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Abstract. Continuous time models in the theory of real options give explicit
formulas for optimal exercise strategies when options are simple and the price of
an underlying asset follows a geometric Brownian motion. This paper suggests
a general, computationally simple approach to real options in discrete time.
Explicit formulas are derived even for embedded options. Discrete time processes
reflect the scarcity of observations in the data, and may account for fat tails and
skewness of probability distributions of commodity prices. The method of the
paper is based on the use of the expected present value operators.
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1 Introduction

The goal of the paper is to provide a general framework for pricing of real options
in discrete time; since option pricing cannot be separated from the problem of
the optimal exercise time of an option, we solve for the optimal timing as well.
Valuation of real options and optimal exercise strategies explicitly derived in
the paper are relevant to many practical situations where individuals make at
least partially irreversible decisions. Simple real options cover such situations as
timing an investment of a fixed size, the scrapping of a production unit, a capital
expansion program, etc. Embedded real options are relevant in such cases as new
technology adoption, timing an investment (partially) financed by debt with an
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embedded option to default in the future, human capital acquisition, and many
others (see, for example, [14], papers in the volume [8], and the bibliography
therein). Usually, continuous time models are used. We believe that the discrete
time approach has certain advantages over the continuous time approach to
modeling of real options.

The discrete time approach allows one to incorporate in a more tractable way
such important aspects of economic reality as “time-to-build”. Some options —
for example, renewing a labor contract or awarding a grant to a research project
— can be exercised only at certain dates (typically, once a year). Further, the data
in economics is much more scarce than in finance, where continuous time models
were originated and developed. Observations of some variables are available only
quarterly or even annually, and it is easier to fit a transition density to the data
in a discrete time model than in a continuous time one, when only a list of
observations at equally spaced moments in time is available. There are also
natural questions, such as the rates of job creation and job destruction (see, e.g.,
[12] and [10]), which cannot be addressed in the Brownian motion setting under
the standard assumption that labor is instantly adjustable, because the rates will
be infinite. In the discrete time model, one obtains finite closed form solutions.
Finally, discrete time modeling is natural for economics, where agents do not
make, say, investment decisions every instant unlike the investors in financial
markets.

In fact, the appearance of continuous time models in economics was mainly
due to the success of these models in finance, and their tractability. Notice,
however, that even in finance, the success of simple models is gone. Relatively
simple models use the (geometric) Brownian motion as the underlying stochastic
process (see, for example, [16]). However, these models proved to be rather inac-
curate, and have been amended in many ways, none of which being as tractable
as the Brownian motion model. In particular, nowadays processes with jumps
are widely used (see, for instance, [9] and [15]). The normality of commodity
price processes is rejected by the data as well (see, for example, [13] or [19]).
Assume, for the moment, that we are willing to sacrifice the accuracy of a model
for its simplicity, and decide to use the Brownian motion model. The apparent
advantage is a well-known manageable scheme: with the help of Ito’s lemma
write down a second order differential equation for the value of an option, em-
ploy economic arguments to add appropriate boundary conditions, such as value
matching and smooth pasting, and, using the general solution to the differential
equation, reformulate the problem as a system of algebraic equations. In ele-
mentary situations, a closed form solution can be derived, and a simple exercise
strategy results; in other situations, numerical procedures are available.

Unfortunately, this scheme is uncomplicated only when one considers really
simple options. If a part of the option value comes from instantaneous payoffs
due at certain future dates, a closed form solution to the optimal exercise problem
is no longer available. If we consider an option whose value comes from different
streams in different regions of the state space, the resulting system of algebraic
equations may involve too many unknowns, and it becomes messy indeed. If we
consider embedded options, then there is no general result about the optimal



exercise rule, apart from the heuristic smooth pasting condition, and it is not
even clear whether the formal solution satisfying the smooth pasting condition
exists. In addition, if one incorporates jumps, the intuitive justification for the
smooth pasting condition in [14] is lost, and there is no reason to believe that
this principle always holds?. In fact, it may fail as it was shown in [5] and [6].

From our point of view, the following two drawbacks of the standard ap-
proach are conceptually even more important. First, the formulas provided by
the standard approach are certain analytic expressions, which have no clear
economic meaning by themselves, and the optimal exercise boundaries are just
numbers. The classical example is the investment rule formulated in [14] in
terms of the correction factor to the Marshallian law: the correction factor is
an expression in terms of a root of a certain quadratic polynomial (fundamen-
tal quadratic). Second, is it really necessary to write down the equation for the
value function, the boundary conditions, and solve the (free) boundary problem?
Indeed, the option value by definition is the expected present value (EPV) of an
instantaneous payoff or stream of payoffs. Suppose, we have formulas for these
expected present values for model payoffs. Then using the argument similar to
the backward induction in discrete time models with the finite time horizon, we
can calculate the option value step by step. We solve for the value and optimal
exercise time (if necessary) of the most distant option in a sequence of embedded
options, then we move to the second to last option, etc.

This paper provides a general framework of this sort, with explicit formulas
for each model situation, under the assumption that the underlying stochastic
process is a random walk (under a risk-neutral measure chosen by the market),
X;, on the real line, that is, X; = X+ Y, + Yo+ --- + Y}, where Y7,Y5,... are
independently identically distributed random variables on a probability space €2,
and Xj is independent of Y7,Y5,... This process specification implies that the
dates when observations and/or decisions to exercise options can be made are
equally spaced, and time periods are normalized to one. We calculate the EPV’s
in the following model situations: (1) an instantaneous payoff tomorrow; (2) a
perpetual stream of payoffs; (3) an instantaneous payoff which is due when a
barrier is crossed from below (or from above); (4) an entitlement for a stream of
payoffs which comes into effect when a barrier is crossed from below (or above);
(5) a stream of payoffs which will be lost when a barrier is crossed from below
(or from above). Using these EPV’s, we solve for the optimal exercise time of
an option, calculate the expected waiting time till an option will be exercised,
and find the optimal gradual capital expansion strategy.

