theory, is still present,
but neither investment nor money demand plays a role in the real dynamics we have
obtained from eq.s (1) – (11). Volatile investment decisions and financial markets are
thus simply irrelevant for the real dynamics of this AS–AD growth model when myopic
perfect foresight on the current rate of price inflation is assumed. What, then, remains
for the role of Keynesian ”troublemakers“, the marginal efficiency of investment and
liquidity preference schedule? The answer again is, in technical terms, a very simple
one:

We have for given ω = ω(t) = (w/p)(t) as implied by the real dynamics (due to the
I = S assumption):

(1 − c)f(h(ω)) − (1 − c)δ + ct − g = i(f(l) − δ − ωh(ω) − r + p̂) + n, i.e.

p̂ =
1

i
[(1 − c)f(h(ω) − (1 − c)δ + ct − g − n] − (f(l)− δ − ωh(ω)) + r = g(ω, l) + r

with an added reduced-form LM-equation of the type

r = (h1f(h(ω)) −m)/h2 + r0, m =
M

pK
.
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The foregoing equations imply

m̂ = l̂(ω) − g(ω, l) − ro +
m− h1f(h(ω))

h2

as the non-autonomous5 differential equation for the evolution of real money balances, as
the reduced form representation of the nominal dynamics.6 Due to this feedback chain,
m̂ depends positively on the level of m and it seems as if the jump–variable technique
needs to be implemented in order to tame such explosive nominal processes; see Flaschel
(1993), Turnovsky (1995) and Flaschel, Franke and Semmler (1997) for details on this
technique. Advocates of the jump–variable technique, therefore are led to conclude that
investment efficiency and liquidity preference only play a role in appended purely nominal
processes and this solely in a stabilizing way, though with initially accelerating phases
in the case of anticipated monetary and other shocks. A truly neoclassical synthesis.

By contrast, we believe that Keynesian IS-LM growth dynamics proper (demand driven
growth and business fluctuations) must remain intact if (generally minor) errors in infla-
tionary expectations are excluded from consideration in order to reduce the dimension
and to simplify the analysis of the dynamical system to be considered. A correctly for-
mulated Keynesian approach to economic dynamics and fluctuating growth should not
give rise to such a strange dichotomized system with classical real and purely nominal
IS-LM inflation dynamics, here in fact of the most basic jump variable type, namely

m̂ =
m − h1yo

h2
[p̂ = −(M/K)o

1
p
− h1yo

h2
],

if it is assumed for simplicity that the real part is already at its steady state. This
dynamic equation is of the same kind as the one for the Cagan monetary model and can
be treated with respect to its forward-looking solution in the same way, as it is discussed
in detail for example in Turnovsky (1995, 3.3/4), i.e., the nominal dynamics assumed to
hold under the jump-variable hypothesis in AS-AD-WPC is then of a very well-known
type.

However, the basic fact that the AS-AD-WPC model under myopic perfect foresight is
not a consistently formulated one and also not consistently solved is given by its ad hoc
assumption that nominal wages must here jump with the price level p (w = ωp), since
the real wage ω is now moving continuously in time according to the derived real wage
dynamics. The level of money wages is thus now capable of adjusting instantaneously,
which is in contradiction to the assumption of only sluggishly adjusting nominal wages
according to the assumed money wage PC.7 Furthermore, a properly formulated Key-
nesian growth dynamics should – besides allowing for un- or over-employed labor – also
allow for un- or over- employment of the capital stock, at least in certain episodes. Thus
the price level, like the wage level, should better and alternatively be assumed to adjust
somewhat sluggishly; see also Barro (1994) in this regard. We will come back to this
observation after the next section which is devoted to new developments in the area

5since the independent (ω, l) block will feed into the RHS as time function.
6Note that we have g(ω, l) = −ρo in the steady state.
7See Flaschel (1993) and Flaschel, Franke and Semmler (1997) for further investigations along these

lines.
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of Keynesian dynamics, the so-called New Keynesian approach of the macrodynamic
literature.

The conclusion of this section is that the Neoclassical synthesis, stage I must be con-
sidered a failure on logical grounds and not a valid attempt ’to formalize for students
the relationships among the various hypotheses advanced in Milton Friedman’s AEA
presidential address (1968)’, see Sargent (1987, p.117).

3 New Keynesian AS–AD dynamics. A continuous-

time comparison

The baseline model of New Keynesian macrodynamics (see e.g. Gali (2000)) is, when
transferred to continuous time, basically given by the following set of equations, if myopic
perfect foresight is now assumed with respect to ’next period’s’ rate of inflation in a non–
stochastic environment:

Y
IS
= Y (r − p̂), Y ′ < 0

r − p̂
TR
= (r − p̂)0 + βr1(π − π̄) + βr2(Y − Ȳ ),

where

Ȳ
NAIRU

= Y ((r − p̂)0),

describes the relationship between the natural rate of employment and the natural real
rate of interest, and by

π̇
PPC
= (1 − β)π − βp(Y − Ȳ ), π = p̂.

The model consists of an IS–curve depending on the real rate of interest solely, a Taylor
interest rate policy rule (TR) based on inflation and output gaps, and a price Phillips
curve (PPC), centered around the natural output level Ȳ to which the steady state level
of the real rate of interest (r− p̂)0 is corresponding. This model type is characterized as
Neoclassical Synthesis, stage II, in Gali (2000).

We have simplified the New Keynesian baseline model somewhat by using the short–term
real rate of interest in the IS–curve in the place of a long–term rate as in Gali (2000).
Furthermore we do not explicitly pay attention to marginal costs and substitution in the
formulation of the PPC of the model, see however the next section in this regard. The IS–
and the PPC–curve are reduced–form equations with a price–level oriented motivation
for the PC–curve (indicated by the subscript p of the adjustment speed). The model is
far from being as complete and explicit as the model of the previous section, but can
nevertheless be usefully compared with it with respect to its dynamical features and its
specific reliance on the jump-variable technique.

In the TR, we have explicitly employed inflation- as well as output-gaps (as is generally
done), and have assumed that these gaps drive a wedge between the actual real and the
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steady state real rate of interest by the nominal interest rate steering of the monetary
authority. For the PPC, we see that the discrete time formulation of the New PC of
New Keynesian Theory reduces in continuous time to the perfectly foreseen time rate of
change in the rate of inflation, up to a level term (1 − β)π, due to the discount factor
on future inflation that is employed in this type of approach. It therefore follows that
a positive output gap decelerates inflation in contrast to what more traditional Phillips
curves and the data suggest.

The employed TR can be reduced to (by insertion of the IS–curve into it):

g(r − p̂) := r − p̂ − βr2(Y (r − p̂) − Ȳ ) = (r − p̂)0 + βr1(π − π̄), i.e.

r − p̂ = g−1((r − p̂)0 + βr2(π − π̄)) =: h(π − π̄)

which is a well–defined representation, since g′ > 0 holds true. We thus get that the
actual real rate of interest is a well–defined and strictly increasing function of the inflation
gap, due to the interest rate policy adopted and due to the working of the goods market.
Inserting this result into the New Keynesian PC gives

π̇ = −(1 − β)π − βp(Y (h(π − π̄) − Ȳ ) =: k(π), k′ > 0

with Y ′ < 0, g′ > 0. This latter equation implies a positive relationship between inflation
π and its rate of change if β is chosen sufficiently close to 1.

Again, advocates of the jump–variable technique are able to tame the explosive dynamics
suggested by the above law of motion as in the preceding section, but now applied to the
rate of inflation π in the place of the price–level p (or real balances m). The price–level
is thus no longer allowed to jump in this type of approach (which is very reasonable
from the empirical perspective), but only its rate of change π, and this in the usual way,
here to its new steady state value in the case of unanticipated shocks, and through in
time accelerating adjustment to the new steady–state value in the case of anticipated
shocks (which have changed the steady state position of the economy). We thus have
isolated from the model the law of motion that drives price inflation, which in turn has
to be used to determine the dynamics of output and interest in a next step. From the
viewpoint of logical consistency such a procedure cannot really be questioned, though
the employed jumps towards purely forward-looking convergent solutions are generally
only poorly motivated (if they are at all motivated). We would prefer here to have
structural wage as well as price Phillips curves, in particular in comparison of what is
discussed in the next section.

In this New Keynesian dynamics we now however have – in contrast to the Neoclas-
sical synthesis, stage I – an evolution of the inflation rate that depends indeed on the
characteristics of the real sector, and that feeds back into this sector according to the
interdependent evolution of the variables

Y = Y (r − π) and

r − π = h(π − π̄).

This is clearly an advantage in comparison to the dynamics considered in the preceding
section. However, the model of the preceding section is much more explicit and complete
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in its structural presentation, in particular with respect to long–run growth dynamics
and the role of wage formation in the employment and investment decisions of firms.

We are fairly skeptical as to whether the New PPC – in particular due to its slope –
is really an improvement over traditional structural approaches which employ separate
equations for wage and price dynamics. Such skepticism is also expressed in Mankiw
(2001) where this New Phillips curve is characterized to be completely at odds with the
facts. Eller and Gordon (2003) go even further and state that ’the NKPC approach is an
empirical failure by every measure. Gali, Gertler and Lopez-Salido (2003) by contrast
defend this NKPC by now basing it on real marginal costs in the place of an output
gap and what they call a simple hybrid variant of the NKPC derived from Calvo’s
staggered price setting framework. They find in such a framework ’that forward-looking
behavior is highly important; the coefficient on expected future inflation is large and
highly significant.’

Chiarella and Flaschel (1996, 2000) have considered hybrid approaches to wage and
price Phillips curves in various analytical frameworks, the forward-looking component
however given by πt = pt+1−pt

pt
(also for wages) and not by πt+1. Empirical work based

on their formulation of the interacting wage-price, see the introduction to this paper,
generally found coefficients significantly below 0.5 for the forward-looking components
in wage and price inflation. Their approach will be introduced now into a Keynesian
framework that allows for smooth factor substitution as the New Keynesian model and
that also gives real marginal wage costs a role in the PPC, though one with a significant
delay in its full impact on the price level formation in the production sector. We believe
that this approach provides an important alternative to the New Keynesian theory of
the business cycle, does not fail on empirical grounds, but indeed provides a structural
extension of the mainstream model of the reduced form US inflation dynamics of Eller
and Gordon (2003) with a great potential for further generalizations. Furthermore, this
extension removes all logical inconsistencies of the Neoclassical synthesis, stage I when
embedded into it as we shall show in the next two sections.

