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Abstract

For the modelling of economic and financial time series, multivari-
ate linear and nonlinear systems of equations became a standard tool.
These models might also be applied in the context of non–stationary
processes. However, estimation results in finite samples might depend
strongly on the specification of the model dynamics.

We propose a method for automatic identification of the dynamic
part of VEC–models. Model selection is based on a modified infor-
mation criterion. The lag structure of the model is selected according
to this objective function allowing for “holes”. The resulting com-
plex discrete optimization problem is tackled using a hybrid heuristic
combining ideas from threshold accepting and memetic algorithms.
We present the algorithm and results of a simulation study indicat-
ing the performance both with regard to the dynamic structure and
the rank selection in the VEC–model. The results indicate that the
selected rank might depend strongly on the dynamic specification of
the VEC–model.
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1 Introduction

For the modelling of economic and financial time series, multivariate linear
(VAR, SVAR, VECM) and nonlinear systems of equations (MS–VAR) be-
came a standard tool over the last few years. As compared to univariate
approaches, these models exhibit interesting features, e.g. dealing with non–
stationary processes and cointegration. However, the issue of finite sample
performance becomes even more relevant for these models which typically
require the simultaneous estimation of a large set of parameters.1 While
economic theory might provide a guideline for long–run or equilibrium rela-
tionships,2 the modelling of the dynamic part has to rely on different inputs.3

In order to avoid a simple ad hoc specification of the dynamic part, several
statistical procedures have been proposed. For example, the lag structure in
VAR–models is based on tests on residual autocorrelation (Jacobson, 1995)
or information criteria like AIC and BIC (Winker, 2000).4 However, these
approaches did not take into account potential non–stationarity of the time
series and the restrictions imposed by the rank conditions in a cointegration
framework. In several contributions,5 the effect of lag length selection on the
outcomes of tests for cointegration,6 in particular on the cointegration rank,
has been demonstrated. Bewley and Yang (1998) compare the performance
of different system tests for cointegration when the lag length is selected by
means of a standard information criterion (AIC or BIC, respectively). Both
under– and overspecification of the lag length appear to have a negative im-
pact.7 While the effect on size is small for tests for rank equal to zero, the

1For example, a small sample correction of Johansen’s test is proposed by Johansen
(2002).

2The issue of identification and restriction of long–run relationships based on statistical
tests and prior information is discussed by Omtzigt (2002).

3In this paper, we neglect the specification of deterministic trend terms, which might
have similar implications on the outcomes (Ahking, 2002).

4A different approach focusing on general–to–specific reductions, which eliminates sta-
tistically insignificant variables and uses diagnostic tests to check the validity of reductions
is presented by Hendry and Krolzig (2001) and Krolzig and Hendry (2001). Brüggemann
et al. (2003) provide a comparison of different methods.

5See also the references provided by Ho and Sørensen (1996) in their introduction and
by Pötscher (1991).

6In general, the analysis is conducted in the framework of Johansen’s testing procedure
(Johansen, 1988; Johansen, 1991; Johansen, 1992; Johansen, 1995).

7Gonzalo and Pitarakis (1999) analyse the performance of model selection criteria in
large dimensional VARs. They find that underfitting might become as important as over-
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effect on power is more substantial for certain parameter combinations. This
effect becomes even more pronounced for tests of the null of a cointegration
rank of one. Ho and Sørensen (1996) considered higher dimensional systems
and found that the negative impact of overspecification increases with the di-
mension. In particular, application of Johansen’s test tends to underestimate
the number of unit roots in the system, and, in due course, to overestimate
the cointegration rank in this case.

The model selection procedure analyzed in this paper differs in two as-
pects from the methods mentioned above. First, we employ a modified in-
formation criterion discussed by Chao and Phillips (1999) for the case of
partially nonstationary VAR–models.8 Consequently, the dynamic model se-
lection is performed taking the restrictions of reduced rank regressions into
account. Second, we allow for “holes” in the lag structures, i.e. lag structures
are not constrained to sequences of lags up to lag k, but might consist, e.g.,
of the first and fourth lag only in an application to quarterly data. Using this
approach, different lag structures can be used for different variables and in
different equations of the system. This feature has to be taken into account in
the estimation procedure for a given dynamic structure.9 For this purpose,
we use a SURE–like modification of the two step reduced rank estimator
proposed by Ahn and Reinsel (1990).10

Using this approach, the problem of model specification becomes an inte-
ger optimization problem on the huge set of all possible lag structures. In the
context of VAR–models several methods have been proposed to tackle this
problem of high computational complexity. Exact algorithms are based on an
intelligent enumeration of possible models avoiding the evaluation of all cases

fitting when the dimension of the process increases even for the AIC. Furthermore, the
performance of information criteria depends critically on the specific DGP under consid-
eration.