Let g(X:) be the payoft function, and ¢ € (0,1) the discount factor. The
first two cases are simple: the calculation of ¢E*[g(X1)], and the summation of
an infinite series >, ¢" E*[g(X;)], respectively. For g(X¢) a linear combination
of exponents, the calculations in the first two cases reduce to the calculation of
values of the moment generating function of Y7, and closed-form solutions result.
These observations are fairly standard and commonly used. The novelty of our
approach is that the solutions in all the cases above are expressed in terms of the

2We are grateful to Avinash Dixit for pointing out to us that this principle may not hold
in a discrete time model.



expected present value operators (EPV-operators). For a random walk X, and
a given stream of payoffs g(X), the EPV-operator (denoted by U%) calculates
the EPV of the stream g(X3):

> d'g(X1)
t=0

This operator gives the EPV in case (2). Cases (3) and (5) reduce to cases (2) and
(4). To express the EPV of a payoff in case (4), in addition to the EPV-operator
of X, we need the EPV-operators of the supremum process X; = maxo<s<t Xs
and the infimum process X = ming<s<; X;. These EPV-operators act as follows

Ulg(z) = E* =F

thg(Xt) | Xo= 95] :

t=0

Uho(o) = B | S d'a(X0 | = B | Y d'o(X) | Xo - ] |
t=0 t=0

Ulg(x) = E* | q'g(X,)| =E | d'g(X,) | Xo==
t=0 t=0

Let 14 4o0) denote the indicator function of the interval [h,+o00) and the mul-
tiplication operator by the same function. We prove that the EPV of a stream
g(X¢) that accrues after the barrier h is crossed from below is the composition
of the EPV-operators U and Uy, and 1, 1o0):

V(hiz) = (1 - QU Ln 400)Uxg(@). (1.1)

Similar formulas are obtained for the other expected present values listed in
cases (3)—(5).

Assume that both the supremum and infimum processes are non-trivial, i.e.,
jumps in both directions happen with non-zero probabilities. Then the form
of the solution (1.1) and simple general properties of the EPV—operators allow
us to give a very short (approximately a page) proof of the optimal exercise
rule: exercise an option which yields a stream of increasing payoffs g(X;) the
first time when the EPV of the stream g under the infimum process becomes
non-negative 3. In this case, the record setting low payoff process matters. This
reflects Bernanke’s bad news principle spelled out in [3]. Similarly, for a decreas-
ing payoff function g, the record setting high payoff process matters: exercise the
option the first time when the EPV of the stream g under the supremum process
becomes non-negative. Notice that a sufficient condition for optimality makes
a perfect economic sense: the payoff function g(X;) is a monotone function of
the stochastic factor X;. Record setting news principles were obtained in [4]
in the continuous time model, for a special case of payoff streams of the form
Ge* — C(1 —¢q) or C(1 — q) — Ge®, by using the well-known results for the per-
petual American call and put options, respectively. The present paper extends
the record setting news principles to general continuous monotone streams in

3For instance, in timing an investment of a fixed size, g is the stream of revenues net of
(1 —¢)C, where C is the fixed cost of investment.



discrete time models. If the payoff stream, g, is an increasing function of the
stochastic factor Xy, then it is optimal to exercise the right for (respectively, to
give up) the stream when the EPV of the stream calculated under the assumption
that the process {X;} is replaced by the infimum process becomes non-negative
(respectively, non-positive). For a decreasing payoff function g(X;), one only
needs to substitute the supremum process for the infimum process in the above
statement.

The reader may think that the calculation of the action of the expected
present value operators is difficult. For a general random walk, this is really the
case. However, one of the advantages of the discrete time setting is that the
transition density of a random walk can be approximated by exponential poly-
nomials on each half-axis with desired accuracy and simplicity, although there
is certainly a trade-off between the two. The family of transition densities given
by exponential polynomials is fairy flexible, and such densities can account for
fat tails and skewness observed in empirical distributions of commodity prices.
For a transition density of this family, and ¢g(z) given by exponential polynomi-
als (different exponential polynomials on different intervals of the real line are
admissible), all the functions U% g(x), Ug g(x) and U g(x) are of the same class
as g(x). Therefore, we can use general formulas derived for model situations
several times (embedded options), and each time we will calculate the integrals
of a simple structure. All the tools needed for the calculation of these integrals
are the fundamental theorem of calculus and integration by parts. It is unnec-
essary to write down differential equations and solve them. In fact, after the
roots of a certain polynomial are found (we will call it the fundamental polyno-
mial by analogy with the fundamental quadratic in the Brownian motion case:
see [14]), all the calculations reduce to straightforward algebraic manipulations.
Even in the case of embedded options of complicated structure, there is no need
to consider systems of algebraic equations, and timing an option reduces to the
calculation of a (unique) zero of a monotone function. At the same time, the
method of the paper allows one to solve the optimal exercise problems for much
wider classes of payoffs than the standard approach does.

The rest of the paper is organized as follows. In Section 2, we present general
formulas for EPV’s in model situations (1)—(5) and determine the optimal exer-
cise time and the waiting time till an option is exercised. In Section 3, explicit
formulas for the results of Section 2 are presented. In Section 4, timing a capital
expansion program is solved by reduction to a sequence of investment opportu-
nities of fixed size, and formulas for the optimal capital stock and the value of
the firm are derived. The last formula shows clearly that the value of the firm
does not evolve as a Markovian process. A similar result can be obtained in the
continuous time model. Therefore the value of a firm cannot be modeled as a
Gaussian process as it is often done in finance. Technical details and proofs are
given in the appendices.



2 Model situations

2.1 Instantaneous payoff and payoff stream

The standing assumption of the paper is that the underlying stochastic process
X, is a random walk on R, which has the transition density, p (the method of
the paper can be applied to random walks on lattices as well). The transition
operator, T, is defined by

(Tf) (@) = E*[f(X1)] = E[f(X1)| Xo = x].

Given p, one calculates the EPV of a stochastic payoff tomorrow:

+o00o
E*[qg(X1)] = q¢(Tg)(x) = q/ p(y) f(x +y)dy.

—0o0

To compute the EPV of a stochastic payoff ¢t periods from now, we use the
Markov property of a random walk:

E*[q'g(X¢)] = ¢'(T"g) ().

The next step is to calculate the EPV of a stream of payoffs:

Ulg(z)=FE"

> qtg(Xt)] = ¢ (T'g)(x).

t=0

Under the condition ¢ € (0, 1), the operator I — ¢T is invertible in L>°(R), and
the inverse is (I — ¢T) ' = >";2, ¢'T*, hence

Ukg(x) = (I —qT) " g(x), (2.1)

for a bounded measurable g. Under additional conditions on the transition
density, (2.1) can be extended to unbounded g. From (2.1), we conclude that

UL(I—qT) = (I —qT)UL = I. (2.2)

This equation allows one to express an instantaneous payoff G(X;) in terms of
the EPV of a stream and vice versa:

9(Xi) = (I—-qD)G(Xy), (2.3)
G(Xy) = U;I(g(Xt). (2.4)

Clearly, equation (2.4) is the value, at date ¢, of the stream of payoffs that starts
at date t as well. To evaluate such a stream at the initial date, we compute

E*[q'G(X,)] = ¢'T'Ukg(x). (2.5)