We notice finally that hybrid approaches based on forward and backward looking be-
havior (comparable to the one of the following section) have indeed started to receive
some attention by researchers in the mainstream area, see for example Rudebusch and
Svensson (1999). Our subsequent modelling of sluggishly updated climate expressions
for inflation as well as for excess profitability has taken such hybrid forms of expecta-
tions formation into account from the very beginning, see Chiarella and Flaschel (1996),
initially in order to avoid the anomalies of the Neoclassical synthesis, stage I. A detailed
theoretical and numerical investigation in comparison to the work of Rudebusch and
Svensson (1999) and its detailed consideration of Taylor rules is provided in Chiarella,
Flaschel and Franke (2004, Ch.8). Based on such observations we are now going to
present an alternative approach to New Keynesian macrodynamics that may be charac-
terized as being of traditional type still, but of a mature Keynesian type indeed (but in
any case not really as ’new’). This approach, as extension of the Neoclassical synthesis,
stage I, with now forward and backward looking elements in its wage-spiral, allows for
strong inertia in inflation dynamics, without assuming adaptive expectations for the
prediction of future short-run rates of inflation.
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Remark: Assuming a dynamic adjustment rule for the nominal interest rate in the
place of the static one of this section, such as for example:

ṙ
TR
= βr1(ro − r) + βr2(π − π̄) + βr3(Y − Ȳ ),

would imply together with

π̇
PC
= (1 − β)π − βp(Y − Ȳ ), π = p̂

a 2D saddlepoint dynamics to which the jump-variable technique can again be applied
in the usual way (if the interest rate smoothing parameter βr1 is not chosen too large).

4 Keynesian AS-AD disequilibrium dynamics: An

alternative baseline model

We have already observed that a Keynesian model of aggregate demand fluctuations
should (independently of whether justification can be found in Keynes’ General Theory)
allow for under- (or over-)utilized labor as well as capital in order to be general enough
from the descriptive point of view. As Barro (1994) for example observes IS-LM is (or
should be) based on imperfectly flexible wages and prices and thus on the consideration
of wage as well as price Phillips Curves. This is precisely what we will do in the following,
augmented by the observation that medium-run aspects count both in wage and price
adjustment as well as in investment behavior, here still expressed in simple terms by
the introduction of the concept of an inflation as well as an investment climate. These
economic climate terms are based on past observation, while we have model-consistent
expectations with respect to short-run wage and price inflation. The modification of the
traditional AS-AD model of section 2 that we shall introduce now thus treats expecta-
tions in a hybrid way, myopic perfect foresight on the current rates of wage and price
inflation on the one hand and an adaptive updating of economic climate expressions,
with exponential weighting scheme here especially, on the other hand.

In light of the foregoing discussion, we assume here two Phillips Curves or PC’s in the
place of only one. In this way we provide wage and price dynamics separately, both based
on measures of demand pressure V l − V̄ l, V c− V̄ c, in the market for labor and for goods,
respectively. We here denote by V l the rate of employment on the labor market and by
V̄ l the NAIRU-level of this rate, and similarly by V c the rate of capacity utilization of
the capital stock and V̄ c the normal rate of capacity utilization of firms. These demand
pressure influences on wage and price dynamics, or on the formation of wage and price
inflation, ŵ, p̂, are here both augmented by a weighted average of cost-pressure terms
based on forward-looking perfectly foreseen price and wage inflation rates, respectively,
and a backward looking measure of the prevailing inflationary climate, symbolized by
πm. Cost pressure perceived by workers is thus a weighted average of the currently
evolving price inflation rate p̂ and some longer-run concept of price inflation, πm, based
on past observations. Similarly, cost pressure perceived by firms is given by a weighted
average of the currently evolving (perfectly foreseen) wage inflation rate ŵ and again
the measure of the inflationary climate in which the economy is operating. We thus
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arrive at the following two Phillips Curves for wage and price inflation, which in this
core version of the model are formulated in a fairly symmetric way.

Structural form of the wage-price dynamics:

ŵ = βw(V l − V̄ l) + κwp̂ + (1 − κw)πm,

p̂ = βp(V
c − V̄ c) + κpŵ + (1 − κp)π

m.

Inflationary expectations over the medium run, πm, i.e., the inflationary climate in which
current wage and price inflation is operating, may be adaptively following the actual rate
of inflation (by use of some exponential weighting scheme), may be based on a rolling
sample (with hump-shaped weighting schemes), or on other possibilities for updating
expectations. For simplicity of exposition we shall make use of the conventional adaptive
expectations mechanism in the presentation of the full model below. Besides demand
pressure we thus use (as cost pressure expressions) in the two PC’s weighted averages of
this economic climate and the (foreseen) relevant cost pressure term for wage setting and
price setting. In this way we get two PC’s with very analogous building blocks, which
despite their traditional outlook will have interesting and novel implications. These two
Phillips curves have been estimated for the US-economy in various ways in Flaschel and
Krolzig (2003), Flaschel, Kauermann and Semmler (2004) and Chen and Flaschel (2004)
and found to represent a significant improvement over single reduced-form price Phillips
curves, with wage flexibility being greater than price flexibility with respect to demand
pressure in the market for goods and for labor, respectively. Note that such a finding is
not possible in the conventional framework of a single reduced-form Phillips curve.

Note that for our current version, the inflationary climate variable does not matter for
the evolution of the real wage ω = w/p , the law of motion of which is given by:

ω̂ = κ[(1 − κp)βw(V l − V̄ l) − (1 − κw)βp(V
c − V̄ c)], κ = 1/(1 − κwκp)

This follows easily from the obviously equivalent representation of the above two PC’s:

ŵ − πm = βw(V l − V̄ l) + κw(p̂ − πm),

p̂ − πm = βp(V
c − V̄ c) + κp(ŵ − πm),

by solving for the variables ŵ − πm and p̂ − πm. It also implies the two across-markets
or reduced form PC’s given by:

p̂ = κ[βp(V
c − V̄ c) + κpβw(V l − V̄ l)] + πm,

ŵ = κ[βw(V l − V̄ l) + κwβp(V
c − V̄ c)] + πm,

which represent a considerable generalization of the conventional view of a single-market
price PC with only one measure of demand pressure, the one in the labor market.
This traditional expectations-augmented PC formally resembles the above reduced form
p̂-equation if Okun’s Law holds in the sense of a strict positive correlation between
V c − V̄ c, V c = Y/Y p and V l − V̄ l, V l = Ld/L, our measures of demand pressures on
the market for goods and for labor. Yet, the coefficient in front of the traditional PC
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would even in this situation be a mixture of all of the β ′s and κ′s of the two originally
given PC’s and thus represent a composition of goods and labor market characteristics.

With respect to the investment climate we proceed similarly and assume that this climate
is adaptively following the current risk premium ε = ρ− (r− p̂)), the excess of the actual
profit rate over the actual real rate of interest (which is perfectly foreseen). This gives8

ε̇m = βεm(ε − εm), ε = ρ + p̂ − r,

which is directly comparable to

π̇m = βπm(π − πm), π = p̂.

We believe that it is very natural to assume that economic climate expressions evolve
sluggishly in view of their observed short-run analogs. It is however easily possible to
introduce also forward looking components into the updating of the climate expressions,
for example based on the p∗ concept of central banks and related potential output
calculations. The investment function of the model of this section is now given simply
by i(εm) in the place of i(ε).

We have now covered all modifications needed to overcome the extreme conclusions of
the traditional AS-AD approach under myopic perfect foresight as they were sketched
in section 2. The model simply incorporates sluggish price adjustment besides sluggish
wage adjustment and makes use of certain delays in the cost pressure terms of its wage
and price PC and in its investment function. In the Sargent (1987) approach to Keyne-
sian dynamics we have that βεm, βπm, βp are all set equal to infinity and Ūc set equal to
one, which implies that only current inflation rate and excess profitabilities matter for
the evolution of the economy and that prices are perfectly flexible, so that full capacity
utilization, not only normal capacity utilization, is always achieved. This limit case has
however little in common with the properties of the model of this section.

This brings us to one point that still needs definition and explanation, namely the
concept of the rate of capacity utilization that we will be using in the presence of
neoclassical smooth factor substitution, but Keynesian over- or under-employment of
the capital stock. Actual use of productive capacity is of course defined in reference to
actual output Y . As measure of potential output Y p we associate with actual output Y
the profit-maximizing output with respect to currently given wages and prices. Capacity
utilization V c is therefore measured relative to the profit maximizing output level and
thus given by9

V c = Y/Y p with Y p = F (K, Lp), ω = FL(K, Lp).

where Y is determined from the IS-LM equilibrium block in the usual way. We have
assumed in the price PC as normal rate of capacity utilization a rate that is less than
one and thus assume in general that demand pressure leads to price inflation, before

8In our response to Velupillai (2003), see Chiarella, Flaschel, Groh and Semmler (2003), we have
used a slightly different expression for the updating of the investment climate, in this regard see the
introductory observation in section 6 below.

9In intensive form expressions the following gives rise to V c = y/yp with yp = f((f ′)−1(ω)) in terms
of the notation we introduced in section 2.
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potential output has been reached, in line what is assumed in the wage PC and demand
pressure on the labor market. The idea behind this assumption is that there is imperfect
competition on the market for goods so that firms raise prices before profits become zero
on the margin.

Sargent (1987, Ch.5) not only has myopic behavior throughout, but also always the
perfect – but empirically questionable – establishment of the condition that the price
is given by marginal wage costs. This ‘limit case’ of the dynamic AS-AD model of this
section is not a meaningful model, in particular since it is not at all closely related
in its dynamic properties to situations of very fast adjustment of prices and climate
expressions to currently correctly observed inflation rates and excess profitability.

There is still another motivation available for the imperfect price level adjustment we are
assuming instead. For reasons of simplicity, we here consider the case of a Cobb-Douglas
production function, given by Y = KαL1−α, solely. According to the above we have

p = w/FL(K, Lp) = w/[(1 − α)Kα(Lp)−α]

which for given wages and prices defines potential employment. Similarly, we define
competitive prices as the level of prices pc where

pc = w/FL(K, Ld) = w/[(1 − α)Kα(Ld)−α]

holds true. From these definitions we get the relationship:

p

pc
=

(1 − α)Kα(Ld)−α

(1 − α)Kα(Lp)−α
= (Lp/Ld)α

Due to this we obtain from the definitions of Ld, Lp and their implication Y/Y p =
(Ld/Lp)1−α an expression that relates the above price ratio to the rate of capacity uti-
lization as defined in this section:

p

pc
= (

Y

Y p
)

−α
1−α or

pc

p
= (

Y

Y p
)

α
1−α = (V c)

α
1−α .

We thus get that (for V̄ c = 1) upward adjustment of the rate of capacity utilization
to full capacity utilization is positively correlated with downward adjustment of actual
prices to their competitive value and vice versa. In particular in the special case α = 0.5
we would get as reformulated price dynamics the formula:

p̂ = βp(pc/p − 1) + κpŵ + (1 − κp)π
m.

which resembles the New Phillips curve of the New Keynesian approach as far as the
reflection of demand pressure forces by means of real marginal wage costs are concerned.
Price inflation is thus increasing when competitive prices (and thus nominal marginal
wage costs) are above the actual ones and decreasing otherwise (neglecting the cost-push
terms for the moment). This shows that our understanding of the rate of capacity uti-
lization in the framework of neoclassical smooth factor substitution is related to demand
pressure terms as used in New Keynesian approaches10 and thus further motivated in

10see also Powell and Murphy (1997) for a closely related approach, there applied to an empirical
study of the Australian economy.
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its adoption. Actual prices will fall if they are above marginal wage costs to a sufficient
degree. However, our approach suggests that actual prices start rising before marginal
wage costs are in fact established, i.e. in particular, we have that actual prices are always
higher than the competitive ones in the steady state.

