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Abstract

In this paper a variety of computational optimal control techniques are compared
using a nonlinear labor market model.
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1 Introduction

In this paper we compare a variety of computational optimal control tech-
niques to undertake the same problem. The problem we use for the compar-
ison is that of determining the optimal number of long-term unemployed to
enter Active Labour Market Programs (ALMPs) as a policy tool to reduce un-
employment. The model we use is nonlinear with the nonlinearities inherent
in the model due to a Nash bargaining rule between employers and work-
ers, and Cobb-Douglas technology in a job-matching function. The model is
complicated by distinguishing between various duration classes of short-term
unemployment. These features make the model difficult for the application of
optimal control techniques.
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The optimal control methods we use are, firstly, standard linear-quadratic
techniques based on a liberalization of the model and the optimal control
applied to the full nonlinear model. This approach has been frequently used
in the literature of applying optimal control to nonlinear models. The second
approach is that of applying nonlinear optimization to the stacked over time
nonlinear model. This approach has also been used in the literature. The final
approach we use is that of model based predictive control. This approach has
recently been used with large complicated engineering models, but has not
been applied as frequently to economic models.

2 The Model

The labour market model we use is based on a standard matching model frame-
work. The model is developed and described in Herbert and Leeves (2003). A
summary description of variables in the model is given in Tables 1, 2 and 3.
The model consists of equations for wages, vacancies, job-matching, unemploy-
ment and the dynamics of stock movements. The model includes endogenous
job creation and job destruction (UEV , NEV , ENV , ENV , EUV ) and ex-
ogenous flows of workers between states. The time-step for the model is one
month.

2.1 Wages

The wages equation is derived from the bargaining of employers and workers
following a Nash bargaining rule. The resulting equation is:

wt =
β(yt−1 + c− τ)ξ0,t + (1− β)bξ1,t

r + (1− β)(ξ2,t + ξ3,t) + βξ4,t

(1)

where

ξ0,t = r +
FEU,t−1

Et−1

+
FUE,t−1

Ut−1

ξ1,t = r + ξ2,t + ξ3,t

ξ2,t =
πqnFEN,t−1 + πquFEU,t−1

Et−1

ξ3,t =
FUEV,t−1 + FNEV,t−1

Vt−1

ξ4,t =
FUE,t−1

Ut−1

+
FEU,t−1

Et−1
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2.2 Vacancies

Vacancies are also derived from the employer-worker bargaining and result in:

Vt =
(FUEV,t−1 + FNEV,t−1)(yt−1 − wt−1 − τ)

c(r + ξ2,t−1)
(2)

2.3 Job Matching Function

The job matching function uses Cobb-Douglas technologies to match the un-
employed to vacancies. It differentiates between the short-term unemployed
(US), the long-term unemployed who have participated in ALMPs (LP ) and
the long-term unemployed who have not participated in the ALMPs (LNP ).
The matching function is:

FUEV,t = cmV 1−α
t−1 (US,t−1 + θ(ULNP,t−1 + σULP,t−1)

α (3)

The policy choice (or control) is λ, where λ = ULP /(ULNP + ULP ).

2.4 Unemployment

Short-term unemployment is divided into 12 one-month duration classes, with

U1,t = UIt (4)

and

Uk,t = (1− πS,t)Uk−1,t−1 (5)

Total short-term unemployment is the summation of all duration classes:

US,t =
12∑

k=1

Uk,t (6)

Long-term unemployment is given by:

UL,t = Ut − US,t − λt−1UL,t−1 + λt−6UL,t−6 (7)

There is an escape probability from short-term unemployment (πS) and long-
term unemployment (πL). They are represented respectively by:
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Fig. 1. Expansion in Labour Market Programs. (% Deviations from baseline.)

πS,t =
UOt

US,t−1 + θUL,t−1

(8)

πL,t = θπS,t (9)

where UOt = FUEV,t + FUEX,t + UNt (10)

2.5 Job Creation and Destruction

The equations of motion that close the model are:

V It = Vt − Vt−1 + V OU,t + V OEX,t (11)

Ut = Ut−1 + FEUV,t + UIEX,t − FUEV,t − UOEX,t (12)

Et = Et−1 + FUEV,t + EIEX,t − FEUV,t − EOEX,t (13)

2.6 Calibration

The model is calibrated using Australian data for 1998 to produce a baseline
steady-state. The numerical values of the calibration are given in Table 4.
Figure 1 presents a step response for the model with an expansion in ALMPs
from the baseline 5% to 10%. The results are presented as deviations from the
baseline.
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Table 1
Endogenous Variables in the Model.