2.2 Payoff stream that starts to accrue at a random time

The list of the EPV’s presented in the previous subsection conveys no new infor-
mation to any person familiar with the basics of economics or finance. Suppose
that we want to price the stream of payoffs that starts to accrue after the under-
lying stochastic variable, X;, crosses a certain barrier, h. In this case, we need
to replace the deterministic time, ¢, on the LHS in (2.5) with a random time,
7, and (2.5) is no longer valid. Fortunately, it is still possible to compute the
value E®[¢" f(X;)] in terms of the EPV’s of some payoff streams. To do this, we
need to distinguish between two cases: X; crosses h from below, and X; crosses

h from above. Denote 7+ = 7;7 = min{¢ | X; > h}, and consider

> qtg(Xt)] :

t=7+

VT (z;h) = E®

Under natural conditions on g,
VH(aih) = B ¢ ULg(X,4)| = (1= U1 4o Uko(e).  (26)

Equation (2.6) holds due to the quite deep result, known as the Wiener-Hopf fac-
torization formula, that establishes the relationship among the EPV—operators
U, Uy, and Ug:

Uy = (1-qUiUx (2.7)

(for details, see Subsection 3.2). The Wiener-Hopf factorization formula (2.7)
per se has no economic intuition behind it (and neither does Ito’s lemma, both
being general deep mathematical results), but using this formula, one obtains
values of real options and optimal exercise strategies in economically meaningful
terms.

Similarly, for the case of crossing from above, set 7~ =7, = min{t | X; < h}

and .
> qtg(Xt)] :

Then the value of such a stream is given by

V= (x;h) = E*

VT (wih) = B [¢7 Ukg(X,-)| = (1= UL mUkol@).  (28)

It is easy to see that (2.8) is just a version of (2.6): change the direction on
the real line, then the supremum process becomes the infimum process, and vice
versa.

Notice that (2.6) and (2.8) price the streams of payoffs that are described in
case (4). The model situations in case (3) reduce to these formulas if we express
an instantaneous payoff as the EPV of a stream using (2.3):

B¢ GX)| = (1= UL UL (T — aT)G(2);

B g G(Xo)| = (- UL anUL( = qT)G(x).



2.3 Payoff stream that is lost at a random time

The case when the right to the stream ¢g(X;) is lost when X, crosses h from
below is reduced to the cases considered above:

t—1
Vi(z;h) = E" | ) q'g(Xy)
t=0
= K7 ¢'9(Xy)| — B thg(Xt)]
t=0 t=1+

= Uig(x) — (1= QUL 400) Uk g(2).

The Wiener-Hopf factorization formula (2.7) allows us to proceed:

Vi(wih) = (1= qU% (ULe(®) = 1 1o Ukg() )
= (1-QUil(oonUgg(z). (2.9)

In a similar way, if the right for the stream is lost on crossing h from above,
we derive

Vo(z;h) =B | > d'g(X) | = (1 = QUL (n 100y Ukg(@). (2.10)
t=0

2.4 Optimal exercise time
2.4.1 Time to enter

Suppose now that g is the stream of payoffs specified for a real option, for
example, an option to invest capital C into a technology. If an entrepreneur
chooses to invest at time 7, then the technology will produce a commodity at
rate G, starting from time 7+ 1, ever afterward. Investment is irreversible. One
may view C' as the present value of a deterministic stream of expenditures, to
which the investor commits at time 7. By (2.3), this stream is ¢ = (1 — ¢)C.
The output is sold on the spot at the market price P, = eX¢. Obviously, we are
facing the situation to which (2.6) applies with g(X;) = ¢GE;[eX++1] — (1 —q)C.
In Appendix A, we show that if g is non-decreasing and U%g(x) changes sign
only once, the optimal exercise (log) price (the optimal investment threshold in
our example), h* is a unique solution to the equation

w(z) = (Ugg)(x) = 0. (2.11)

We stress that contrary to the Brownian motion model and other models with
continuous trajectories, the exercise boundary in the present model is not nec-
essarily the price at which the option is exercised. It is optimal to exercise the
option the first time 7 such that X, > h*. For the case of irreversible investment,



(2.11) is equivalent to

E* ) ¢ (¢GeXer — (1 - q)C) | =0. (2.12)
t=0

The last equation says that investment becomes optimal when the EPV of the
project calculated under the assumption that the original price process is re-
placed by the infimum process becomes non-negative. If the investment thresh-
old is chosen optimally, then the value of the option to invest, as given by (2.6),
is

V@ h*) = (1 = QUL e 400) Uk 9 ().
We use (2.12) to write

C=¢"E

> q'GeXe| X = 0] : (2.13)
t=1
Therefore,

o0

Z ¢'GeXi | Xo=0
t=1

= (" —eM)oe™,

E* th (qulHl -(1-9)C)| = €E -C
t=0

and
VHash') = Ce™™ (1= q)(UgLpe soo)()(e =€) (2)
= O (1 B |3 (N - eh*>+] ,
t=0
where (eX* —e"") . = max{(eX* —e"),0}. Now we can express Tobin’s Q as

o) = V@) _F ZZod (™ — )]
N
Hence Tobin’s () is the ratio of the EPV of the stream of payoffs (eXf —eh),
and the EPV of the perpetual stream e . Notice that the investment thresh-
old is determined by the infimum process, and Tobin’s ) is determined by the
threshold and supremum process.

Alternatively, using (2.13), we can write the value VT (x; h*) as

th(eXt - eh*)+] :
=0

The last representation factors out contributions of the infimum and supremum
price processes to the value of the option to invest. The first expectation on the
RHS decreases as the probability of downward jumps in prices increases, and
the second expectation increases with the probability of upward jumps. If both
probabilities increase, the overall effect on the value V™ (z; h*) is ambiguous.

thGeét | Xo=0

t=1

VT(z;h*)=(1-q)FE E*




2.4.2 Time to exit

The option considered above is similar to the perpetual American call option.
In this subsection, we consider the optimal exercise strategy for a generalization
of the perpetual American put option, which is relevant to irreversible decisions
such as scrapping a production unit or exit; it also applies to the optimal timing
of default on a debt.