We note that the steady state of the now considered Keynesian dynamics is the same as
the one of the dynamics of section 2 (with εm

o = 0, V c
o = V̄ c, V l

o = V̄ l, yp
o = yo/V

c
o , lpo =

f−1(yp
o) in addition). Furthermore, the dynamical equations considered above have of

course to be augmented still by the ones that have remained unchanged by the modifica-
tions just considered. The intensive form of all resulting static and dynamics equations
is presented below, on the basis of which we then start the stability analysis of the
baseline model of the next section. The modifications of the AS-AD model of section
2 proposed in the present section imply that it no longer dichotomizes and that the
jump-variable technique can no longer be sensibly applied. Instead, the steady state
of the dynamics is locally asymptotically stable under conditions that are reasonable
from a Keynesian perspective, loses its asymptotic stability by way of cycles (by way of
so-called Hopf-bifurcations) and becomes sooner or later globally unstable if (generally
speaking) adjustment speeds become too high.

We no longer have state variables in the model that can be considered as being not
predetermined, but in fact can reduce the dynamics to an autonomous system in the
five predetermined state variables: the real wage, real balances per unit of capital, full
employment labor intensity, and the expressions for the inflation and the investment
climate. When the model is subject to explosive forces, it requires extrinsic nonlin-
earities in economic behavior, assumed to coming into affect far off the steady state,
that bound the dynamics to an economically meaningful domain in the 5D state space.
Asada, Chiarella, Flaschel and Hung (2004) provide details of such an approach and its
numerical investigation.

Summing up we can state that we have arrived at a model type that is much more com-
plex, but also much more convincing, that the labor market dynamics of the traditional
AS-AD dynamics of the Neoclassical synthesis, stage I. We now have 5 in the place of
only three laws of motion, which incorporate myopic perfect foresight without any sig-
nificant impact on the resulting Keynesian dynamics. We can handle factor utilization
problems both for labor and capital without assuming a fixed propositions technology,
i.e., can treat AS-AD growth with neoclassical smooth factor substitution. We have
sluggish wage as well as price adjustment processes with cost pressure terms that are
both forward and backward looking, and that allow for the distinction between tempo-
rary and permanent inflationary shocks. We have a unique interior steady state solution
of (one must stress) supply side type, generally surrounded by business fluctuations
of Keynesian short-run as well as medium-run type. Our DAS-AD growth dynamics
therefore exhibits a variety of features that are much more in line with a Keynesian
understanding of the features of the trade cycle than is the case for the conventional
modelling of AS-AD growth dynamics.

Taken together the model of this section consists of the following five laws of motion for
real wages, real balances, the investment climate, labor intensity and the inflationary
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climate:

ω̂ = κ[(1 − κp)βw(ld/l − V̄ l) − (1 − κw)βp(y/yp − V̄ c)] (12)

m̂ = −p̂ − iεm (13)

ε̇m = βεm(ρ + p̂ − r − εm) (14)

l̂ = −iεm (15)

π̇m = βπm(p̂ − πm) (16)

with p̂ = κ[βp(y/yp(ω) − V̄ c) + κpβw(ld/l − V̄ l)] + πm.

We here already employ reduced-form expressions throughout and consider the dynamics
of the real wage, ω, real balances per unit of capital, m, the investment climate εm, labor
intensity, l, and the inflationary climate, πm on the basis of the simplifying assumptions
that natural growth n determines also the trend growth term in the investment function
as well as money supply growth. The above dynamical system is to be supplemented by
the following static relationships for output, potential output and employment (all per
unit of capital) and the rate of interest and the rate of profit:

y =
1

1 − c
[iεm + n + g − t] + δ + t (17)

yp = f((f ′)−1(ω)), F (1, Lp/K) = f(lp) = yp, FL(1, Lp/K)) = f ′(lp) = ω (18)

ld = f−1(y) (19)

r = ro + (h1y − m)/h2 (20)

ρ = y − δ − ωld (21)

which have to be inserted into them in order to obtain an autonomous system of 5
differential equations that is in a natural or intrinsic way nonlinear. We note however
that there are many items that reappear in various equations, or are similar to each
other, implying that stability analysis can exploit a variety of linear dependencies in
the calculation of the conditions for local asymptotic stability. This dynamical system
will be investigated in the next section in somewhat informal terms and, with slight
modifications, in a rigorous way in the appendix to this paper.

As the model is now formulated it exhibits – besides the well-known real rate of interest
channel (giving rise to destabilizing Mundell-effects generally tamed by the application
of the jump variable technique – another real feedback channel, see figure 1, which we
have called the Rose real wage effect, based on the work of Rose (1967), in Chiarella and
Flaschel (2000). This channel is completely absent from the considered New Keynesian
approach and it is in a weak form present in the model of the Neoclassical synthesis, stage
I, due to the inclusion of the rate of profit into the considered investment function. The
Rose effect however only gives rise to a clearly distinguishable and significant feedback
channel, however, if wage and price flexibilities are both finite and if aggregate demand
depends on the income distribution between wages and profits. In the traditional AS-AD
model of section 2 it only gives rise to a directly stabilizing dependence of the growth
rate of real wages on their level, while in our mature form of this AS-AD analysis it
works through the interaction of the law of motion (12) for real wages, the investment
climate and the IS-curve we have derived on this basis. The real marginal costs effect
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of the New Keynesian approach is here present in addition, in the denominator of the
expression we are using for rate of capacity utilization, and contributes to some extent
to stability should the Rose effect by itself be destabilizing.

We thus have now two feedback channels interacting in our extended DAS-AD dynamics
which in specific ways exhibit stabilizing as well as destabilizing features (Keynes vs.
Mundell effects and normal vs. adverse Rose effects). A variety of further feedback
channels of Keynesian macrodynamics are investigated in Chiarella, Flaschel, Groh and
Semmler (2000). The careful analysis of these channels and the partial insights that can
be related with them form the basis of the 5D stability analysis of the next section and
the appendix to this paper. Such an analysis differs radically from the always convergent
jump-variable analysis of the rational expectations school in models of the Neoclassical
synthesis, stage I and stage II and other approaches to macrodynamics.

Asset
Markets:

Depressed
Goods Markets

Depressed
Labor Markets

wages

prices
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investment
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Recovery!
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Further

Further
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 wages

consumption
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Figure 1: Rose effects: The real wage channel of Keynesian macrodynamics .

Figure 2 indicates that the real wage channel will be stabilizing when investment reacts
stronger than consumption to real wage changes (which is the case in our model type,
since consumption does not depend on the real wage here at all) if this is coupled with
wages being more flexible than prices, in the sense that eq. (12) establishes a positive
link between economic activity and induced real wage changes. If this latter relationship
becomes however a negative one, then a sufficient degree of price level flexibility will
destabilize the economy, since shrinking economic activity due to real wage increases
will then induce further real wage increases, due to a price level that is falling faster
than the wage level in this state of depressed markets for goods and for labor. We
stress here that the degree of forward looking behavior in both the wage and the price
level dynamics is also important here, since these weights also enter the crucial eq. (12)
describing the dynamics of real wages for any given state of economic activity.
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5 Feedback-guided β-stability analysis

In this section, we illustrate an important method to prove local asymptotic stability of
the interior steady state of the considered dynamics, through partial motivations from
the feedback chains that characterize this baseline model of Keynesian dynamics. Since
the model is an extension of the standard AS-AD growth model we know from the
literature that there is a real rate of interest effect typically involved, first analyzed by
formal methods in Tobin (1975), see also Groth (1992). There is the stabilizing Keynes-
effect based on activity-reducing nominal interest rate increases following price level
increases, which provides a check to further price increases. Secondly, if the expected
real rate of interest is driving investment and consumption decisions (increases leading
to decreased aggregate demand), there is the stimulating (partial) effect of increases in
the expected rate of inflation that may lead to further inflation and further increases
in expected inflation under appropriate conditions. This is the so-called Mundell-effect
that works opposite to the Keynes-effect, but also through the real rate of interest rate
channel as just seen.

The Keynes-effect is the stronger the smaller the parameter h2 characterizing the interest
rate sensitivity of money demand becomes, since the reduced-form LM equation of our
model simply reads:

r = ro + (h1y − m)/h2, y = Y/K, m = M/(pK).

The Mundell-effect is the stronger the faster the inflationary climate adjusts to the
present level of price inflation, since we have

π̇m = βπm(p̂ − πm) = βπmκ[βp(V
c − V̄ c) + κpβw(V l − V̄ l)]

and since both rates of capacity utilization depend positively on the investment climate
εm which in turn is driven by excess profitability ε = ρ + p̂ − r. Excess profitability –
as shown – in turn depends positively on the inflation rate and thus on the inflationary
climate as the reduced-form price Phillips curve shows in particular.

There is – as we already know – a further potentially (at least partially) destabilizing
feedback mechanism as the model is formulated. Excess profitability depends positively
on the rate of return on capital ρ and thus negatively on the real wage ω. We thus get
– since consumption does not yet depend on the real wage – that real wage increases
depress economic activity (though with the delay that is caused by our concept of an
investment climate transmitting excess profitability to investment behavior). From our
reduced-form real wage dynamics

ω̂ = κ[(1 − κp)βw(V l − V̄ l) − (1 − κw)βp(V
c − V̄ c)].

we thus obtain that price flexibility should be bad for economic stability due to the
minus sign in front of the parameter βp while the opposite should hold true for the
parameter that characterizes wage flexibility. This is a situation as it was already in-
vestigated in Rose (1967). It gives the reason for our statement that wage flexibility
gives rise to normal and price flexibility to adverse Rose effects as far as real wage

18



adjustments are concerned. Besides real rate of interest effect, establishing opposing
Keynes- and Mundell-effects, we thus have also another real adjustment process in the
considered model where now wage and price flexibility are in opposition to each other,
see Chiarella and Flaschel (2000) and Chiarella, Flaschel, Groh and Semmler (2000) for
further discussion of these as well as other feedback mechanisms in Keynesian growth
dynamics.

There is still another adjustment speed parameter in the model, the one that determines
how fast the investment climate is updated in the light of current excess profitability.
This parameter will play no decisive role in the stability investigations that follow,
but will become important in the alternative stability analysis to be considered in the
appendix to the paper. In the present stability analysis we will however focus on the role
played by h2, βw, βp, βπm in order to provide one example of asymptotic stability of the
interior steady state position by appropriate choices of these parameter values, basically
in line with the above feedback channels of partial Keynesian macrodynamics.