8Analyzing the effects of choosing alternative criteria, e.g. along the lines suggested by
Campos et al. (2003), is left for future research. The same applies to the combination with
a pre–selecting step also discussed by Campos et al. (2003).

9As pointed out by Gredenhoff and Karlsson (1999), in the literature on model selection
in VAR–models, the possibility that the true model may have unequal lag–length or even
holes in the lag structure has received little attention. Although they use the Hsiao
procedure which does not investigate all combinations of lag–lengths for the different
variables and does not allow for holes at all, their simulation results indicate that, in
particular for more complex lag structures, their unequal lag length procedure appears
improve results.

10An application in the ML setting of Johansen’s procedure is left for future research.
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(Gatu and Kontoghiorghes, 2003). Nevertheless, this approach is still of high
computational complexity and appears to be limited in the current stage to
linear models without further restrictions. In contrast, heuristic optimization
techniques which have already been applied to the linear VAR (Winker, 2000)
can be extended to structural VAR– and VEC–models. However, the numer-
ical methods used in estimating the model for a given dynamic structure, i.e.
the two step reduced rank estimator used in this paper or a ML estimator,
become more involved in a VEC setting. In due course, the overall computa-
tional complexity increases. This high computational load sets a limit to the
number of different data generating processes (DGP) and parameter settings
which can be used for our MC simulation analysis. Nevertheless, our first
results indicate that the method works well in practice and might be superior
to the standard “take all up to the k–th lag” approach in specific settings.

The paper is organized as follows. Section 2 introduces the model se-
lection problem in the context of VEC–models. We present the model, the
information criteria and the resulting integer optimization problem. Section 3
describes the implementation of the heuristic used to solve this optimization
problem. In section 4 we present some Monte Carlo evidence on the per-
formance of the method applied to different data generating processes. The
results are compared to the standard method of choosing all lags up to a
certain order. Section 5 summarizes the findings and provides an outlook to
further steps of our analysis.

2 The Model Selection Procedure

The standard procedure for model selection in a VEC–model setting consists
of a sequential procedure. First, information criteria like AIC or BIC are
used to choose a lag length for the unrestricted VAR–model.11 For the next
steps of the analysis, it is assumed that the correct specification of the lag
structure is given.12 Then, for the determination of the cointegration rank,
a sequence of cointegration tests is performed. The statistical properties of

11Ho and Sørensen (1996) find evidence in favour of using BIC when a cointegration
analysis is intended. Winker (1995, 2000) generalizes this model selection step to allow
for different lag structures across equations including “holes”.

12However, several simulation studies have demonstrated that lag misspecification ad-
versely affects the outcome of the cointegration tests conducted in the second step (Ho
and Sørensen, 1996; Bewley and Yang, 1998).
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this sequential procedure are difficult to assess. Consequently, it cannot be
guaranteed that the final estimation of the cointegration rank obtained by
this procedure is a consistent estimate (Johansen, 1992; Jacobson, 1995; Chao
and Phillips, 1999).

In order to circumvent these shortcomings of the traditional approach,
Chao and Phillips (1999) propose to reconsider the problem from the view-
point of model selection.13 They propose a modification of the BIC and a
posterior information criterion (PIC) for the application to VAR processes
with reduced rank cointegration structure. Using these criteria for model se-
lection exhibits three advantages: First, lag structure and the cointegration
rank can be selected in a single step. Second, the penalty function of both
criteria reacts to under– and over–parameterization, which both might have
a detrimental effect on the estimation of the cointegration rank (Bewley and
Yang, 1998). Application of this criterion provides a consistent estimation of
lag structure and cointegration rank (Chao and Phillips, 1999). Third, the
method can easily be extended to cover the case of different lag structures
across equations including “holes”.

For the MC simulations presented in this paper, we consider both the
modified BIC (BICm) and the modified posterior information criterion (PICm)
presented in Chao and Phillips (1999, p. 236). However, the PICm is consid-
ered solely for a comparison of different criteria applied to models containing
all lags up to a certain order. Our goal is to assess the advantage of allowing
for holes in the lag structure for the determination of the cointegration rank
of a VECM as compared to the standard “take all up to the k–th lag” ap-
proach. For the optimization of lag structures allowing for holes, we restrict
the analysis to the BICm for computational reasons. Inclusion of the PICm
is part of our future research agenda.

We consider the d–dimensional VAR–model of order k + 1

Yt =
k+1∑
i=1

ΠiYt−i + εt (1)

with initial values {Y0, Y−1, ..., Y−k}. Thereby, the error terms εt are assumed
to be iid N (0,Ω). Furthermore, it is assumed that the characteristic poly-
nomial of the VAR may have unit roots on the unit circle, but no explosive

13Bahmani-Oskooee and Brooks (2003) also propose a global criterion based on the
goodness of fit of the resulting long–run relationships. However, they do not provide MC
evidence on the relative performance of this approach.
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components. The VAR–model (1) can also be expressed in vector error–
correction notation as14

∆Yt =
k∑
i=1

Γi∆Yt−i + ΠYt−k−1 + εt . (2)

The matrix Π represents the parameters of the error correction term of the
model. Consequently, the cointegration rank of the system is given by the
rank of Π. For each 0 ≤ r ≤ d, there exist d · r matrices α and β of full rank
such that Π = αβ′.15 Finally, we require that ∆Yt is a stationary process
allowing for a Wold representation (Chao and Phillips, 1999, p. 229).