Consider a firm in a deteriorating environment. The firm’s profit, f(X;), is
falling, on average, so that it may become optimal to discontinue operations at
some point in time, and sell the firm’s inventory for the scrap value C. If the
firm’s manager makes a decision to scrap the inventory at time 7, the operations
will be discontinued at time 7 + 1, and the scrap value will be available at time
7 + 2. When the firm discontinues its operations, it looses the stream of profits
whose EPV is

oo

Z q' f(Xe)

t=7+1

E* = E*lq" UL f(Xri1)]-

The scrap value, C, can be viewed as a deterministic stream of payoffs, ¢ =
(1 — q)C, that starts to accrue at 7 + 2. Hence, at time 7, the option value
of exit is UL g(X,), where g(z) = ¢*(1 — q)C — ¢T f(x). If the decision to exit
is made when the underlying stochastic factor, X;, crosses a barrier h from
above, then the option value to exit is given by (2.8). Suppose that g(z) is
non-increasing and U;]—(g(x) changes sign only once. Then the optimal exercise
price of the option is a unique solution, call it h., of the equation

w(z) = (Ugg)(z) =0 (2.14)

(see Appendix A). For g in the case under consideration, (2.14) is equivalent to

E" Y ' (¢*(1 - q)C = qf (Xe11))| =0, (2.15)
t=0
or
f(@)+¢*C =ULf(x). (2.16)
The LHS in (2.16) is the EPV of the instantaneous payoff received if the opera-
tions are terminated, the RHS is the EPV of the stream of profits evaluated under
the assumption that the original stochastic process is replaced by the supremum
process. Rule (2.16) says that it is optimal to exit when the difference between
the former and the latter EPV’s becomes non-negative.
Suppose that f(z) = Ge®, then from (2.15), one obtains
¢*C=e"E thGeX‘ | Xo = O] )

t=1

whence

qu (1-9)C - Qf()_(t-&-l))] =q*Ce " (e —e"),

t=0

10



and from (2.8), we derive

Vo(wih) = ¢*Ce(1-q) (U;zl(_oo,h*m( =) (@)

= ¢Ce™(1-qFE Zq Mo — et ]
= (1-qE|Y q'Ge™[Xo=0| B* |3 d'( +].
t=1 t=0

2.5 Expected waiting time

We consider timing the investment of a fixed size once again. Assume that
the spot log-price x is less than h*, and consider the waiting time R, till the
investment is made. This is the random variable defined by

Ry =min{t >0 | X; > h*}.

The expected waiting time can be calculated as follows:

E[R,] Z —oo,h) (Xt 1 = hm El Zq 1o )(Xt)l
t=0 t=0
t : x t 7
qE{nO { q ] - qll}lriOE Zq l[h‘*’+°o) (Xt)‘| }
= lim { — ngl[h*,+oo)<$)} . (2.17)

q—1-0

Notice that here one must consider the process under the historical measure
and not a risk-neutral one. Explicit formulas for the expected waiting time are
presented in Appendix C.

3 Explicit formulas for model situations

In this section, we show how to calculate the EPV when the transition density
is given by exponential polynomials.

3.1 Instantaneous payoff and payoff stream

3.1.1 Calculation of the expected present value of an instantaneous
payoff at a deterministic moment in the future

Let p be the transition density of the random walk X; = Xqg+Y1+---4+Y;, and

let
400

M(z) = E[e"] = / e*Tp(x)dx

— 00
be the moment generating function of Y. If G is an exponential function: G(x) =
e**_ then the transition operator, T', acts as a multiplication operator by the

11



number M (z), and we obtain ¢E*[e**1] = ¢TG(z) = qM(z)e*®. Similarly, one
easily calculates the expected present value of a payoff G(X;) at a deterministic
moment ¢ in the future: ¢'E%[e**t] = ((¢T)'G)(x) = (¢M(z))'e**. Equations
(2.3) and (2.4) can be used to represent a payoff G as the expected present
value of the stream ¢(X;) = (I — ¢T)G)(Xy); G(X;) = U%g(X;). In a special
case of an exponential function G(z) = €**, with z satisfying the condition
1—gM(z) >0, we have g(x) = (1 — ¢M (2))G(x).

3.1.2 Expected present value of an ongoing project: capital and labor
are fixed

Consider a firm that produces a commodity which is sold on the spot at the
price P, = eXt. We impose the following restriction on the price process:

gM(1) < 1. (3.1)

Restriction (3.1) is appropriate when capital, K, and labor, L, employed by the
firm are fixed or capped. Indeed, for K and L fixed, the EPV of the revenue
stream grows each period by factor M (1) = E [eyl], and it is discounted back
at rate q. Hence, the EPV of the stream of revenues is given by

¢ _ PG(K, L)

1—qM(1)’ (3:2)

PyG(K,L) Y (¢M(1))
=0

J

where G(K, L) is the production function of the firm. For the series in (3.2) to
converge, it is necessary and sufficient that (3.1) holds.

3.1.3 The case of costlessly adjustable labor

In other situations, more stringent conditions than (3.1) may be necessary. For
instance, consider a firm with the Cobb-Douglas production function G(K, L) =
dK9L'~?% which faces the fixed labor cost w, and can instantly and costlessly
adjust labor. A similar situation was considered in [2] for a continuous time
model of irreversible investment. At a given price level of the output, P, the
firm chooses L to maximize PdK?L'~% — wL. From the F.O.C.

(1-60)PAK°L™% —w =0,

we find L = K((1 — G)Pd/w)l/e, and hence the revenue is R = APY? where

(1md>1”. 0

A=K .
w< 1-0

w
We conclude that the EPV of the revenue stream

APy

APy Y (qM(1/))" = T qM(1/6)

t=0

(3.3)

12



is finite iff ¢gM(1/6) < 1. Notice that if increases in prices are anticipated, that
is, M(1) > 1, then M(1/60) > M (1) (recall that the moment generating function
is convex), and therefore, the condition ¢M(1/0) < 1 is more stringent than
(3.1).

3.1.4 The case of stochastic prices and operational costs

One can allow for a stochastic operational cost as well, and the model remains
quite tractable provided both prices and variable costs depend on the same
stochastic factor, call it X;. A simple example (with fixed capital and labor)
would be R(X;) = eX*G(K, L), and C(X;) = a + be?™t, where a,b,y > 0, so
that the profit is

9(X;) = R(X;) — C(Xy) = e G(K, L) — a — be' .
These examples show that it may be necessary to consider payoffs of various
kinds; hence, some general regularity conditions on g are needed.
3.1.5 Calculation of U g(X) for general payoffs

The EPV of a stream ¢(X;) can be easily calculated when ¢ is an exponen-
tial polynomial, that is, a sum of products of exponents and polynomials. For
g(X;) = e*Xt | the result is

ULe*™ = E”

Zq Q(Xt)] = mv (3.4)

t=0

provided 1 —¢M(z) > 0. By linearity, (3.4) extends to g a linear combination of
exponential functions, and more generally, for integrals of exponential functions.
Hence, if an explicit formula for the moment generating function is available,
U%g(X) can be calculated for all payoff streams g of interest.

Sufficient conditions for U%g(x) of a measurable stream g(X;) to be finite
are

9(X)] < CexplotXy), X, >0, (3.5)
|g(Xt)| < Cexp(ant), Xt < 07 (36)

where constant C is independent of X;, and o* satisfy
1—qM(c%) > 0. (3.7)

These conditions are necessary if g is monotone on each half-axis.