The above adds to the understanding of the dynamical system (12) – (16) whose stability
properties are now to be investigated by means of varying adjustment speed parameters.
With the feedback scenarios considered above in mind, we first observe that the infla-
tionary climate can be frozen at its steady state value, here πm

o = M̂ −n = 0, if βπm = 0
is assumed. The system thereby becomes 4D and it can indeed be further reduced to 3D
if in addition βw = 0 is assumed, since this decouples the l-dynamics from the remaining
dynamical system in ω, m, εm.

We intentionally will consider the stability of these 3D subdynamics – and its subsequent
extensions – in informal terms here, reserving rigorous calculations for an alternative
scenario to be presented and investigated in the appendix. In this way we hope to show
to the reader how one can proceed from low to high dimensional analysis in such stability
investigations. This method has been already applied to various other often much more
complicated dynamical systems, see Asada, Chiarella, Flaschel and Franke (2003) for a
variety of typical examples.

Proposition 1:

Assume that the parameters h2, βp are chosen sufficiently small and that the
κw, κp parameters do not equal 1. Then: The interior steady state of the
reduced 3D dynamical system

ω̂ = −κ(1 − κw)βp(y/yp(ω) − V̄ c)

m̂ = −iεm − κβp(y/yp(ω) − V̄ c)

ε̇m = βεm(ρ + κβp(y/yp(ω) − V̄ c) − r − εm)

is locally asymptotically stable.

Sketch of proof: Assuming h2, βp sufficiently small gives for the Jacobian J at the
steady state the sign structure:

19



J =

⎛
⎝ − 0 −

− 0 −
− + −

⎞
⎠ .

Furthermore, the entries J23, J33 can be made as large as desired by choosing h2, the
carrier of the Keynes-effect, sufficiently small. This immediately implies that all principal
minors of order 2 are then nonnegative (their sum a2 is positive), while trace J < 0 is
directly visible (= −a1). And for detJ = −a3 one easily gets by way of the linear
dependencies present in the Jacobian of the considered 3D dynamics:

0 > detJ > −J11J23J32

which – taken together – implies that all coefficients a1, a2, a3 of the Routh Hurwitz
polynomial are positive and in addition fulfill a1a2 − a3 > 0.

Proposition 2:

Assume in addition that the parameters βw is now positive and chosen suffi-
ciently small. Then: The interior steady state of the implied 4D dynamical
system (where the law of motion for l has now been integrated)

ω̂ = κ[(1 − κp)βw(ld/l − V̄ l) − (1 − κw)βp(y/yp − V̄ c)]

m̂ = −iεm − κ[βp(y/yp − V̄ c) + κpβw(ld/l − V̄ l)]

ε̇m = βεm(ρ + κ[βp(y/yp(ω) − V̄ c) + κpβw(ld/l − V̄ l)] − r − εm)

l̂ = −iεm

is locally asymptotically stable.

Sketch of proof: Exploiting the many linear dependencies shown in the considered
dynamical system one can easily reduce the right hand side of the Jacobian of the
dynamics at the steady state to:

ω̂ = (1 − κp)βw(ld/l − V̄ l)

m̂ = −βp(y/yp(ω) − V̄ c)

ε̇m = βεm(ρ − r − εm)

l̂ = −iεm

without any change in the sign of its determinant. Continuing in this way one can then
even obtain:

ω̂ = (1 − κp)βw(ldo/l − V̄ l)

m̂ = −βp(yo/y
p(ω) − V̄ c)

ε̇m = −βεm

h1yo − m

h2

l̂ = −iεm,
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again without change in the signs of the determinants to be calculated at each step. The
sign of the determinant of the now corresponding Jacobian is however easily shown to
be positive. The eigenvalue zero of the situation where the 4D system is considered for
βw = 0 thus must become negative if the change in βw is sufficiently small, since the
other three eigenvalues must then continue to have negative real parts.

Proposition 3:

Assume in addition that the parameters βπm is now positive and chosen suf-
ficiently small. Then: The interior steady state of the full 5D dynamical
system (where the state variable πm is now moving)

ω̂ = κ[(1 − κp)βw(ld/l − V̄ l) − (1 − κw)βp(y/yp − V̄ c)]

m̂ = −πm − iεm − κ[βp(y/yp − V̄ c) + κpβw(ld/l − V̄ l)]

ε̇m = βεm(ρ + κ[βp(y/yp(ω) − V̄ c) + κpβw(ld/l − V̄ l)] + πm − r − εm)

l̂ = −iεm

π̇m = βπm(κ[βp(y/yp(ω) − V̄ c) + κpβw(ld/l − V̄ l)])

is locally asymptotically stable.

Sketch of proof: As for proposition 2, by now simply making use of the rows corre-
sponding to the laws of motion for l and m in order to reduce the row corresponding to
the law of motion for πm to the form (0, 0, 0, 0,−), again without change in the sign of
the determinants of the accompanying Jacobians. The fifth eigenvalue must therefore
change from zero to a negative value if the parameter βπ is made positive (but not too
large).

We observe that the parameters βp and βπm have been chosen such that adverse Rose
and destabilizing Mundell-effects are both week and accompanied by a strongly stabi-
lizing Keynes-effect. Due to our reliance on the continuity of eigenvalues with respect
to parameter changes we however had to choose in addition that also βw should be suf-
ficiently small. This is possibly not really necessary, since wage flexibility is stabilizing
from the partial perspective. Note however that the size of the parameter εm is not at all
restricted in the present approach to β−stability. This will be different in the stability
analysis that follows in the appendix to this paper.

We finally observe that loss of stability can only occur – due to the unchanged sign of
the calculated determinants – by way of Hopf-bifurcations, i.e., in particular through
the generation of cycles in the real-nominal interactions of the model. Such loss of
stability is here possible if prices become sufficiently flexible compared to wage flexibility,
leading to an adverse type of real wage adjustment, and if the inflationary climate
expression is updated sufficiently fast, i.e., if the system looses the inertia – we have
built into it – to a sufficient degree. These are typical feedback structures of a properly
formulated Keynesian dynamics that may give rise to local instability and thus the need
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to add further extrinsic or behavioral nonlinearities to the model in order to bound
the generated business fluctuations. Such issues will be further explored in companion
papers from the numerical and the empirical perspective, see Asada, Chiarella, Flaschel
and Hung (2004) and Chen, Chiarella, Flaschel and Semmler (2004).

We conclude from this section that Keynesian dynamics proper – with labor and capital
both over- or underutilized in the course of the generated business fluctuations integrates
important feedback channels based on partial perspectives into a consistent whole, with
all behavior and budget restrictions fully specified. We can have damped oscillations,
persistent fluctuations or even explosive oscillations in such a framework where the
latter have however to be confronted with certain behavioral nonlinearities in order to
allow for viable business fluctuations. Moreover, a variety of well-known stabilizing or
destabilizing feedback channels are still excluded from the present stage of the modelling
of Keynesian macrodynamics, such as wealth effects in consumption or Fisher debt effects
in investment behavior, which define the agenda for future extensions of this model type.

6 Conclusions and outlook

We have considered in this paper extensions and modifications of the traditional and the
current approach to AS-AD growth dynamics that allow us to avoid the logical incon-
sistencies of the Neoclassical synthesis, stage I, and also the strange feedback structure
of New Keynesian approach, the Neoclassical synthesis, stage II, that both arise from
the pure dominance of the assumption of perfect foresight within these two frameworks
coupled with certain marginal equilibrium relationships. Meanwhile conventional wis-
dom in these two approaches then avoids the stability problems of these model types by
just assuming global asymptotic stability through the adoption of non-predetermined
variables and the application of the so-called jump-variable technique.

This approach of the Rational Expectations School is however much more than just
the consideration of rational expectations, but in fact the assumption of hyperperfect
foresight on the future course of the economy coupled with a solution technique that
avoids all potential instabilities of macrodynamic economic systems by assumption. In
the present context, this approach would impose the condition that prices – and also
nominal wages – (or inflation rates, in the New Keynesian approach) must be allowed
to jump in a particular way in order to establish by assumption the stability of the
investigated dynamics.

By contrast, our alternative approach – which allows for sluggish wage as well as price
adjustment, in view of unbalanced labor as well as product markets, and also for certain
economic climate variables, representing the medium-run evolution of inflation and prof-
itability differentials – completely bypasses such stability assumptions. Instead it shows
in a very detailed way local asymptotic stability under certain parameter restrictions
(very plausible from the perspective of partial Keynesian theorizing), cyclical loss of
local stability towards persistent economic fluctuations when these assumptions are vio-
lated (if speeds of adjustment become sufficiently high), and even explosive fluctuations
in the case of further increases of the crucial speeds of adjustment of the model. In the
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latter case extrinsic nonlinearities have to be introduced in order to tame the explosive
dynamics as for example in some of the situations considered in Chiarella and Flaschel
(2000, Ch.6,7).

The stability features of our properly formulated Keynesian dynamics are based on
specific interactions of traditional Keynes- and Mundell-effects or real rate of interest
effects (here present only in the employed investment function) with so-called Rose or
real-wage effects, see Chiarella and Flaschel (1996, 2000) for their introduction, which
in the present framework simply means that increasing wage flexibility is stabilizing and
increasing price flexibility destabilizing, based on the fact that aggregate demand here
always depends negatively on the real wage (due to the assumed investment function)
and based on the extended types of Phillips curves we have employed in our new approach
to traditional Keynesian macrodynamics. The interaction of these three effects is what
explains the obtained stability results under the then not very demanding assumption of
myopic perfect foresight and thus gives rise to a traditional type of Keynesian business
cycle theory, not at all plagued by the inconsistencies of standard AS-AD dynamics.

The model of this paper will be numerically explored and estimated in two compan-
ion papers, Asada, Chiarella, Flaschel and Hung (2004) and Chen, Chiarella, Flaschel
and Semmler (2004) in order to analyze in greater depth and also with an empirical
background the interaction of the various feedback channels present in the considered
dynamics. At that point we will then also make use of Taylor interest rate policy rules
in the place of the traditional LM curve so far employed in order to study the working
of monetary policy in a modern institutional context. Our work on related models sug-
gests that the interest rate policy rule (even if suitably augmented) may not be sufficient
to tame the explosive dynamics in all relevant situations. We will then therefore also
make use of nonlinearities such as a kinked money wage Phillips curve – representing
downward money wage rigidity – and Blanchard and Katz type (2000) error correction
mechanisms in both the WPC and the PPC in order to make the dynamics viable and
thus economically meaningful in the cases where the steady state is a repeller. Taking all
this together our general conclusion will then be that this framework not overcomes the
failures of the Neoclassical Syntheses, stage I and II, and thus also provides a coherent
alternative to the New Keynesian theory of the business cycle, the second attempt for a
Neoclassical Synthesis, as sketched in Gali (2000).