In the standard approach, i.e. taking all lags up to a specified order in
all equations, the model selection problem consists in determining values for
k and r. If a maximum lag length kmax is assumed to be given, the number
of models to be considered amounts to d ·kmax. A complete enumeration
of these models is feasible and will serve as a benchmark in our simulation
analysis. However, a priori there is no reason to expect that the dynamic
structure is of this standard type. Therefore, we extend this approach to
allow for different lag structures across equations and for “holes” in the lag
structure of any equation. Consequently, we have to choose a lag structure
out of 2d

2·kmax possible sets. Obviously, a simple enumeration approach will
fail in this case except for very small instances. As in Winker (1995, 2000),
we employ a heuristic optimization technique to tackle this problem. The
method will be described in section 3.

Before turning to the optimal selection of the dynamic lag structure, we
have to provide more details on the calculation of the information criterion
BICm for given lag structure and cointegration rank. We use a modification
of the iterative estimation procedure proposed by Ahn and Reinsel (1990)
for the reduced rank case. However, we have to modify this method to allow
for different lag structures across equations. The parameter estimates are
obtained iteratively by

b̂ι+1 = b̂ι +

(
T∑
t=1

U∗t Ω̂−1
ε U∗

′
t

)(−1)( T∑
t=1

U∗t Ω̂−1
ε ε̂t

)
(3)

14For the empirical application, we employ the asymptotically equivalent representation
from, e.g., Ahn and Reinsel (1990, p. 817), of ∆Yt =

∑k
i=1 Γi∆Yt−i + ΠYt−1 + εt.

15For r = 0, we choose α = β = 0, for r = d, α = Π and β = I is a solution.
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where ι is the current iteration, Ω̂ε is the covariance matrix of the residuals,
ε̂, under the current parameter estimates β̂ι and

U∗t =
[
(α′ ⊗ [0, Id−r]Yt−1)′, Id ⊗ [(βYt−1)′,∆Yt−1, ...,∆Yt−k]

′]′
(4)

where β is normalized so that β = [Ir, β0]. The matrices Π and Γi can then
be determined by decomposing the parameter vector b with

b = [vec(β′0)′, vec((α,Γ1, ...,Γk)
′)′]′ . (5)

The initial solution for b0, can be found from a full rank SUR estimate
which decreases the number of necessary iterations significantly and therefore
increases the convergence speed.

To introduce the “holes” into the lag structure, i.e., setting some of the
elements of the Γi’s equal to 0, the respective columns in U∗

′
t are eliminated

and the (de–)composition of b has to be adapted. The information criterion
BICm can then be calculated according to

BICm = ln |Ω̂Υ,r|+ ν + r(d− r) + dr

T
· ln(T ) (6)

where Υ denotes the set of elements of the Γi’s, and ν = ]Υ, i.e. is the
number of elements of the Γi’s that are not equal to zero. Ω̂Υ,r is computed
following Chao and Phillips (1999) in two steps: first, the parameters α,
β and Γi are estimated iteratively as described previously for given rank r
and lag structure Υ. Next, the corrected values ∆Y ∗t = ∆Yt − αβ′Yt−1 are
computed. Finally, the Γi’s are re–estimated by running a SUR estimation
of ∆Y ∗t on the ∆Yt−i’s included in the given lag structure Υ. Ω̂Υ,r denotes
the covariance matrix of the residuals of this last regression.

3 The Algorithm

The algorithm for finding the optimal lag structure allowing for holes is a
hybrid heuristic combining ideas of the Threshold Accepting (TA) algorithm
as described in Winker (2001) and of “Memetic Algorithms”16. For a given
cointegration rank r, a random initial lag structure is chosen, the parameters
are estimated and the value for the information criterion BICm is computed

16Cf. Moscato (1999) and Maringer and Winker (2003).
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along the lines described in the previous section. During the following itera-
tion steps, a local search strategy is employed where the structure is modified
by either including one additional or excluding one hitherto included lagged
variable in one of the equations. If the information criterion is improved or
if the impairment is acceptable in the sense that it does not exceed a given
threshold, i.e. if ∆BICm ≤ Ti, the modified lag structure is accepted. If,
however, the modified lag structure degrades the information criterion more
than tolerated by the current value of the threshold sequence, this modi-
fication is undone and the previous lag structure is restored. During the
early iteration steps, the threshold is chosen rather generously and most of
the modifications are actually accepted. In the course of the iterations, the
threshold is persistently lowered, so that hardly any impairment is accepted
in the last iterations. Consequently, the algorithm is well apt to overcome
local optima and to fine–tune the solution once the “core structure” has been
identified.