If we confine ourselves to a wide and fairly flexible class of probability den-
sities given by exponential polynomials on each half-axis, then for a general g,
the calculation of U%g(X) reduces to simple integration procedures. Consider
first the case when the transition density is of the form

p(z) = ctATe ™ 1 o (@) + ¢ (AT)e N (Lo (@), (3.8)
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where ¢™,¢™ > 0, and A\~ < 0 < A*. If we want to have a continuous p, we
must require that ¢t AT + ¢~ A~ = 0, and then the normalization requirement
M(0) =1leadstoct™ = A7 /(A" =AT), ¢ = AT /(AT —=X7). We have constructed
a two-parameter family of probability densities.The moment generating function
" ct AT AT —ATAT 1 1
_)\+—z+)\_—z_ A=A [ AT —2z A —z

It is easily seen that 1 — gM(z) has two real roots: 3~ € (A7,0), and St €
(0, A7), which are the roots of the quadratic equation

M(z)

22— (AT AT )2+ (1—g)ATA™ =0. (3.9)
We find

=05 (ﬁ FA VO F A2 41— q)A—)\+> . (3.10)
and represent 1/(1 — ¢gM(z)) in the form

1 _at a”
T—gMG) "Btz -2
where a® = (8% — 2)/(1 — ¢M(2))|.=p+ = 1/gM’'(8%). Set g(z) = e**. Using

(3.8) and (3.11), it is straightforward to check that the RHS in (3.4) is equal to
the RHS in the equation below

(3.11)

%) 0
ULg() = a* / e Vg(z +y)dy — a / B Vgt y)dy.  (3.12)
0

—00

By linearity, (3.12) holds for linear combinations of exponents, and more gener-
ally, for wide classes of functions which can be represented as integrals of expo-
nents e** w.r.t. z. One can also use more than one exponential on each axis,
and obtain more elaborate probability densities (see Appendix B for details).

3.2 Payoff stream that starts to accrue at a random time

As an example, consider the problem of timing an investment of a fixed size (see
Subsection 2.4.1). We need to compute the value given by (2.6), where

9(Xy) = qGE[e* ] — (1 — q)C = gM(1)Ge™* — (1 — ¢)C.

The operator (1—¢)U% acts on an exponential function e** as the multiplication
operator by the number (1 —¢q)/(1 — g¢M(2)):

1—gq
1— Uq e T 1 a%
(= Uxe™ = 3

Similarly, the (1 — ¢)U% and (1 — q)U% act on an exponential function e** as
multiplication operators by certain numbers, call them £} (z) and & (2):

(1—qQULe™ =kl (2)e*", (1 —qUge™ = kg (2)e*". (3.13)
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These numbers are

rp(z)=(1—q) Uge™)| _ = (1 -a)E D> d'g(Xe) | Xo=0],
Lt=0

and

=(1-9E|) q'¢(X,) | Xo=0[,
t=0

kg (2) = (1= q) (Uxe™)

=0

respectively. The Wiener-Hopf factorization formula (see, e.g., [18]) states that

1—
ﬁ]%q(z) = k7 (2)ry (2). (3.14)
It follows that (2.7) holds: Uy = (1—¢q)ULU%. In other words, we can factorize
the EPV-operator U% in terms of the EPV-operators Uy and U%. Indeed, if
we apply both sides of (2.7) to €**, we obtain identity on the strength of (3.14).
By linearity, (2.7) extends to linear combinations of exponential functions, and
more generally, to wide classes of functions which can be represented as integrals
of exponentials w.r.t. parameter z.

Under an additional very weak regularity condition on the density p (piece-
wise continuous p are allowed), it is proved in [7] that if g is measurable and
satisfies the growth condition (3.5), then for 7+ = 7,7, (2.6) holds. It is possible
to prove (2.6) without additional conditions on p.

If the probability density p is given by exponential polynomials on the positive
and negative half-axis, then all the functions in (3.14) are rational functions.
The calculation of the factors /ffzt (2) reduces to the calculation of roots of the
numerator of the rational function 1 — ¢M (z), that is, of a polynomial. To
obtain /<;q+ (2), one collects all the factors in the numerator and denominator of
the rational function (1 —g¢)/(1 — ¢M(z)), which do not vanish in the half-plane
fz > 0 (the real part of z is non-negative), and # (z) contains the factors which
do not vanish in the half-plane Rz < 0 (see, e.g., [17] and [7]. In many cases
(including the examples above), all the roots are real. Now the same argument
as at the end of Section 2 shows that the action of operators ng and UY, is given
by simple integral operators. As the result, we obtain an effective procedure for
the calculation of U% g(x) and Ugg(x). In this section, we consider the case of
the probability density (3.8); for the general case, see Appendix B.

First, we calculate the the moment-generating function M (z), find the roots
of the equation 1 — ¢M(z) = 0 (see (3.10)), and represent /} (z) and r (2) as
the sums of constants and simple fractions:

L (Fo2Bt Bt ATt - gt

K (2) = P By Ca i ey T (3.15)

and
. A=) BT BTN =p7)
Ky (z) = 7)\‘”‘@_ " = 7)\_(5_ mp (3.16)
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Using (3.13), (3.15), (3.16) and the same considerations as in the derivation of
(3.12), we obtain for a continuous g satisfying (3.5)

Bt Bt —gh)

+oo
(1= Uota) = Spole) + ) [ e @y, @)

and for a continuous g satisfying (3.6), we calculate

- —(\— -y 0
(1= Ukgte) = Soglo) - ) [ gy @ay)
— 00
Under condition (3.7), the roots % are outside [¢—, 0], therefore (3.5) and
(3.6) ensure the convergence of the integrals in (3.17) and (3.18).
Now we return to the investment problem of Subsection 2.4. From (3.13),
we find
Ukg(z) = (1 —q) 'rg (1)gM(1)Ge® - C.