The figure 2 briefly provides a typical outcome of the dynamics if downwardly rigid
money wages are added to an explosive situation where the economy is not at all a
viable one and subject to immediate breakdown without such rigidity. If the money
wage Phillips curve is augmented by the assumption that money wages can rise as
described by it, but cannot fall, we get a situation of a continuum of steady states (for
money supply growth M̂ = n), due to zero root hysteresis, and then the strong result
that the economy indeed converges rapidly to the situation of a stable depression, which
depends in its depth on the initial shock the economy was subject to. If, by contrast,
money wages can fall, but will do so at most at the rate of for example 0.01, the steady
state remains uniquely determined (as shown in this paper) and – though surrounded
by strongly explosive forces – it is not totally unstable, due to the limit cycle situation
that is then generated by the operation of the floor to money wage declines. This type
of floor makes depressions much longer than recoveries, but avoids that the economy
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can be trapped in a stable depression as in the case of complete downward rigidity of
money wages. The two situations just discussed are illustrated by the figure 2 in the
real wage and labor intensity phase subspace of the full 5D dynamics, where the latter
situation is also augmented by a time series plot for the real wage with a characteristic
asymmetry between booms and depressions (with a phase length of around sixty years
of the generated income distribution dynamics). Interest rate policy rules can dampen
the fluctuations shown, but are in general too weak to allow for a disappearance of the
persistency of the endogenously generated business cycle of the private sector of the
economy.

l

l

time

Unrestricted
Steady State

Stable
Depression

Downward Rigidity
in Income Distribution
Adjustments

Oscillations around
the Steady State
for Sluggish Downward
Wage Adujstments

Figure 2: Stable depressions or persistent fluctuations through downwardly rigid money
wages (phase length approximately sixty years).

Summing up, our alternative Keynesian dynamics are based on disequilibrium in the
market for goods and for labor, on sluggish adjustment of prices as well as wages and on
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myopic perfect foresight interacting with certain economic climate expression – creating
the necessary inertia – with a rich array of dynamic outcomes that provide great poten-
tial for future generalizations. Some of these generalizations are considered in Chiarella,
Flaschel, Groh and Semmler (2000) and Chiarella, Flaschel and Franke (2004). Our over-
all approach, a disequilibrium approach to business cycle modelling, provides a theoret-
ical framework within which to consider the contributions of authors such as Zarnowitz
(1999), who also stresses the dynamic interaction of many traditional macroeconomic
building blocks and the feedback mechanisms they are generating.
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Mathematical appendix: Rigorous stability analysis

The objective of this section is to consider, on the one hand, a modified version of the DAS-AD
dynamics of section 5 as it was proposed in Chiarella, Flaschel, Groh and Semmler (2003) in a
reply to Velupillai (2003) and to demonstrate, on the other hand, in a very detailed and also
new way propositions on asymptotic stability and Hopf bifurcations by a different approach
to the use of the Routh-Hurwitz conditions for local asymptotic stability. We thereby provide
another set of sufficient conditions for such stability which supplement the ones of the section
5. The result here will be that we now have to choose the parameters h1, βw, βπm sufficiently
small and h2, βεm in a certain middle range in order to get the stability propositions looked
for. Astonishingly enough a condition on the parameter βp, characterizing price flexibility, can
be completely avoided now.

The model of section 5 is here changed, to the extent that we now employ for the formation
of the investment climate the law of motion

ε̇m = βεm(ρ + p̂ − r − εm
o ), in the place of ε̇m = βεm(ρ + p̂ − r − εm).

This however simply means that the weights with which past excess profitabilities are aggre-
gated are now changed, as can be shown by way of integration of the two laws of motion,
since

εm = ε(to)e−βεm (t−to) + βεm

∫ t

to

e−βεm (t−s)ε(s)ds

is now simply replaced by:

εm = βεm

∫ t

to

ε(s)ds

Instead of an exponential weighting scheme we now use an unweighted aggregate of past
observation as measure of the investment climate in which the economy is operating.

6.1 The model

In this section we analyze mathematically the five-dimensional macrodynamic model that is
obtained from the structural equations of the section 4 (including the above modification of
the model) and that has already been briefly investigated in Chiarella, Flaschel, Groh, and
Semmler (2003). This model is represented – in its initial format – by the following sets
of algebraic and dynamic equations which appropriately transformed will provide us with an
autonomous system of five interdependent differential equations. The local asymptotic stability
properties of the model will be investigated in great detail in this section by making use of
the fact that the various adjustment speeds of the considered model (in fact βw, βp, βπm, βεm)
allow to reduce the dynamics to cases (only one is considered here) where the Routh-Hurwitz
conditions can be considered and proved explicitly, while the higher dimensional cases are
then treated by continuity arguments with respect to the eigenvalues of the full dynamics.
This method of proof has been established in Chiarella and Flaschel (2000) and has since
then been used in a variety of other cases, see for example Chiarella, Flaschel, Franke and
Semmler (2002) for typical examples. We call this approach to the stability investigation of
large(r) macrodynamical systems the β-stability method for obvious reasons. Note here also
that this proof strategy generally gives rise to Hopf-bifurcations when some β−adjustment
speeds become so large that local stability gets lost, giving rise to persistent fluctuations in
such situations.
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The static part of the equations is represented as follows.

y = [i(εm) + g − t]/s + δ + t = y(εm) ; yεm = iεm/s > 0 (22)

r = r0 + (h1y − m)/h2 = r0 + (h1y(εm) − m)/h2 = r(εm, m)

; rεm = h1yεm/h2 > 0, rm = −1/h2 < 0 (2)

ρ = y − δ − ωld(y) = y(εm) − ωld(y(εm)) = ρ(εm, ω) ; ld = f−1(y) = ld(y),

ρεm = (1 − ωldy)yεm = {1 − ω/f ′(ld)}yεm > 0, ρω = −ld < 0 (23)

V l = ld/l = ld(y)/l = ld(y(εm))/l = V l(εm, l) ;

V l
εm = ldyyεm/l > 0, V l

l = −ld/l2 < 0 (24)

V c = y/yp(ω) = y(εm)/yp(ω) = V c(εm, ω) ; yp(ω) given by solving

ω = f ′(lp), yp = f(lp) ; V c
εm = yεm/yp > 0, V c

ω = −yyp
ω/(yp)2 > 0 (25)

where yεm = y′(εm), iεm = i′(εm), rεm = ∂r/∂εm, rm = ∂r/∂m etc. The meanings of
the symbols are as follows:

y = Y/K =actual gross output–capital ratio, i = I/K = K̇/K = rate of net investment (
rate of capital accumulation ), g = G/K = government expenditure – capital ratio ( fixed ),
t = T/K = tax – capital ratio ( fixed ), s = marginal propensity to save ( fixed, 0 < s < 1
), δ = rate of capital depreciation ( fixed, 0 <

= δ <
= 1 ), Y = actual real gross output ( real

gross national income ), K = real capital stock, I = K̇ = real net investment, G = real
government expenditure, T = real tax, εm = investment climate, r = nominal rate of interest,
m = M/(pK) = real money balance per capital, M = nominal money supply, p = price level,
ρ = net rate of profit, ω = w/p = real wage rate, w = nominal wage rate, ld = Ld/K =
employment – capital ratio, Ld = labor employment, l = L/K = full – employment labor
intensity, L = labor supply, V l = rate of employment, yp = full capacity gross output-capital
ratio, V c = rate of capacity utilization.

We can derive Eq. (2) as follows. We can express the equilibrium condition for money market
as m = h1y + h2(r0 − r), where the right hand side is the linear real money demand function
per capital stock ( h1 > 0, h2 > 0, r0 > 0 ). Solving this equation with respect to r, we have
Eq. (2).

It is assumed that output is demand-constrained, i.e., ld < lp, which means that f ′(ld) >
f ′(lp) = ω because of the assumption of decreasing marginal productivity of labor, f ′′(l) < 0.

This is the reason why we have ρεm > 0 in Eq. (23). In this case, we also have yp
ω =

f ′(lp)/f ′′(ld) <0, implying V c
ω > 0 in Eq. (25). In the short run, εm, m, ω and l are given

data. Correspondingly, y, r, ρ, V l, and V c are determined by the equations (22) – (25).
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The dynamic part of the equations is given as follows.

ŵ = ẇ/w = βw(V l − V̄ l) + κw p̂ + (1− κw)πm ; βw > 0, 0 < κw < 1 (26)

p̂ = ṗ/p = βp(V c − V̄ c) + κpŵ + (1− κp)πm ; βp > 0, 0 < κp < 1 (27)

π̇m = βπm(p̂ − πm) ; βπm > 0 (28)

ε̇m = βεmε, ε = ρ − (r − p̂) ; βεm > 0 (29)

l̂ = l̇/l = n − i(εm) (30)

m̂ = ṁ/m = M̂ − p̂ − K̂ = µ − p̂ − i(εm) (31)

where πm = medium-term inflation climate, ε = current risk premium on investment, n = L̂ =
rate of growth of labor supply ( natural rate of growth ) which is assumed to be constant, and
µ = M̂ = rate of growth of nominal money supply which is assumed to be constant.

6.2 Five-dimensional dynamical system

The system in the previous section can be reduced to the following nonlinear five-dimensional
system of differential equations.

( i ) ω̇ = ω
1−κpκw

[(1− κp)βw{V l(εm, l)− V̄ l} − βp(1 − κw){V c(εm, ω)− V̄ c}]

≡ F1(ω, l, εm)

( ii ) l̇ = l{n − i(εm)} ≡ F2(l, εm)

( iii ) ṁ = m[µ − κpβw

1−κpκw
{V l(εm, l)− V̄ l} − βp

1−κpκw
{V c(εm, ω)− V̄ c} − πm − i(εm)]

≡ F3(ω, l, m, εm, πm)

( iv ) ε̇m = βεm[ρ(εm, ω)− r(εm, m) + κpβw

1−κpκw
{V l(εm, l)− V̄ l}

+
βp

1 − κpκw
{V c(εm, ω)− V̄ c} + πm] ≡ βεmG4(ω, l, m, εm, πm)

≡ F4(ω, l, m, εm, πm ; βεm)

( v ) π̇m = βπm [ κpβw

1−κpκw
{V l(εm, l)− V̄ l} + βp

1−κpκw
{V c(εm, ω)− V̄ c}]
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≡ βπmG5(ω, l, εm) ≡ F5(ω, l, εm ; βπm) (S1)

Next, let us consider how to derive these equations. First, we can rewrite equations (26) and
(27) in terms of the matrix notation as follows.

[
1 −κw

−κp 1

] [
ŵ

p̂

]
=

[
βw(V l − V̄ l) + (1 − κw)πm

βp(V c − V̄ c) + (1− κp)πm

]
(32)

Solving this equation, we obtain the following reduced form of ŵ and p̂.