Whereas in TA a single agent is representing one solution per iteration, we
enhanced the original TA concept much in the sense of Memetic Algorithms
by replacing the single agent by a population of agents each of which follows
the TA search strategy. In addition to their independent local search, the
agents “compete” with each other on a regular basis where one agent chal-
lenges another and passes his (current) structure on to the challenged agent
if the change in the challenged agent’s information criterion does not violate
the threshold criterion. Also, agents can combine parts of their solutions
using a cross–over operator (Fogel, 2001) where an offspring will replace a
parent if, again, the impairment in the information criterion does not exceed
the threshold.

The heuristic optimization is repeated for all possible values of the rank
r, i.e. 0 ≤ r ≤ d − 1.17 Let BICmr denote the minimum value of the
information criterion obtained by the optimization heuristic for a rank of r.
Let ropt = argmin0≤r≤d−1BICmr, then the finally selected model is the one
with rank ropt and the corresponding dynamic lag structure. The selection of
rank and lag length for the standard “take all up to the k–th lag” approach
is performed in a similar way. For all possible values of the rank r and all k,
0 ≤ k ≤ kmax, the value of the criterion BICm is calculated. The pair (r, k)

17The case r = d is not considered as it corresponds to a stationary VAR–model. A
method for model selection in VAR–models by means of optimization heuristics is pre-
sented in Winker (2000).

8



resulting in the minimum value of BICm describes the model identified by
the “take all up to the k–th lag” approach.18

4 Monte Carlo Simulation

4.1 Motivation

The evaluation of the information criterion BICm used for model selection in
this paper requires the estimation of the parameters of the reduced rank mod-
els. For this purpose we employ the iterative algorithm proposed by Ahn and
Reinsel (1990). This procedure is quite time consuming even if good starting
values are provided. Consequently, the number of iterations of our hybrid
heuristic has to be limited in order to allow for at least some replications in a
MC setting. Finally, this high overall computational complexity of automatic
lag order selection in the VEC–models limits the number of different settings
which can be analyzed by means of MC simulation. Consequently, we tried
to assess the relative performance of the method by considering a few typical
cases. Besides using artificial DGPs, we follow Ho and Sørensen (1996) for
some of our simulations by using parameter values obtained from an esti-
mation using actual data. Given that our simulations can only pick a small
number of parameter settings out of a huge parameter space, this approach
ascertains that we might select empirically relevant parameter settings.

4.2 Simulation Setup

The results presented in this section are based on the simulation of three
different DGPs with different rank and lag structure. The details of these
DGPs are introduced below. The first DGP (DGP1) is taken from Chao
and Phillips (1999, pp. 242f, Experiment5). The second DGP (DGP2) is
based on this example, but adds a second cointegration vector and extends
the dynamic structure. Finally, the third DGP (DGP3) is based on the
estimation of a simple money demand system.

For each replication of the first two DGPs 300 observations have been
generated from which the first 145 are eliminated, leaving a sample length

18Depending on the assumed rank r, the complexity of the lag structure and the length
of the data series, the CPU time ranged from 3 to 7 minutes per independent optimization
run on a Pentium 4 with 2.8 GHz using Matlab R13.
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of T = 155. For DGP3, the process was initialized with the historical values
of the variables and samples of length T = 200 have been simulated for
each replication. We ran 100 and 200 replications, respectively, and for each
replication the rank was estimated by the methods “all up to the k-th lag”
(labelled “all”) and our optimization heuristic allowing for structures with
“holes” in the kmax lags (labelled “holes”) with kmax = 5 for both methods.

DGP1

Experiment 5 in Chao and Phillips (1999) is a three dimensional VECM with
one cointegration vector entering a single equation of the system and a lag
length of one. Thereby, lagged differences of the endogenous variables enter
only the equation for the respective variables. The error correction term
is described by the matrix Π, Γ1 provides the coefficients of the dynamic
part and Ωε the variance–covariance matrix of the normally distributed error
terms:

Π =




0
−0.01

0


(1 0.25 0.8

)

Γ1 =




0.99 0 0
0 0.9025 0
0 0 0.99




Ωε =




2.25 2.55 1.95
2.55 3.25 2.81
1.95 2.81 2.78




The modulus of nonzero reverse characteristic roots of the process19 are
1, 1, 0.99, 0.99, 0.95, 0.95.