Set
w(®) = Lp 1o0) () (UK 9) () = L 400) (2)[(1 = ¢) iy (1)gM(1)Ge” - C,

and calculate the value V*+(z; h) = E*[q™" U%g(X,+)] of the investment project
at time 0 (provided h is chosen as the investment threshold). Using (2.6) and
(3.17), we find for x < h:

Vi(@h) = (1-q)(Ugu)(z)
ARG A

= ——F / eiﬁer[(l —q) 'k, (1)gM(1)Ge™ Y — Cldy
z+y>h

At 1—gq
BN = BY) groony le%qqu(nG C ]

—x h—x

A+ g -10 5

3.3 Timing an investment
In the case of the stream g(z) = e"gM (1)G — (1 — ¢)C, (2.11) assumes the form

(1—q)'e"r, (1)gM(1)G - C =0, (3.20)

and the investment threshold is
e (1-9C
rq (DgM(1)G
After h* is found, the EPV of the project can be calculated with the help of

(2.6). In particular, if the probability density is given by (3.8), we can use (3.19)
with h = h*, and substituting (3.21), find

(3.21)

()\+ _ ﬁ+)eﬁ+(x—h*)
B =1t

VH(z;h*) =C x < h*. (3.22)
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3.4 Timing an exit

Consider a special case when the profit function in Subsection 2.4.2 is given as
f(X;) = GeXt. Then g(z) is a linear combination of exponentials, so that we
can calculate U% g(x) using (3.13):

Ulg(z) = ¢°C — (1 — q) 'k} (1)gM (1)Ge",

and find the optimal disinvestment threshold from (2.15):
SR B (3.23)

After h, is found from (3.23), we can calculate the expected present value of the
gains from scrapping the production unit at time 0, V'~ (x; hy), using (2.8) and
(3.23). Similarly to (3.22), for = > h,,

(A= = p)ef (@=he)
(1=07)A~

Finally, the value of the firm is the sum of the EPV of the perpetual stream of
profits plus the option value of scrapping: for x > h,

V(x5 hy) = O

G S (A" = )e (k)

VO = T a o n

4 Incremental capital expansion

In this Section, we assume that the production function depends only on capital,
and that G(K) is differentiable, concave, and satisfies the Inada conditions.
A similar situation was considered in [1] for a two-period model of partially
reversible investment, in [14] for the geometric Brownian motion model, and in
[4] for Lévy processes. At each time period ¢, the firm receives eXtG(K;) from
the sales of its product, and, should it decide to increase the capital stock, suffers
the installation cost C'- (K;41 — K¢). The firm’s objective is to chose the optimal
investment strategy K = {K;41(Ky, X¢)}i>1, Ko = K, Xo = , which maximizes
the NPV of the firm:

V(K,z) = sup E" | ' (eMG(K) — OBy — Ky)) | - (4.1)
t>0

Here we treat the current log price x and capital stock K as state variables,
and K as a sequence of control variables. Due to irreversibility of investment,
K1 > Ky, Vi

To ensure that firm’s value (4.1) is bounded, we impose a resource constraint:
there exists K < oo, such that K; < K, Vt. The resource constraint, condition
(3.1), and properties of the production function ensure that the value function
(4.1) is well defined.
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Formally, the manager has to choose both the timing and the size of the
capital expansion. However, it is well-known (see, for example, [14]) that for
each level of the capital stock, it is only necessary to decide when to invest.
The manager’s problem is equivalent to finding the boundary (the investment
threshold), h(K;C), between two regions in the state variable space (K, z):
inaction and action ones. For all pairs (K, z) belonging to the inaction region, it
is optimal to keep the capital stock unchanged. In the action region, investment
becomes optimal. To derive the equation for the investment boundary, suppose
first that every new investment can be made in chunks of capital, AK, only*. In
this case, the firm has to suffer the cost CAK, and the EPV of the revenue gain
due to this investment can be represented in the form of the EPV of the stream
9(X¢) = gM(1)(G(K + AK) — G(K))eXt — (1 - q)CAK. On the strength of the
result of Subsection 3.3, the optimal exercise boundary is determined from the
equation U% g(h) = 0, which can be written as

(1-¢q) '"gM(1)(G(K + AK) — G(K))k, (1)e" = CAK. (4.2)

Dividing by AK in (4.2) and passing to the limit, we obtain the equation for
the optimal threshold, h* = h*(K):

qM(l)/ﬁ;(l)G’(K)eh =C(1-gq). (4.3)

Equivalently, the optimal exercise price is

h* RY(K) _ C(l-gq) ' (4.4)
gM(1)kg (1)G'(K)

The rigorous justification of this limiting argument can be made exactly as in

the continuous time model in [4]. Let h = h(K;A) be the solution to (4.2).

Then the option value associated with the increase of the capital by AK, at the
price level e*, is

gM(1)
1-¢q

(1= QUL 4 oo (@) ( (G(K + AK) — G(K))r, (1)e* — CAK) .

As AK — 0, we have h = h(K;A) — h*(K); therefore, dividing by AK and
passing to the limit, we obtain the formula for the derivative of the option value
of future investment opportunities w.r.t. K:

(DG (K)

VPY (K, x) = (1 - QOUEL e 100y (2) <qM1 Y fg (1)e” — C’> . (4.5)

Substituting C' from (4.4) into (4.5) and using the definition of x_ (1), we obtain
> (e - em] .
t=0

4The authors are indebted for this simplifying trick to Mike Harrison; our initial proof was
more involved.

Vi (K 2) = (1 - ) B

thG'(K)eKt | Xo=0
t=1
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The last formula factors out the contributions of the infimum and supremum
price processes to the marginal option value of capital. The first expectation on
the RHS decreases if the probability of downward jumps in prices increases, and
the second expectation increases if the probability of positive jumps in prices
increases. Hence the marginal option value of capital increases in downward un-
certainty and decreases in upward uncertainty. The overall effect of uncertainty
is ambiguous.
Now the marginal, or shadow, value of capital is given by

e*G'(K)

Vi (K, z) = T—gM(D)

- VPUK, z). (4.6)

Equation (4.6) expresses the marginal value of capital as the difference of two
components. The first one is the expected present value of the marginal returns
to capital, given that the capital stock remains constant at the level K in the
future. The second component is the marginal option value of the future invest-
ment opportunities. This value is subtracted because investing extinguishes the
option. A similar result was obtained in [1] for a two-period model of partially
reversible investment.

Exactly the same calculations which lead to (3.22) allow us to derive from
(4.5)
(AT — gH)ef (@=h")

VI K,x) =C D (4.7)

Substituting (4.4) into the last equation, we derive
Vopt K —-C )‘+ — 5+ K;(l)qM(l) o ﬁ+a:G/ K Bt 4.8
K ( 71")* (B+_1))\+ (1—(])0 e ( ) . ()

Integrating (4.8) w.r.t. capital, we obtain

opt LNt (r7(D)gM(1) T
14 (K,x)—C(w_l)H( (1_q)C> e’ /KG(W dk.

The value of the firm is V(K,z) = e*G(K)/(1 — ¢M(1)) + V°P*(K, z). Suppose
that the capital stock available for investment, K, is very large, and function
G’(K)ﬁJr is integrable on [1,+00). Then we can obtain a simpler formula by
replacing the upper limit K with 4+o0o. In the case of Cobb-Douglas production
function G(K) = dK?, we have G'(K) = dK%!, therefore the integrals con-
verge iff (§ —1)3% < —1, or, equivalently, 8T > 1/(1 — ). If this condition is

satisfied, the value of the firm for z < h*(K) is

et dK?