ŵ =
∣∣∣∣ βw(V l − V̄ l) + (1− κw)πm −κw

βp(V c − V̄ c) + (1 − κp)πm 1

∣∣∣∣ /

∣∣∣∣ 1 −κw

−κp 1

∣∣∣∣

=
βw

1 − κpκw
(V l − V̄ l) +

βpκw

1 − κpκw
(V c − V̄ c) + πm (33)

p̂ =
∣∣∣∣ 1 βw(V l − V̄ l) + (1− κw)πw

−κp βp(V c − V̄ c) + (1 − κp)πw

∣∣∣∣ /
∣∣∣∣ 1 −κw

−κp 1

∣∣∣∣

=
κpβw

1 − κpκw
(V l − V̄ l) +

βp

1 − κpκw
(V c − V̄ c) + πm (34)

Substituting the equations (33) and (34) into the equality ω̂ = ŵ − p̂, we obtain Eq. (S1)( i ).
Eq. (S1)( ii ) follows from Eq. (30). Substituting Eq. (34) into the equations (31), (29) and
(28), we have Eq. (S1)( iii ), ( iv ), and ( v ) respectively.

6.3 Long run equilibrium solution

Next, let us investigate the properties of the stationary solution ( long run equilibrium solution
) of the system (S1) which satisfies ω̇ = l̇ = ṁ = ε̇m = π̇m = 0. Substituting ω̇ = π̇m = 0 into
the equations (S1)( i ) ( v ), we have the following system of equations.

[
(1 − κp)βw −βp(1 − κw)
κpβw βp

] [
V l − V̄ l

V c − V̄ c

]
=

[
0
0

]
(35)

The solution of this system of equations becomes V l − V̄ l = 0 and

V c − V̄ c = 0 because we have the following inequality.

∣∣∣∣ (1− κp)βw −βp(1− κw)
κpβw βp

∣∣∣∣ = (1− κp)βpβw + βpκpβw(1− κw) > 0 (36)

Therefore, we can characterize the long run equilibrium solution as follows.

( i ) V l(εm, l) = ld(y(εm))/l = V̄ l

( ii ) V c(εm, ω) = y(εm)/yp(ω) = V̄ c
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( iii ) i(εm) = n

( iv ) πm = µ − n

( v ) ρ(εm, ω)− r(εm, m) + µ − n = 0 (17)

We shall write the vector of the equilibrium values as (ω∗, l∗, m∗, εm∗, πm∗). πm∗ is uniquely
determined by Eq. (17)( iv ). Since iεm > 0, εm∗ is uniquely determined by Eq. (17)( iii ) if it
exists. We shall assume that εm∗ > 0 in fact exists. In this case, we obtain the unique l∗ > 0
substituting εm = εm∗ into Eq. (17)( i ). We can also determine unique ω∗ > 0 ( if it exists )
by substituting εm = εm∗ into Eq. (17)( ii ), since yp

ω < 0. Finally, we can determine unique
m∗ > 0 ( if it exists ) by substituting εm = εm∗ and ω = ω∗ into Eq. (17)( v ), since rm < 0.

The above analysis reveals that at most one long run equilibrium point exists. In other words,
there is no possibility of the existence of the multiple equilibria. In the next section, we
shall investigate the local stability / instability of the long run equilibrium point of this five-
dimensional system by assuming that an economically meaningful long run equilibrium point
exists.

6.4 A five-dimensional analysis of local stability

We can write the Jacobian matrix of the system (S1) which is evaluated at the equilibrium
point as follows.

J1 =

⎡
⎢⎢⎢⎢⎣

F11 F12 0 F14 0
0 0 0 F24 0
F31 F32 0 F34 F35

βεmG41 βεmG42 βεmG43 βεmG44 βεm

βπmG51 βπmG52 0 βπmG54 0

⎤
⎥⎥⎥⎥⎦ (37)

where F11 = ∂F1/∂ω = −ωβp(1−κw)
1−κpκw

V c
ω

(+)

< 0, F12 = ∂F1/∂l = ω(1−κp)βw

1−κpκw
V l

l
(−)

< 0, F14 =

∂F1/∂εm = ω
1−κpκw

{(1−κp)βw V l
εm

(+)

−βp(1−κw) V c
εm

(+)

}, F24 = ∂F2/∂εm = −l iεm

(+)
< 0, F31 =

∂F3/∂ω = − mβp

1−κpκw
V c

ω
(+)

< 0, F32 = ∂F3/∂l = − mκpβw

1−κpκw
V l

l
(−)

> 0, F34 = ∂F3/∂εm =

− m
1−κpκw

(κpβw V l
εm

(+)

+βp V c
εm

(+)

) < 0, F35 = ∂F3/∂πm = −m < 0, G41 = ∂G4/∂ω = ρω
(−)

+ βp

1−κpκw
V c

ω
(+)

,

G42 = ∂G4/∂l = κpβw

1−κpκw
V l

l
(−)

< 0, G43 = ∂G4/∂m = 1/h2 > 0, G44 = ∂G4/∂εm =

ρεm

(+)
−(h1 yεm

(+)
/h2) + 1

1−κpκw
(κpβw V l

εm

(+)

+βp V c
εm

(+)

), G51 = ∂G5/∂ω = βp

1−κpκw
V c

ω
(+)

> 0, G52 =

∂G5/∂l = κpβw

1−κpκw
V l

l
(−)

< 0, and G54 = ∂G5/∂εm = 1
1−κpκw

(κpβw V l
εm

(+)

+βp V c
εm

(+)

) > 0.

The sign pattern of the matrix J1 becomes as follows.
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signJ1 =

⎡
⎢⎢⎢⎢⎣

− − 0 ? 0
0 0 0 − 0
− + 0 − −
? − + ? +
+ − 0 + 0

⎤
⎥⎥⎥⎥⎦ (38)

The characteristic equation of this system can be written as

Γ1(λ) ≡ |λI − J1| = λ5 + a1λ
4 + a2λ

3 + a3λ
2 + a4λ + a5 = 0 (39)

where each coefficient is given as follows.

a1 = −traceJ1 = −F11
(−)

−βεm G44
(?)

≡ a1(βεm) (40)

a2 =sum of all principal second-order minors of J1

=
∣∣∣∣ F11 F12

0 0

∣∣∣∣+
∣∣∣∣ F11 0

F31 0

∣∣∣∣+βεm

∣∣∣∣ F11 F14

G41 G44

∣∣∣∣+βπm

∣∣∣∣ F11 0
G51 0

∣∣∣∣+
∣∣∣∣ 0 0

F32 0

∣∣∣∣+βεm

∣∣∣∣ 0 F24

G42 G44

∣∣∣∣

+βπm

∣∣∣∣ 0 0
G52 0

∣∣∣∣ + βεm

∣∣∣∣ 0 F34

G43 G44

∣∣∣∣ +
∣∣∣∣ 0 F35

0 0

∣∣∣∣ + βεmβπm

∣∣∣∣ G44 1
G54 0

∣∣∣∣

= βεm(−βπm G54
(+)

+ F11
(−)

G44
(?)

−F14
(?)

G41
(?)

−F24
(−)

G42
(−)

−F34
(−)

G43
(+)

) ≡ a2(βεm, βπm) (41)

a3 =– ( sum of all principal third-order minors of J1)

= −
∣∣∣∣∣∣

F11 F12 0
0 0 0
F31 F32 0

∣∣∣∣∣∣−βεm

∣∣∣∣∣∣
F11 F12 F14

0 0 F24

G41 G42 G44

∣∣∣∣∣∣−βπm

∣∣∣∣∣∣
F11 F12 0
0 0 0
G51 G52 0

∣∣∣∣∣∣−βεm

∣∣∣∣∣∣
F11 0 F14

F31 0 F34

G41 G43 G44

∣∣∣∣∣∣

−βπm

∣∣∣∣∣∣
F11 0 0
F31 0 F35

G51 0 0

∣∣∣∣∣∣ − βεmβπm

∣∣∣∣∣∣
F11 F14 0
G41 G44 1
G51 G54 0

∣∣∣∣∣∣ − βεm

∣∣∣∣∣∣
0 0 F24

F32 0 F34

G42 G43 G44

∣∣∣∣∣∣

−βπm

∣∣∣∣∣∣
0 0 0
F32 0 F35

G52 0 0

∣∣∣∣∣∣ − βεmβπm

∣∣∣∣∣∣
0 F24 0
G42 G44 1
G52 G54 0

∣∣∣∣∣∣ − βεmβπm

∣∣∣∣∣∣
0 F34 F35

G43 G44 1
0 G54 0

∣∣∣∣∣∣

= βεm{βπm(−F14
(?)

G51
(+)

+ F11
(−)

G54
(+)

−F24
(−)

G52
(−)

−F35
(−)

G54
(+)

G43
(+)

) − F12
(−)

F24
(−)

G41
(?)

+ F11
(−)

G42
(−)

F24
(−)

−F14
(?)

G43
(+)

F31
(−)

+ F11
(−)

G43
(+)

F34
(−)

−F24
(−)

G43
(+)

F32
(+)

} ≡ a3(βεm, βπm) (42)
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a4 =sum of all principal fourth-order minors of J1

= βεmβπm

∣∣∣∣∣∣∣∣

0 0 F24 0
F32 0 F34 F35

G42 G43 G44 1
G52 0 G54 0

∣∣∣∣∣∣∣∣
+ βεmβπm

∣∣∣∣∣∣∣∣

F11 0 F14 0
F31 0 F34 F35

G41 G43 G44 1
G51 0 G54 0

∣∣∣∣∣∣∣∣

+βεmβπm

∣∣∣∣∣∣∣∣

F11 F12 F14 0
0 0 F24 0
G41 G42 G44 1
G51 G52 G54 0

∣∣∣∣∣∣∣∣
+ βπm

∣∣∣∣∣∣∣∣

F11 F12 0 0
0 0 0 0
F31 F32 0 F35

G51 G52 0 0

∣∣∣∣∣∣∣∣

+βεm

∣∣∣∣∣∣∣∣

F11 F12 0 F14

0 0 0 F24

F31 F32 0 F34

G41 G42 G43 G44

∣∣∣∣∣∣∣∣

= βεm{βπm(F24

∣∣∣∣∣∣
F32 0 F35

G42 G43 1
G52 0 0

∣∣∣∣∣∣ − G43

∣∣∣∣∣∣
F11 F14 0
F31 F34 F35

G51 G54 0

∣∣∣∣∣∣ − F24

∣∣∣∣∣∣
F11 F12 0
G41 G42 1
G51 G52 0

∣∣∣∣∣∣)

+F24

∣∣∣∣∣∣
F11 F12 0
F31 F32 0
G41 G42 G43

∣∣∣∣∣∣}

= βεm{βπm(−F24
(−)

F35
(−)

G43
(+)

G52
(−)

−G43
(+)

F14
(?)