DGP2

Modifying the above DGP by adding a second cointegration vector and lags
of order 2 and 3 in the dynamic part, we obtain DGP2 with an actual rank

19See Lütkepohl (1993) for a description. The roots are calculated using a Maple im-
plementation with 100 digit precision.
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of 2 and the following parameters:

Π =




0 −0.005
−0.005 0
−0.002 0.003



(

0.8 0.25 0.5
0.4 0.10 −0.3

)

Γ1 =




0.59 0 0
0 0.725 0
0 0 0.84


Γ2 =




0.25 0 0
0.02 0.10 0
−0.05 0 0.05


Γ3 =




0 0.05 −0.1
0 0 0

0.1 −0.1 0.05




Ωε =




4.5 5.1 3.9
5.1 6.5 5.62
3.9 5.62 5.56




The modulus of nonzero reverse characteristic roots of the process are
1, 0.99755, 0.96160, 0.96160, 0.88443, 0.88443, 0.35230, 0.35230, 0.30986,
0.30986, 0.13375. Obviously, the second root is very close to one which would
correspond to a cointegration rank of two. This finding should be taken into
account when analyzing the results obtained for this process.

DGP3

Finally, DGP3 has been obtained by fitting a VECM to the logarithms of
M3 (lm), the nominal GDP (ly) and the GDP–Deflator (lp) for the period
1973.1 to 1989.4, i.e. restricted to West German data. All series have been
detrended and seasonally adjusted by regressing them on a constant, a linear
trend and seasonal dummies.20 The cointegration space is spanned by the
two vectors corresponding to long–run neutrality of money (0, 1,−1) and
no money illusion in the long–run (1,−1, 0). Imposing these restrictions and
reducing the model dynamics by a general–to–specific approach, the following
parameters resulted:

20From an economic point of view, it appears reasonable to include an indicator of the
cost of holding money, too. However, extending the analysis to a four dimensional system
is left for future analysis.
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ΠYt−1 =




0 0
0.20237 −0.20453
−0.069713 0.16597



(

1 −1 0
1 0 −1

)


lmt−1

lyt−1

lpt−1




Γ1 =




0 0 0
0 −0.35885 −0.55845
0 0 0.29401


Γ2 =




0 0 0.28511
0.42088 −0.24879 −0.28601

0 0 0




Γ3 =




0.15953 0 0
0.38674 0 −0.32608
0.026677 0 0


Γ4 =




0.13814 −0.087458 −0.20802
0.19475 0.24129 0

0 −0.090326 0.062985




Γ5 =




0 0 0.20721
0 0 −0.46694
0 −0.082374 0




Ωε =




0.0075836 0 0
0 0.011097 0
0 0 0.0056604




The modulus of nonzero reverse characteristic roots for this pseudo em-
pirical process are 1, 0.94975, 0.82505, 0.82505,, 0.78820, 0.78820, 0.68524,
0.68524, 0.66087, 0.66087, 0.62045, 0.62045, 0.61235, 0.61235, 0.57458.

4.3 Results

The evaluation of the Monte Carlo results could be based on different proper-
ties. However, given that our main interest is on the effects of model selection
on rank estimation, we focus on the estimated cointegration rank. For the
models allowing for “holes”, we also present information on the average size,
i.e. the average relative frequency of including a zero coefficient, and the
average power, i.e. the probability of including the nonzero coefficients. Al-
ternative criteria comprise, e.g. the relative frequency of finding exactly the
true DGP, which is considered to be an uninteresting statistic for real applica-
tions, the accuracy of impulse response analysis based on the selected model
as compared to the true model or the relative forecasting performance.21 ’As

21Brüggemann et al. (2003) use these characteristics for a comparison of model selection
procedures for stationary VAR processes. They find that “model selection is especially
useful in models with larger dimensions.”
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a measure of possible overfitting, which might be relevant in a forecasting
setting, we also report mean values for the quotient qΣ of the determinant of
the residual covariance matrix for the selected models and for the true DGP.
Hendry and Krolzig (2003) suggest that values of this quotient close to or
above 1 indicate that overfitting does not occur.

Results of the “take all up to the k–th lag” approach

Before turning to the results of our optimization algorithm, we first present
findings for the “take all up to the k–th lag” approach comparing different
methods. Table 1 summarizes the findings for 1 000 replications of DGP1. For
the modified BIC and PIC criterion, the table entries indicate the number of
times the corresponding rank and lag length has been selected by the criteria.
For the Johansen testing procedure, a two–step approach is used. First, the
lag length of the unrestricted VAR is selected according to the BIC. Then,
the trace test for the cointegration rank is conducted using this lag length.
The table entries indicate the number of times the corresponding rank and
lag length is found by this two–step approach using a 1%– and a 5%–critical
value for the trace test, respectively.22

Obviously, for DGP1 all four methods identify the actual lag length of
one for all replications. Although the lag structure of DGP1 is sparse since
only the diagonal elements are different from zero, the high numerical values
of these diagonal elements force all methods to choose a lag length of one.
Nevertheless, the four methods differ markedly in their ability to identify the
actual cointegration rank of the model. While the modified PIC points to
the correct rank of one in 999 out of 1 000 replications,23 the share of correct
identifications of the cointegration rank shrinks to 80.5% for the modified
BIC and to 75% or 50.9%, respectively, when using Johansen’s procedure
with a nominal significance level of 1% and 5%, respectively.