V(K,z) = T gD
AT —pt (k7 (1)gM(1) o C1—BT B 2 18T (1-6)
weowe (Mg ) @ -a-n
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One of the standing assumptions in corporate finance is that the value of a firm
follows a (geometric) Brownian motion. Our solution clearly shows that the
firm’s value is not described even by a Markovian process.

Notice that the proof of (4.3) in [4] was based on the reduction to the case of
the perpetual American call, and therefore the generalization for more general
dependence on the stochastic factor was not possible. Here the result holds for
any continuous increasing revenue flow R(K, x), and the formula for the optimal
investment threshold obtains in the form:

U%qTRk (K, h) = C, (4.9)

where the EPV-operator U% and transition operator 7" act w.r.t. the second
argument (we have ¢T Rk instead of Ry because the revenues will start to accrue
the period after the investment is made). For instance, if the firm faces the
operational cost a +bKeXt/2 then the revenue flow is R(K;, X;) = eX*G(K;) —
a — bKeXt/2 ) and instead of (4.4), we now have

(1—¢q) HgM(D)r; (1)G'(K)e" — qu(l/Q)l{q_(l/Q)eh/Q] —C=0. (4.10)

The function on the LHS in (4.10) changes sign only once, and therefore the
solution to equation (4.10) gives the optimal investment threshold.

A Proof of optimality of A* and A,

On the strength of Lemma on p.1364 in [11], to prove the optimality of the
solution V(h*;x), it suffices to check the following two conditions:

V(h*;2) > max{G(x),0}, V z, (A1)

and
(I—-qT)V(h*;2) >0, V. (A.2)
By our choice of h*, w(z) > 0 for all z > h*, therefore V(h*;2) = (1 —

QUL+ yoyw(x) > 0 for all z. Using (2.6), we represent V(h*;z) in the
form

V(h'z) = (1-@UiUgg(z) — (1 = )(UgL(—oonmyw)(2)
= Ukg(e) —v(h"2) = G(z) —v(h*;2),

where v(h*;z) = (1 = @)(Ug1(—oo,n-)w)(x). Due to the choice of h*, we have
w(z) < 0Vax < h*, sothat v(h*;2) <0 for all z, and hence V (h*;z) > G(x) for
all z. We conclude that (A.1) holds.
Under a very weak regularity assumption on p, it is proved in [7] that for any
h,
V(h;x) = TV (h;z), x<h. (A.3)

Using more elaborate arguments as in [6] and [7] in continuous time, one can
prove that (A.3) holds if the probability density p exists. Thus, (A.2) holds
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on (—oo,h*), and it remains to verify (A.2) for x > h*. Introduce W(x) =
(I —gT)V(h*;x). Using (2.2) and (2.7), we obtain

W) = (I-qT)(1 - UL 100)Uig(w)
= (Ui)_ll[h*’Jroo)Uq&g(x), (A4)
and also
W(z) = (I—-¢T)(1 - Uil 4o0)Uxg(x)

(
(I —qT)(1 - qUiUxg(x) — (I = qT)(1 = QU L(— oo n Uk g(x)
= 9(x) + (-1 +4qT)(1 - QUL (_ o n)Uxg(z).

But if a function u vanishes outside (—oo, h), then

Uiu(z) = E Z du(z+ X;)| =0, VYa>h,
t=0
as well. Therefore, for x > h*,
W(z) = g(x) +q(1 — )TUL(— oo n)Uxg(z). (A.5)

By our standing assumption, g is non-decreasing, hence from (A.5), W(x) is
non-decreasing on [h*, +00). We apply U% to (A.4) and obtain

Z th(x +X,)
t=0

Line 4oo) (@)U g(x) = U W(z) = E . (A.6)

Suppose that W (h*) < 0. Then there exists hy > h* such that W (z) < 0 for all
x € (h*, hy). It follows that for the same z, the RHS in (A.6) is non-positive.
But for these x, the LHS is positive by the very definition of A*. Hence, our
assumption W(h*) < 0 is false, and since W is non-decreasing on [h*, +00), the
condition (A.2) follows, and the proof of optimality is finished.

The verification of the optimality conditions (A.1)—(A.2) for the exit problem
is quite similar to the proof above: just replace X, X, Ug—(, U% and [h*, +00) with
X, X,U%,U% and (—o00, h.], respectively.

B Transition densities given by exponential
polynomials

B.1 The case of three exponentials

In this Subsection, we demonstrate how to obtain the transition density of a
desired shape. The density (3.8) has a kink (and maximum) at the origin. If we
want to have a smooth p (and allow for the maximum to be not at the origin),
we need to use more than two exponential functions. Suppose that we want to
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model a density which has the maximum on the positive half-axis. Then we use
one exponential on the negative half-axis, and two on the positive one:

2z Az —\—,— Az
(cFATe ™% —cfafe )1[0,400)(T) = ATe A 1(—o,0)(2), (B.1)

where ¢, c§ and ¢~ are positive, and A\~ < 0 < Af < AJ. Later in this

Subsection, we show that for any choice of A~ < 0 < A\ < AJ, equation (B.1)
with ¢~ cf, c}' given by simple formulas (B.6) defines a probability density,
which has the maximum on the positive half-axis. See Figure 1 for an example.
Similarly, one can construct a 3-parameter family of probability densities which
have the maximum on the negative half-axis. Should one wish to have a smooth
probability density which has the maximum at the origin, one must use two
exponential functions on each half-line or exponential polynomials of the form
(azx + b)e™™.
The moment generating function of the probability density (B.1) is

7t +\+ -\-
A C3 Ay cA

M(z) = —
) M -2 M-z A -z

At the end of this Subsection we will show that the fundamental rational function
1 — gM(z) = 0 has 3 roots, all of which real. Call these roots 37, 8, and 35 .
We have
AT <BT <0< B < AT <A\ < B (B.2)
Clearly, 1/(1 — gM(z)) can be represented in the form
1 af ay a”
= + + :
1—qM(z) Bf—2z Bf—2z p~—=z

where ay ; = 1/(qM'(ﬁ;r)), j=12and a” =1/(¢M’'(S7)), and therefore,

(B.3)