Description Variable

Wages w

Vacancies V

Inflow of vacancies V I

Total unemployment U

Total employment E

Short-term unemployment US

Monthly short-term unemployment Uk, k = 1, ..., 12

Long-term unemployment UL

Probability of escape from unemployment π

Total flow from employment to unemployment FEU

Flow from unemployment to newly created jobs; job creation FUEV

Flow from employment to not-in-labour-force; job destruction FENV

Flow from not-in-labour-force to newly created jobs; job creation FNEV

Flow of new vacancies to unemployed workers V OU

Table 2
Exogenous Variables in the Model.

Description Variable

Flow of vacancies to non-unemployed workers V OEX

Outflow from unemployment to employment other than job creation FUEX

Outflow from employment to unemployment other than job destruction FEUX

Added value per worker y

Interest rate r

Lump-sum taxes τ

Unemployment benefits b

Proportion of long-term unemployed in ALMPs λ

3 The Control Methods

3.1 Purpose of the Control

We consider the unemployment rate to be the output of the model. The control
objective is to generate a policy for ALMPs that reduces the unemployment
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Table 3
Flows that Contain Endogenous and Exogenous Components.

Description Variable

Flow from employment to unemployment; job destruction FEUV

Total flow from unemployment to employment FUE

Total outflow from unemployment UO

Total outflow from employment EO

Total inflow to unemployment UI

Total inflow to employment EI

Table 4
Numerical values for baseline model (*=Number of persons/jobs x 1000, annual
averages).

Variable Value Variable Value

U* 750 FEU* 600

FENV * 300 FUEV * 200

FNEV * 400 FEUV * 300

E* 8,600 UO* 4,600

V * 75 r 0.03

θ 0.9 c 0.9

α 0.5 EO* 4,200

V I* 600 τ 0.08

V OU* 200 y 1

V OEX* 400 b 0.3wss

rate to 5% and has no participants in ALMPs. This unemployment target is
a substantial reduction from the baseline rate of nearly 8%, and is a target
that will be difficult for any method to achieve.

The input to the model (or control) is the proportion of the long-term un-
employed on ALMPs (λ). The control target is zero. There is no constraint
within the model on this proportion so the control method should incorporate
a realistic constraint. We use the constraint of 0 ≤ λ ≤ 0.5 so that a maxi-
mum of 50% of the long-term unemployed can participate in ALMPs in any
one month.

We follow the convention of using a quadratic objective function where the
optimization aims to reduce the sum of squared deviations from the output
(unemployment) and control (λ) targets. The deviations are weighted and we
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Fig. 2. Linear Model Based Control. (% deviation from baseline, except λ. Dashed
Line is the Response from Figure 1.)

use weights of unity. This is a conventional quadratic output tracking objective
(social loss) function.

3.2 Linear Model

For the linear model based control method we use the standard linear-quadratic
output tracking approach (Herbert, 1998) with a linear model derived from the
full nonlinear model. The linear model is numerically estimated by perturbing
the input to the full nonlinear model.

The advantage of the linear-quadratic approach is that the optimization can
be analytically solved, and the solution programmed. The control policy is
developed from the linear model dynamically at each time step. We apply this
control to the full nonlinear model.

The disadvantage of this method is that it is dependant upon the accuracy of
linear model and that constraints on the control cannot be included explicitly
as part of the control generation procedure. In the literature the usual ap-
proach of implementing constraints is to varying the relative weights between
the output and control tracking errors in the objective function.
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Fig. 3. Model Based Predictive Control. (% deviation from baseline, except λ).

3.3 Model Based Predictive Control

Model based predictive control (MBPC) is a suite of control methods where a
linear model is used to predict the future output of the full nonlinear model;
and the control rule is developed from the prediction is applied to the full non-
linear model. As with the linear-quadratic approach, the control is developed
dynamically (at each time-step) and is applied to the full nonlinear model at
the same time-step; but unlike the linear-quadratic approach the linear model
is regenerated dynamically as part of the control rule generation. Details of the
methods can be found in Rossiter (2003) and we use the approach developed
in Herbert and Bell (2004).