Table 2 exhibits the corresponding results for DGP2. In contrast to the
simpler dynamic structure of DGP1, all four methods fail to identify the
correct lag length for most replications. However, given that our main in-
terest is in the long–run structure of the model, we might concentrate on
the identification of the cointegration rank. Obviously, both the absolute

22It should be noted that for the trace test, standard critical values have been used.
Of course, by taking into account the known structure of the DGPs, exact critical values
could be obtained by means of simulation.

23This corresponds to the findings presented by Chao and Phillips (1999, p. 248).
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Table 1: Results for the “take all up to the k–th lag” approach (DGP1)

Modified BIC Modified PIC
Lags Lags

Rank 0 1 2 3 4 5 Rank 0 1 2 3 4 5
0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 805 0 0 0 0 1 0 999 0 0 0 0
2 0 160 0 0 0 0 2 0 1 0 0 0 0
3 0 35 0 0 0 0 3 0 0 0 0 0 0

Johansen (1%) Johansen (5%)
Lags Lags

Rank 0 1 2 3 4 5 Rank 0 1 2 3 4 5
0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 750 0 0 0 0 1 0 509 0 0 0 0
2 0 210 0 0 0 0 2 0 343 0 0 0 0
3 0 40 0 0 0 0 3 0 148 0 0 0 0

and the relative performance of the methods changes drastically. The actual
rank of two is found in 17.2% and 30.2% of the replications when using Jo-
hansen’s procedure with level 1% and 5%, respectively. The modified BIC
results in 9.3% correct estimates of the cointegration rank, while the modified
PIC never results in a cointegration rank of two. These results confirm the
findings by Gonzalo and Pitarakis (1999) that the relative performance of
different methods might depend strongly on the DGP under consideration.
In particular, our results do not support results of other simulation studies
where simpler lag structures allowed for the tentative conclusion that over-
fitting might be less distorting than underfitting in a cointegration context.24

Obviously, the second near unit root leads to the high rejection rates of the
models with rank 2.

For our third DGP (DGP3), the comparison of the different criteria is
based on only 100 replications, which all have been initialized with the his-
torical values of the detrended series. The results are summarized in 3.

Again, the modified BIC and Johansen’s procedure appear more suitable
for selecting the actual cointegration rank of two. However, both methods

24See, e.g. Cheung and Lai (1993) and Jacobson (1995).
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Table 2: Results for the “take all up to the k–th lag” approach (DGP2)

Modified BIC Modified PIC
Lags Lags

Rank 0 1 2 3 4 5 Rank 0 1 2 3 4 5
0 0 81 376 1 0 0 0 0 18 879 4 0 0
1 0 60 357 17 0 0 1 0 7 65 27 0 0
2 0 14 78 1 0 0 2 0 0 0 0 0 0
3 0 0 15 0 0 0 3 0 0 0 0 0 0

Johansen (1%) Johansen (5%)
Lags Lags

Rank 0 1 2 3 4 5 Rank 0 1 2 3 4 5
0 0 41 23 0 0 0 0 0 11 3 0 0 0
1 0 95 623 25 0 0 1 0 89 451 18 0 0
2 0 19 149 4 0 0 2 0 44 249 9 0 0
3 0 3 17 1 0 0 3 0 14 109 3 0 0

do so while missing the high order dynamic dependencies embedded in the
sparse lag structure of the DGP. By contrast, using the modified PIC points
more often to higher lag orders. However, the actual lag order of five is
identified only in 4% of all cases as compared to 1% for the other criteria.
This deficit might be attributed to the sparse lag structure which implies
that in order to capture the actual high order dynamics, the “take all up to
the k–th lag” approach has to provide estimates for all entries in the matrices
Γ1, . . . ,Γ5. As demonstrated for stationary VAR–processes in Winker (2000)
allowing for holes in the lag structure might sensibly reduce this effect and
improve the model identification of the dynamic part.