F35
(−)

G51
(+)

+ G43
(+)

F11
(−)

G54
(+)

F35
(−)

−F24
(−)

F12
(−)

G51
(+)

+ F24
(−)

F11
(−)

G52
(−)

) + F24
(−)

G43
(+)

(F11
(−)

F32
(+)

−F12
(−)

F31
(−)

)} ≡ a4(βεm, βπm) (43)

a5 = − detJ1 = −βεmβπm

∣∣∣∣∣∣∣∣∣∣

F11 F12 0 F14 0
0 0 0 F24 0
F31 F32 0 F34 F35

G41 G42 G43 G44 1
G51 G52 0 G54 0

∣∣∣∣∣∣∣∣∣∣

= −βεmβπmF24

∣∣∣∣∣∣∣∣

F11 F12 0 0
F31 F32 0 F35

G41 G42 G43 1
G51 G52 0 0

∣∣∣∣∣∣∣∣
= −βεmβπmF24G43

∣∣∣∣∣∣
F11 F12 0
F31 F32 F35

G51 G52 0

∣∣∣∣∣∣

= βεmβπm F24
(−)

G43
(+)

F35
(−)

(−F12
(−)

G51
(+)

+ F11
(−)

G52
(−)

) ≡ a5(βεm, βπm) > 0 (44)

Next, let us consider the conditions for local stability of the equilibrium point in this system.
It is well known that the Routh-Hurwitz conditions for stable roots in this five-dimensional
system can be expressed as follows ( cf. Gandolfo (1996) chap. 16 ).
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( i ) ∆1 ≡ a1 > 0

( ii ) ∆2 ≡
∣∣∣∣ a1 a3

1 a2

∣∣∣∣ = a1a2 − a3 > 0

( iii ) ∆3 ≡
∣∣∣∣∣∣

a1 a3 a5

1 a2 a4

0 a1 a3

∣∣∣∣∣∣ = a3∆2 + a1(a5 − a1a4) = a1a2a3 − a2
1a4 − a2

3 + a1a5 > 0

( iv ) ∆4 ≡

∣∣∣∣∣∣∣∣

a1 a3 a5 0
1 a2 a4 0
0 a1 a3 a5

0 1 a2 a4

∣∣∣∣∣∣∣∣
= a4∆3 − a5

∣∣∣∣∣∣
a1 a3 a5

1 a2 a4

0 1 a2

∣∣∣∣∣∣

= a4∆3 + a5(−a1a
2
2 − a5 + a2a3 + a1a4)

= a4∆3 + a5(a1a4 − a5 − a2∆2)0

( v ) ∆5 ≡

∣∣∣∣∣∣∣∣∣∣

a1 a3 a5 0 0
1 a2 a4 0 0
0 a1 a3 a5 0
0 1 a2 a4 0
0 0 a1 a3 a5

∣∣∣∣∣∣∣∣∣∣
= a5∆4 > 0 (26)

It is easy to see that two inequalities a1 > 0 and a5 > 0 are a set of necessary conditions for
the local stability of this system. The condition a5 > 0 is always satisfied because of Eq. (44).
However, a1 depends on the value of the parameter βεm because of Eq. (40). Furthermore, we
can see that G44 is an increasing function of the sensitivity of the money demand with respect
to the nominal rate of interest ( h2 ), and we have lim

h2→0
G44 = −∞, lim

h2→+∞
G44 > 0. The

following proposition follows from this fact.

Proposition 4

Suppose that h2 is so large that G44 > 0. Then, the equilibrium point of the system (S1) is
locally unstable if the inequality

βεm > −F11
(−)

/ G44
(+)

(45)

is satisfied.

Proof. If the inequality (45) is satisfied, we have a1 < 0, which violates one

of the Routh-Hurwitz conditions for stable roots.

This proposition implies that the system becomes dynamically unstable if the values of the
parameters h2 and βεm are sufficiently large. This proposition provides us a sufficient condition
for local instability. On the other hand, the following proposition provides us an interesting
set of sufficient conditions for the local stability.
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Proposition 5

Suppose that the following set of inequalities is satisfied at the parameter values βεm = β0
εm > 0

and βπm = 0.

a1(β0
εm) > 0, a3(β0

εm, 0) > 0,

a1(β0
εm)a2(β0

εm, 0)a3(β0
εm, 0)− a1(β0

εm)2a4(β0
εm, 0)− a3(β0

εm, 0)2 > 0 (46)

Then, a set of inequalities (26)( i ) – ( v ) is satisfied at βεm = β0
εm for all sufficiently small

βπm > 0.

Proof.

We have the following relationships at [βεm, βπm] = [β0
εm, 0] because a5(β0

εm, 0) = 0.

( i ) ∆1 = a1(β0
εm)

( ii ) ∆2 = a1(β0
εm)a2(β0

εm, 0)− a3(β0
εm, 0)

( iii ) ∆3 = a3(β0
εm, 0)∆2 − a1(β0

εm)2a4(β0
εm, 0)

= a1(β0
εm)a2(β0

εm, 0)a3(β0
εm, 0)− a1(β0

εm)2a4(β0
εm, 0)− a3(β0

εm, 0)2

( iv ) ∆4 = a4(β0
εm, 0)∆3 (29)

We can easily see from these relationships that four conditions ∆j > 0 (j = 1, 2, 3, 4) are
satisfied at [βεm, βπm] = [β0

εm, 0] if a set of inequalities (46) are satisfied, because we have
a4(β0

εm, 0) = β0
εm F24

(−)
G43
(+)

(F11
(−)

F32
(+)

−F12
(−)

F31
(−)

)0. It is clear that four inequalities ∆j > 0 ( j =

1, 2, 3, 4) are also satisfied at βεm = β0
εm for all sufficiently small βπm > 0, because each

coefficient is the continuous function of the parameter βπm . The inequality ∆5 > 0 is also
satisfied at βεm = β0

εm for all sufficiently small βπm > 0, because we have a5(β0
εm, βπm) > 0 if

βπm > 0.

Proposition 5 implies that the equilibrium point of the system (S1) is locally asymptotically
stable at βεm = β0

πm > 0 for all sufficiently small βπm > 0 if a set of inequalities (46) is satisfied.
In the next section, we shall show that these inequalities in fact correspond to the exact local
stability conditions of a degenerated four-dimensional system.

6.5 Local stability and Hopf Bifurcations in a degenerated four-

dimensional system, and implications for the 5D dynamics

It is easy to see that the characteristic equation (39) becomes as follows as βπm → 0.

lim
βπm→0

Γ1(λ) = lim
βπm→0

|λI − J1| = λ |λI − J2| = 0 (47)

where J2 is the following (4×4) submatrix of the (5×5) matrix J1.
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J2 =

⎡
⎢⎢⎣

F11 F12 0 F14

0 0 0 F24

F31 F32 0 F34

βεmG41 βεmG42 βεmG43 βεmG44

⎤
⎥⎥⎦ (48)

Eq. (47) has a root λ = 0, and other four roots are determined by the following equation.

Γ2(λ) ≡ |λI − J2| = λ4 + b1λ
3 + b2λ

2 + b3λ + b4 = 0 (49)

where each coefficient becomes as follows.

b1 = a1(βεm) = A − βεmB (50)

b2 = a2(βεm, 0) = βεmC (51)

b3 = a3(βεm, 0) = βπmD (52)

b4 = a4(βεm, 0) = βεmE (53)

In these expressions, A, B, C, D, and E are constants which are given as follows.

A = −F11
(−)

=
ωβp(1 − κw)

1 − κpκw
V c

ω
(+)

> 0,

B = G44
(?)

= ρεm

(+)
−(h1 yεm

(+)

/h2) +
1

1− κpκw
(κpβw V l

εm

(+)

+βp V c
εm

(+)

),

C = F11
(−)

G44
(?)

−F14
(?)

G41
(?)

−F24
(−)

G42
(−)

−F34
(−)

G43
(+)

= −ωβp(1 − κw)
1 − κpκw

V c
ω

(+)

{ρεm

(+)

−(h1 yεm

(+)

/h2) +
1

1 − κpκw
(κpβw V l

εm

(+)

+βp V c
εm

(+)

)}

− ω

1 − κpκw
{(1 − κp)βw V l

εm

(+)

−βp(1 − κw) V c
εm

(+)

}(ρω
(−)

+
βp

1 − κpκw
V c

ω
(+)

)

+
κpβw

1 − κpκw
V l

l
(−)

l iεm

(+)
+

m

1 − κpκw
(κpβw V l

εm

(+)

+βp V c
εm

(+)

)(1/h2),

D = −F12
(−)

F24
(−)

G41
(?)

+ F11
(−)

G42
(−)

F24
(−)

+ G43
(+)

(−F14
(?)

F31
(−)

+F11
(−)

F34
(−)

−F24
(−)

F32
(+)

)

=
βw

1 − κpκw
[ω(1− κp) V l

l
(−)

l iεm

(+)
(ρω
(−)

+
βp

1 − κpκw
V c

ω
(+)

) +
ωβp(1− κw)κp

1− κpκw
V c

ω
(+)

V l
l

(−)

l iεm

(+)
]
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+
βw

1 − κpκw
(1/h2)m[

ωβp

1− κpκw
{(1− κp) + (1− κw)κp} V l

εm

(+)

V c
ω

(+)

−κpl iεm

(+)
V l

l
(−)

]

≡ βw

1 − κpκw
H,

E = F24
(−)

G43
(+)

(F11
(−)

F32
(+)

−F12
(−)

F31
(−)

)

=
mωβpβw

(1− κpκw)2
(1/h2)l iεm

(+)
{−(1− κw)κp V c

εm

(+)

V l
l

(−)

−(1 − κp) V l
l

(−)

V c
ω

(+)

} > 0. (54)

In fact, Eq. (49) is identical to the characteristic equation of a degenerated four-dimensional
system, which we can construct by freezing the inflation climate πm at the equilibrium level
µ − n in the system (S1)( i ) – ( iv ). For simplicity, we shall call this degenerated four-
dimensional system as the system (S2).

We can express the Routh-Hurwitz conditions for stable roots in this four-dimensional system
as follows ( cf. Gandolfo (1996) chap. 16 ).

( i ) Φ1 ≡ b1 > 0

( ii ) Φ2 ≡
∣∣∣∣ b1 b3

1 b2

∣∣∣∣ = b1b2 − b3 > 0

( iii ) Φ3 ≡
∣∣∣∣∣∣

b1 b3 0
1 b2 b4

0 b1 b3

∣∣∣∣∣∣ = b3Φ2 − b2
1b4 = b1b2b3 − b2

1b4 − b2
3 > 0

( iv ) Φ4 ≡

∣∣∣∣∣∣∣∣

b1 b3 0 0
1 b2 b4 0
0 b1 b3 0
0 1 b2 b4

∣∣∣∣∣∣∣∣
= b4Φ3 > 0 (38)

A set of inequalities (38) is equivalent to the following set of conditions.

b1 > 0, b3 > 0, b4 > 0, Φ3 ≡ b1b2b3 − b2
1b4 − b2

3 > 0 (55)

Remark 1

A set of inequalities (55) automatically implies the inequality b2 > 0.

By the way, the inequality b4 > 0 is always satisfied for all βεm > 0. Therefore, the exact local
stability conditions of the system (S2) can be reduced to the following three inequalities as far
as βεm > 0.

b1 > 0, b3 > 0, Φ3 > 0 (56)

It is important to note that a set of inequalities (56) is exactly the same as a set of conditions
(46). Now, we can easily obtain the following proposition.
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Proposition 6

The equilibrium point of the system (S2) is locally unstable for all βεm > 0 if either of the
inequalities C < 0 or D < 0 is satisfied.