The MBPC approach attempts to overcome the accuracy of the linear model
in the linear-quadratic method by using a time-varying linear model. In the
results here, we also add a learning component so the linear model adjusts
according to its difference in predicted output from the nonlinear model (Her-
bert, 1998).

The MBPC approach also allows for explicit constraints to be added in the
control rule generation. The constraints can be placed on the level and rate of
change of the output as well as the control. Such constraints are much more
realistic with labor market models where there are plausible policy strategies
and un-modelled components.

MBPC is more complex mathematically than the linear-quadratic approach.

8



0 1 2 3
−0.15

−0.1

−0.05

0

0.05
Unemployment Rate

%

0 1 2 3
−0.05

0

0.05

0.1

0.15

0.2
λ

0 1 2 3
−2

−1

0

1

2

3

4
Short−term Unemployment

%

Years
0 1 2 3

−15

−10

−5

0

5

10
Long−term Unemployment

Years
%

Fig. 4. Nonlinear Optimization. (% deviation from baseline, except λ).

The MBPC algorithm results in a quadratic programming problem.

3.4 Nonlinear Optimization

The nonlinear optimization approach uses the full nonlinear model and stacks
it up over time. The model effectively becomes a static model for the entire
time horizon rather than a dynamic model which is solved one time-period
after another. The same variable at a different time-period is treated as a
different variable so that the number of equations in the original model is
multiplied by the number of time-steps in the time horizon resulting in a
much larger model. The resulting stacked model is solved once. To determine
the optimal control, the objective function is stacked over the time horizon. A
nonlinear optimization algorithm is then used to minimize the stacked objec-
tive function against the stacked model.

The advantage in this approach is that it is more general with constraints or
other requirements simply included in the code that implements the objective
function. The objective function need not be quadratic.

Another advantage with the nonlinear optimization approach is that the is
a single optimization, and the entire trajectory for the output and control is
found in the single optimization.

The disadvantage is that it is a large optimization problem that generally
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has to be solved by numeric methods. We use purely numeric optimization
approaches including quasi-Newton and direct simplex searches.

4 Results

4.1 Policy Strategy

The results from the linear-quadratic control method are given in Figure 2.
The lack of the constraint on the control can be clearly seen as the suggested
changes in ALMPs commencements fall outside the range of a plausible policy
strategy, with the maximum value of λ of over 1000 being nonsensical.

The results from the MBPC control method are given in Figure 3. When com-
pared to Figure 2, we see that (a) the values of λ are realistic (b) better results
are obtained for the unemployment rate and long term unemployment with-
out any detriment to short term unemployment and (c) there is less oscillatory
transient dynamics.

The results for the nonlinear optimization method are given in Figure 4. The
first point to note is that these results are for a shorter time horizon than
the previous methods. This is due to the fact that for the longer time horizon
none of the optimization algorithms was successful in reducing the objective
function. When compared to the linear-quadratic and MBPC methods we see
that (a) no steady-state value for λ is achieved and (b) the results for the
unemployment rate and long-term unemployment are not as good as with the
previous methods.

4.2 Computational Effort

The programming effort and the computational effort of the program for solv-
ing the linear-quadratic method is not extensive. Basically it is using linear al-
gebra and the solving of matrix Ricatti equations for a time step. The optimal
control is then applied to the full nonlinear model. This procedure continues
for each time-step in the time horizon.

The MBPC method requires more effort. At each time step the full nonlin-
ear model is predicted for a predetermined time window and the from the
output a predictive model is developed. From the predictive model the op-
timal control is generated and it is applied to the current time-step of the
full nonlinear model. The optimal control generation requires the solution of
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a quadratic programming problem. The MBPC method thence requires more
programming and computational effort than the linear-quadratic approach.

The nonlinear optimization requires the most effort. For the results presented
in Figure 4 the Nelder-Mead direct simplex search algorithm was used. The
algorithm required over 20,000 evaluations of the stacked nonlinear model
to produce these results. Using a quasi-Newton optimization approach the
algorithm failed to reduce the objective function after 100,000 evaluations of
the stacked model.

5 Conclusion

This paper compared three methods of deriving optimal control for the same
nonlinear labor market model. The methods were the standard linear-quadratic
control with a derived linear model and control applied to the nonlinear model;
model based predictive control; and a fully nonlinear optimization with the
model stacked over time. The paper found that for this model the MBPC
produced the best results.
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