Summarizing the findings for the different criteria, at least for the three
DGPs under consideration, the modified BIC criterion appears to be a sen-
sible choice. Thus, the following results of the optimization approach con-
centrate on this criterion. Nevertheless, it is left to future research to also
provide results for the PICm and Johansen’s procedure.
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Table 3: Results for DGP3 and all up to the k–th lag approach

Modified BIC Modified PIC
Lags Lags

Rank 0 1 2 3 4 5 Rank 0 1 2 3 4 5
0 0 0 4 5 0 0 0 0 0 5 11 5 0
1 0 3 10 0 1 0 1 0 0 21 3 13 0
2 33 21 16 0 1 1 2 2 10 20 3 3 4
3 0 2 3 0 0 0 3 0 0 0 0 0 0

Johansen (1%) Johansen (5%)
Lags Lags

Rank 0 1 2 3 4 5 Rank 0 1 2 3 4 5
0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 12 8 0 0 0 1 0 4 2 0 0 0
2 36 18 17 0 1 1 2 34 21 21 0 1 1
3 3 2 2 0 0 0 3 5 7 4 0 0 0

Results of the Optimization Heuristic

In the following, we present results of the implementation of the optimization
heuristic described in section 3. In order to obtain a concise description of
the results, we concentrate on the identification of the cointegration rank
when using the modified BIC.25 Furthermore, due to constraints by available
computer resources, we restrict our analysis to a cointegration rank between
0 and d − 1. This implies the assumption that the case of a stationary
VAR could be excluded by a standard unit root pretest. For DGP1 and
DGP2 we analyze 200 different realizations with 150 observations, while for
DGP3 only 100 realizations with 200 observations are considered. For each
realization, three different methods have been used to obtain an estimate of
the cointegration rank:

“known” The model is estimated for a cointegration rank of p = 0, . . . , d−1
assuming that the actual lag structure is known, i.e. only the non–
zero elements of the matrices Γi are included in the estimation. The

25Detailed results on the identification of the dynamic structure are available on request.
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cointegration rank identified by this method is defined by the minimum
value of BICm obtained for the different rank conditions.

“all” The model is estimated for a cointegration rank of p = 0, . . . , d−1 and
using all lags up to a given order k = 1, . . . , kmax. For our application
d = 3 and kmax = 5. Consequently, 15 different model specifications
are estimated. The model resulting in the minimum value of BICm
provides the rank estimate of this method.

“holes” For each possible cointegration rank of p = 0, . . . , d− 1 a heuristic
optimization is performed on the lags to be included in the dynamic
part of the model. Afterwards, out of the d resulting models the one
resulting in the smallest value of the modified BIC is selected.

Obviously, the method “known” cannot be used in practical applications,
as the true lag structure will not be known. Nevertheless, it is used as
a benchmark for our optimization approach (“holes”) in order to make sure
that by employing the optimization heuristic the identified model has a value
of the criterion BICm which is smaller than or equal to the value of BICm for
the actual lag structure.26 By contrast, the method “all” represents the state
of the art in criterion based model selection. Consequently, it is of interest
to evaluate the relative performance of the last two methods.

Table 4 summarizes the results for the three methods applied to the three
DGPs based on 200, 200, and 100 replications, respectively. For all methods
and DGPs the maximum lag length kmax has been fixed to five. The num-
bers in the table indicate the percentage share of replications for which the
methods identify a cointegration rank of p = 0, . . . , 2 based on the modified
BIC.

For the first DGP with its quite simple dynamic structure, all three meth-
ods appear to work reasonably well. Nevertheless, the chance of identifying
the actual cointegration rank p = 1 based on 150 observations is best if the
true dynamics are known. For practical applications only a comparison of
the standard method of taking all lags up to a certain order (“all”) with our
optimization procedure is relevant. For DGP1 the optimization procedure
increases the frequency of finding the right cointegration rank from 80 to
89%.

26In fact, this goal is achieved for almost all runs of the optimization algorithm despite
a small number of iterations used.
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Table 4: Cointegration rank estimates (%)

Method
Rank “known” “all” “holes”

DGP1 (200 replications)
0 0.0% 0.0% 0.0%
1 95.0% 80.5% 88.0%
2 5.0% 19.5% 12.0%

DGP2 (200 replications)
0 13.0% 50.5% 13.4%
1 73.8% 35.8% 74.8%
2 13.2% 13.7% 11.8%

DGP3 (100 replications)
0 0.0% 10.0% 3.0%
1 19.0% 23.0% 28.0%
2 81.0% 67.0% 69.0%

For DGP2 with its quite complex lag structure and the second near unit
root (0.99755), even when assuming that the true lag structure is known,
only in 13% of all replications the actual cointegration rank of 2 is found.
Further analysis is required to identify the reasons for this outcome, in par-
ticular, we have to check wether increasing the number of observations tends
to improve the results. The two methods which can be used in applications,
i.e. “all” and “holes” report the correct cointegration rank with frequency
13.7% and 11.8%, respectively. Although, “all” appears to have a slight ad-
vantage in finding the correct cointegration rank, it also results in a more
than 50% chance of finding to cointegration at all, whereas the “holes” ap-
proach provides results quite similar to the ones obtained when the true DGP
was known.

Finally, for the example DGP3 constructed from a real data example,
the assumption of a known lag structure would result in the best chance
to find the real cointegration rank, while the difference between “all” and
“holes” is smallest for this example, but still in favour of the optimization
approach. We assume that the relative performance of the optimization
approach will improve when a larger number of iterations can be performed
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in the optimization step. This has been impossible for these first results due
to constraints in computational resources.