Proof.

If C < 0, we have b2 < 0 for all βεm > 0, which violates one of the Routh-Hurwitz conditions
for stable roots. If D < 0, we have b3 < 0 for all βεm > 0, which also violates one of the
conditions for stable roots.

This proposition implies that both of the inequalities C > 0 and D > 0 are necessary conditions
for the local stability of the system (S2). We can see from Eq. (54) that these conditions are
satisfied if the value of the parameter h2 ( sensitivity of the money demand with respect to
the changes of the nominal rate of interest ) is sufficiently small.

By the way, we have the following relationships from Eq. (54) ( A > 0 is independent of the
changes of the parameter βw ).

B(0) ≡ lim
βw→0

B = ρεm

(+)
−(h1 yεm

(+)
/h2) +

βp

1 − κpκw
V c

εm

(+)

(57)

C(0) ≡ lim
βw→0

C =
βp

1 − κpκw
[ω(1− κw){− ρεm

(+)

+(h1 yεm

(+)

/h2)− βp

1 − κpκw
V c

εm

(+)

+ V c
εm

(+)

(ρω
(−)

+
βp

1 − κpκw
V c

ω
(+)

)}+ m V c
εm

(+)

(1/h2)] (58)

We shall study the local stability of the equilibrium point of the four-dimensional system (S2)
under the following assumption.

Assumption 1.

B(0) > 0, C(0) > 0,and H > 0.

The condition B(0) > 0 implies that

1/h2 < (ρεm

(+)
+

βp

1 − κpκw
V c

εm

(+)

)/(h1 yεm

(+)
) ≡ Q. (59)

This means that the value of the parameter h2 is not too small. The conditions C(0) > 0 and
H > 0 imply the following two inequalities.

1/h2 > βp{ω(1 − κw) (ρεm

(+)

+
βp

1 − κpκw
V c

εm

(+)

) + V c
εm

(+)

(− ρω
(−)

− βw

1 − κpκw
V c

ω
(+)

)}/{ω(1− κw)h1 yεm

(+)

+m V c
εm

(+)

} ≡ T (60)
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1/h2 > {−ω(1− κp) V l
l

(−)

l iεm

(+)
(ρω
(−)

+
βp

1 − κpκw
V c

ω
(+)

)− ωβp(1 − κw)κp

1 − κpκw
V c

ω
(+)

V l
l

(−)

l iεm

(+)
}/ mωβp

1 − κpκw

{(1− κp) + (1− κw)κp} V l
εm

(+)

V c
ω

(+)

−mκpl iεm

(+)
V l

l
(−)

} ≡ W (61)

These two inequalities mean that the value of the parameter h2 is not too large. That is to
say, Assumption 1 is equivalent to the following set of inequalities.

max[T, W ] < 1/h2 < Q (62)

This set of inequalities is meaningless unless

max[T, W ] < Q. (63)

The inequality (63) will in fact be satisfied if the value of the parameter h1 ( sensitivity of the
money demand with respect to the changes of the real income ) is sufficiently small, since we
have lim

h1→0
Q = +∞, lim

h1→0
T < +∞, and W < +∞. The small h1 means the mild slope of the

LM curve ( see Eq. (2) ). To sum up, Assumption 1 will in fact be satisfied if h1 is relatively
small and h2 is at the intermediate level.

Under Assumption 1, we have

B > 0, C > 0,and D > 0 (47)

for all sufficiently small βw > 0. In this case, we can simplify a set of local stability conditions
as follows.

0 < βεm < A/B, Φ3 > 0 (64)

We can write the function Φ3 as follows.

Φ3(βεm) = (A − βεmB)β2
εmCD − (A − βεmB)2βεmE − β2

εmD2

= −B(CD + BE)β3
εm + {(AC − D)D + 2ABE}β2

εm − A2Eβεm (65)

Suppose that βw > 0 is so small that a set of inequalities (64) is satisfied. Since Φ3(0) = 0
and Φ′

3(0) = −A2E < 0, we have Φ3 < 0 for all sufficient small βεm > 0. This observation
implies that the equilibrium point of this system becomes locally unstable for all sufficient
small βεm > 0. On the other hand, we already know that the system becomes unstable for
all βεm > A/B. Therefore, we have the instability result for very small as well as very large
βεm . If βεm = 0, the investment climate does not move, i. e., εm = εm(0) for all time. In this
case the movement of l is governed by the equation l̇ = l{n− i(εm(0))}, so that l continues to
increase or continues to decrease unless n = i(εm(0)). Obviously, this means instability, and
this property applies also for sufficiently small βεm > 0. On the other hand, the instability of
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the system in case of the large adjustment parameter can be interpreted as an ‘overshooting’
phenomenon. Next, let us investigate whether the stable region exists at the intermediate
range of the adjustment parameter values or not.

The equation Φ3(βεm) = 0 has the following three roots.

( i ) β0
εm = 0

( ii ) β1
εm = {(AC−D)D+2ABE}−

√
{(AC−D)D+2ABE}2−4B(CD+BE)A2E

2B(CD+BE)

=
{(AC − D)D + 2ABE} − D

√
(AC − D)2 − 4ABE

2B(CD + BE)

( iii ) β2
εm = {(AC−D)D+2ABE}+D

√
(AC−D)2−4ABE

2B(CD+BE)
(50)

An interval with Φ3 > 0 exists in the region βεm ∈ (0, +∞) if and only if β1
εm and β2

εm are
real roots such that 0 < β1

εm < β2
εm. We can prove that in fact that is the case if the value of

the parameter βw > 0 under Assumption 1.

We can easily see that the following properties are satisfied.

D(0) ≡ lim
βw→0

D = 0 (66)

E(0) ≡ lim
βw→0

E = 0 (67)

lim
βw→0

(AC − D) = AC(0) > 0. (68)

In this case, β1
εm and β2

εm in Eq. (50) become to be the real roots such that 0 < β1
εm < β2

εm for
sufficient small βw > 0, because of the inequality (68) and the fact that lim

βw→0
(ABE) = 0. This

situation is illustrated in figure 3.

1
m

2
m

m

3

0

Figure 3: The parameter Φ3 as a function of βεm.

Furthermore, we can show that
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A/B − β2
εm =

D{(AC − D)− √
(AC − D)2 − 4ABE}

2B(CD + BE)
, (69)

which becomes to be positive for sufficiently small βw > 0.

We can obtain the following important proposition from the above observations.

Proposition 7

Suppose that βw > 0 is sufficiently small. Then, under Assumption 1, there exist the
parameter values β1

εm and β2
εm such that 0 < β1

εm < β2
εm which satisfy the following properties.

( i ) The equilibrium point of the degenerated four-dimensional system (S2) is locally asymptot-
ically stable for all βεm ∈ (β1

εm, β2
εm), and it is locally unstable for all βεm ∈ (0, β1

εm)∪(β2
εm, +∞).

( ii ) The equilibrium point of the original five-dimensional system (S1) is locally asymptotically
stable for all sufficiently small βπm > 0 if βεm ∈ (β1

εm, β2
εm).

( iii ) The equilibrium point of the original five-dimensional system (S1) is locally unstable for
all sufficiently small βπm > 0 if βεm ∈ (0, β1

εm) ∪ (β2
εm, +∞).

Proof.

( i ) We already know from the above observations that there exist the parameter values β1
εm

and β2
εm such that 0 < β1

εm < β2
εm with the following properties if the relevant assumptions

are satisfied. (22) For all βεm ∈ (β1
εm, β2

εm), we have both of Φ3 > 0 and 0 < βεm < A/B, so
that all of the Routh-Hurwitz conditions for stable roots of the system (S2) are satisfied. (2)
For all βεm ∈ (0, β1

εm)∪ (β2
εm, +∞), we have Φ3 < 0, so that at least one of the Routh-Hurwitz

conditions of the system (S2) is violated.

( ii ) If βεm ∈ (β1
εm, β2

εm), all of the inequalities (46) are satisfied, so that we can apply the
result of Proposition 5.

( iii )If βεm ∈ (0, β1
εm) ∪ (β2

εm , +∞), the characteristic equation (47) has at least one root with
positive real part. In this case, the characteristic equation (39) also has at least one root with
positive real part for all sufficiently small βπm > 0 by continuity.

By the way, at the points βεm = β1
εm and βεm = β2

εm , we have the following properties.

b1 > 0, b3 > 0, b4 > 0, Φ3 = 0, Φ′(βεm) �= 0 (70)

This means that at these points the ‘simple’ Hopf Bifurcations occur in the four-dimensional
system (S2) ( as for the mathematical proof, see Liu (1994), Yoshida and Asada (2001), or
Asada and Yoshida (2002) ). The ‘simple’ Hopf Bifurcation is the particular type of the Hopf
Bifurcation at which all the characteristic roots except a pair of purely imaginary ones have
negative real parts. In other words, at these points the characteristic equation (49) has a pair
of purely imaginary roots and two roots with negative real parts.

Furthermore, we can observe that there is no other Hopf Bifurcation point in this system
because of the following reason. Asada and Yoshida (2002) proved that both of the conditions
b4 �= 0 and Φ3 = 0 are necessary conditions for the occurrence of the Hopf Bifurcation,
whether it is simple or non-simple, in the four-dimensional system. The point βεm = 0 is the
only other point which satisfies Φ = 0, but at that point we have b4 = 0. Therefore, the
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point βεm = 0 is not the Hopf Bifurcation point. These analysis leads us to the following final
important proposition, which establishes the existence of the cyclical fluctuation in both of the
degenerated system and the original system.

Proposition 8.

( i ) There exist some non-constant periodic solutions of the degenerated four-dimensional
system (S2) at some parameter values βεm > 0 which are sufficiently close to βi

εm ( i = 1, 2 )
which are defined in Proposition 7.

( ii ) At the parameter values βεm0 which are sufficiently close to

βi
εm( i = 1, 2 ) which are defined in Proposition 7, the characteristic equation (39) of the

original five-dimensional system (S1) has a pair of complex roots for all sufficiently small
βπm > 0.

Proposition 8 ( ii ) follows from the continuity of the characteristic roots with respect to
the changes of the coefficients of the characteristic equation. This proposition establishes the
existence of the cyclical fluctuation in the original five-dimensional nonlinear dynamical system
(S1).

Remark 2.

If we can find a parameter value βεm = βεm∗ >0 at which all of the conditions ∆j > 0 (
j = 1, 2, 3 ), ∆4 = 0, ∆′

4(βεm) �= 0 are satisfied, we can establish the existence of a (simple)
Hopf Bifurcation in the original five-dimensional system ( cf. Liu (1994)). In this case, we can
establish the existence of the closed orbit in the original five-dimensional system. ( In fact,
we also need another condition a5 > 0, but this condition is always satisfied in this model. )
However, the existence of the closed orbit ( existence of a pair of purely imaginary roots ) is
not necessary for the existence of the cyclical fluctuation. Rather, the existence of a pair of
complex roots is enough for the existence of the cyclical movement.
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