(oo}
Ukg(z) = af/ e g(a +y)dy (B.4)
Ooo 0
+ ay / e~ Vg(x+y)dy — a” / e Vg(x + y)dy.
0 —o00
Similarly, we can consider a probability density given by linear combinations of
two or more exponents on each of the half-axis. If we use two exponentials for
each, we have two roots ﬂf, j = 1,2, of the “characteristic equation” 1—gqM (z) =
0 on each half-axis, and (B.2)—(B.4) change in the straightforward manner. One
can also use more than two exponentials on each axis, and obtain more elaborate
probability densities.
Now we show that any choice A\ < 0 < )\f < )\3' defines a probability
density. Three conditions: fj—;o p(z)dx = 1, p is continuous at 0, and p is
smooth at 0, give a linear system of three equations

cf —cf+em = 1,
AT =i AT+ = 0, (B.5)
TN =g (A) +em (A7) = 0.
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Using Cramer’s rule, it is easy to find a unique solution (cf,c5,¢™) to (B.5) for
any A\~ < A\f < AJ:

CIL . —)\*)\3r
(A3 =AM = A7)
AN
g = L , (B.6)
’ (A3 = ADA = A7)
at
o >\l 2

A=A = A7)

It is easily seen that cf, c; and ¢~ are positive, and that p is positive as well.
The roots of 1 — ¢M(z) are found as follows. Clearly, 1 — ¢M(z) has 3 roots
at most. As z — A\~ +0, 1 — gM(z) — —o0, and the same holds as z — A\ — 0,
and as z — A\ + 0. Under condition ¢ € (0,1), 1 — ¢M(0) =1 — ¢ > 0, and
1 — gM(+00) = 1 > 0. Hence, on each of the intervals (A\=,0) (0,\]), and
(AJ,+00), 1 — g¢M (2) changes sign. Therefore, on each of these three intervals,
there is exactly one root, which we have called 3=, 8, and (3, respectively.

B.2 General scheme for the computation of U} and Uy

Step 1. Calculate the moment-generating function M(z), and consider the
rational function 1 — ¢M (z). Find the roots of the denominator, )\ , and the

numerator, ﬂji, with their multiplicities (sign “4” for the roots on the positive
axis, sign “-” for the ones on the negative axis).

Step 2. Define
re(2) =11
J

A — 2 -
H;(Z):H ])\j_ 1;[ ;kz (B.8)

J

AF— 2 8
) - (B.7)
/\;-' 1;[ B -z

Step 3. If all the roots 3 are simple, we represent kg (z) and k7 (z) in the
form

g

a+
k) = (o0) + 30 B () =k (00) - S =M (BY)
% ﬂk z % ﬂk z

- B — B
ST s T T
ﬁk ; ﬁk

J l;ék I#k 3

The case of multiple roots can be treated similarly.
Step 4. For a continuous g satisfying (3.5), we can calculate

Ukg(x) = +Z / “ivg(z +y)dy, (B.10)
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and for a continuous g satisfying (3.6), we can find
Ugg(x) = +Zak / “PYg(x 4 y)dy. (B.11)

Under condition (3.7), all the roots 6,:5 are outside [o~, o"], therefore (3.5) and
(3.6) ensure the convergence of the integrals in (B.10) and (B.11).

B.3 Value of investment project

By assuming that the probability density is given by exponential polynomials
on each half-axis and using (2.6) and (B.10), we find for « < h:

Viah) = (1-¢)(Usu)
- at kg (DgM (LG [+ o Blytaty g, _ I e By
B zk: b [ 1- q /h—:c dy ¢ h—x dy:|
e'rg (gM(1)G  C
— G,Jreﬂk (:D h) B A A . .
2 [( DGF -1 6;?] (B42)

If the threshold is chosen optimally, then we use (3.21) and find
Bif (x—h")
CZ aie’ (B.13)
By —1)B
B.4 Value of scrapping

After h, is found from (3.23), we can calculate the expected present value of the
gains from scrapping of the firm at time 0, V'~ (xz; k), using (2.8) and (3.23).
Similarly to (B.13), for x > h.,

T—h
o Z ag e =hs) &P ( )
1 - ﬁk 6k
Finally, the value of the firm is the sum of the EPV of the perpetual stream of

profits plus the option value of scrapping: for = > h,,

eﬁkmh)

a
V(z) = 7 Ci?y e
17 Z 6k 5k
B.5 Capital expansion
Exactly the same calculations which lead to (3.22) allow us to derive from (4.7)

+

PG K) . (B.14)

oot e ot Ky (1)gM (1)
Vi (K’x)*cz,;w,j —kl)ﬁ,‘:< (1-q)C )
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Integrating (B.14) w.r.t. K, we obtain

Vopt(K’m):C;wfai)ﬂf( Toae ) / ()% d

1-¢q)C

Suppose that the available capital stock, K, is very large, and the functions
G'(K )57:r are integrable on [1,400). Then we can obtain a simpler formula by
replacing the upper limit K with +o0o. In the case of Cobb-Douglas production
function G(K) = dK?, we have G'(K) = dK®~!, therefore the integrals con-
verge iff (0 —1)3;7 < —1 for all k. Let B be the smallest positive root, then the
equivalent condition is 8;" > 1/(1 — ). If this condition is satisfied, the option
value of investment opportunities is

! ~(1)gM )\ 018t w11 (1-0)
Vopt K, — ak; <Hq( > .
t6.2) ; BE-nsE L 1-9 (d6)PE (B (1—6) — 1)

C Expected waiting time

Assume that the spot log-price x is less than h*, and consider the waiting time
R, till the investment is made. If the transition density is given by (3.8), then
the expected waiting time is finite iff AT + A~ < 0, or, equivalently,

m=E[X;]=1/A" +1/AT >0, (C.1)

and if (C.1) holds, then
1
E[R,] = E(h* —x+1/A1). (C.2)

Condition (C.1) has a clear interpretation: the expected waiting time is finite
iff the drift of the log-price, m, is positive, and if it is positive, then (C.2)
says that the expected waiting time is inversely proportional to the drift. It is
also proportional to the distance to the barrier plus the positive term which is
independent of the distance.

To obtain the formula (C.2) for the expected waiting time, we need to cal-
culate the limit in (2.17). Using (3.17), we obtain for x < h*:

B 64’ >\+_ﬁ+ +oo B
U4t (@) = (1= I ey
—pH(h —z)(\+ s
e . _
I gt T ),
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Hence, we have to calculate the limit

B B B T O
qg—1-0 1-— q ’

Both terms are positive, and if 3%(q)/(1 — ¢) is unbounded as ¢ — 1, the limit
is clearly infinite. From (3.10), we find that this possibility does not realize iff
AT+ AT <0. If A + AT <0, we obtain

ATAT

= m(l —q)+0((1-9)%),

B*(q)

and (C.2) follows.
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Figure 1: Density (B.1). Parameters: A\~ = =5, A\ =5,\J =7.5
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