Although our main interest is in a correct specification of the cointegration
part of our models, we finish by a short look on the dynamic structures
selected by the three methods. Of course, this choice appears to be crucial
for the determination of the cointegration rank. Table 5 reports on the
dynamic structure for the three DPGs. The rows labelled ν shows the mean
number of non zero elements estimated in the dynamic part of the model,
i.e. the number of non zero entries in Γ̂1, . . ., Γ̂5. In the rows with label
“cl” we provide the share of lags present in the DGP which are included in
the estimated models (“average power”), while “wl” provides the share of
lags included in the estimated model, but not present in the DGPs (“average
size”). Finally, qΣ indicates the quotient of the determinant of the residual
covariance matrices for the model under consideration as compared to the
true DGP.

Table 5: Reported lag structure for different selection methods

Method
“known” “all” “holes”

DGP1 (200 replications)
ν 3 9 4.47
cl 100% 100% 100%
wl 0% 14.3% 3.5%
qΣ 1.00 0.92 0.94

DGP2 (200 replications)
ν 13 19.89 17.15
cl 100% 69.2% 52.0%
wl 0% 30.7% 27.1%
qΣ 1.00 1.16 0.99

DGP3 (100 replications)
ν 21 15.12 13.06
cl 100% 27.8% 57.7%
wl 0% 25.1% 2.8%
qΣ 1.00 1.65 1.08
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For a simple dynamic structure like DGP1, the optimization method ap-
pears to work extremely well by finding the relevant lags (on the diagonal
of Γ̂1) for all replications and including only a small number of additional
lags. The standard method has to include all nine first order lags in order
to capture the relevant lags. Consequently, the share of non relevant lags
increases as the mean number of lags included (ν = 9). Only for this rather
simple DGP, qΣ indicates a slight tendency of overfitting for the “take all up”
approach and – to a smaller extent - for the “holes” method. For the other
DGPs no overfitting is indicated by this measure, but the “holes” approach
results in better fitting models with a determinant of the residual covariance
matrix close to that of the true DGP. For DGP2, the share of relevant lags
identified by the optimization heuristic is smaller than for the “all” heuristic,
which is surprising at first sight given the larger search space. This result de-
serves further attention. Nevertheless, it is remarkable that the optimization
heuristic seems to identify those lags allowing for a correct estimation of the
cointegration rank more often than the “all” heuristic (see Table 4). Finally,
for DGP3, the optimization heuristic is much more successful in selecting the
relevant lags and avoiding to include non relevant ones. Nevertheless, this
advantage in the modelling of the dynamic part does not show up in a dra-
matic improvement in selecting the right cointegration rank. Again our first
results support earlier findings that the performance of model selection pro-
cedures in the context of cointegration depends heavily on the specific DGP.
In particular, as Gredenhoff and Karlsson (1999, p. 184) we might conclude
that “choosing the lag–length in VAR–models is not an easy task”. Conse-
quently, more research is needed to identify the features of DGPs affecting
the performance of different model selection methods.

5 Conclusion

In this paper, we discuss the model selection issue in the context of non–
stationary VAR–models with stationary cointegration relationships. Our
reading of the literature suggests that the modelling of the dynamic part
of these VEC–models is crucial for a correct rank identification. We compare
different methods for model selection in a MC simulation including methods
based on information criteria and a two–step procedure employing Johansen’s
testing strategy. Furthermore, we introduce a discrete optimization heuris-
tic allowing for the selection of lag structures out of a much larger search
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space than the usual “take all up to the k–th lag” approach. Again, a MC
simulation is used to assess the relative performance of this algorithm.

Our findings support the view that the results of methods aiming at iden-
tifying the cointegration rank of a VECM depend heavily on the modelling of
the dynamic structure. In contrast to earlier studies and in accordance with
more recent findings, already a very small set of DGPs indicates that this
effect might differ markedly for different DGPs. In particular, the practical
guideline rather to include too many lags is not supported for all DGPs by
our findings. However, we find that the optimization heuristic approach in
combination with a modified BIC performs relatively well as compared to
the “take all up to the k–th lag” approach.

Given the small set of DGPs considered in this paper and the restriction to
a single model selection procedure in the optimization context points directly
towards future research. First, we have to apply our method to a much larger
set of different DGPs in order to find out how robust our results are and which
factors might be responsible for differences in the (relative) performance.
Second, we want to include other procedures in our approach, in particular
the modified PIC suggested by Chao and Phillips (1999) and Johansen’s
procedure. Finally, we have to improve the performance of the estimation
step in the optimization heuristic in order to allow for a larger number of
iterations for a given problem in order to have more reliable results from the
optimization method.

Despite our limited and preliminary results the tentative conclusion seems
admitted that employing a more refined method for identifying the dynamic
structure of a VECM might improve the performance in terms of rank order
identification.
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