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Abstract

We examine linear-quadratic (LQ) approximation of stochastic dynamic optimiza-
tion problems in macroeconomics (and elsewhere), in particular in policy analysis
using Dynamic Stochastic General Equilibrium (DSGE) models. We first define the
problem that is solved by a social planner, given that the objective of the latter is to
maximize average welfare; this yields the efficient solution. We then comment on the
LQ approximation when a tax or subsidy can be imposed such that the zero-inflation
competitive steady state output level is equal to the efficient level. We then examine
the correct procedure for replacing a stochastic non-linear dynamic optimization prob-
lem with a linear-quadratic approximation. We show that a procedure proposed by
Benigno and Woodford (2003) for large underlying distortions in the economy can be
more easily implemented through a second-order approximation of the Hamiltonian
used to compute the ex ante optimal policy with commitment (the Ramsey problem).
We then define the notion of Target-Implementability, which is also a sufficient condi-
tion for a particular steady-state maximum of the Ramsey problem, and explain the
usefulness of this in the context of stabilization policy.
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1 Introduction

Linear-quadratic (LQ) approximations to non-linear dynamic optimization problems in
macroeconomics are widely used for a number of reasons. First, the characterization of
time consistent and commitment equilibria for a single policy maker, and even more so
for many interacting policymakers, are well-understood. Second, the certainty equivalence
property results in optimal rules that are independent of the variance-covariance matrix
of additive disturbances. Third, policy can be conveniently decomposed into deterministic
and stochastic components. Fourth, the stability of the system is conveniently summarized
in terms of eigenvalues. Finally for sufficiently simple models, linear-quadratic approxi-
mation allows analytical rather than numerical solution.

But what is the correct procedure for replacing a stochastic non-linear optimization
problem with a linear-quadratic approximation? In Section 2 we begin by reviewing the
setup of the benevolent policymaker’s (or social planner’s) problem whose solution yields
what is termed the efficient output level. In addition we explain why the standard linear-
quadratic approximation is appropriate for analysing optimal inflation policy in the de-
centralized economy (i.e., for the Ramsey problem), with the proviso that there is a tax
(or subsidy) that ensures that the zero-inflation output level, or natural rate, exactly or
approximately in some sense matches the efficient output level.

In Section 3 we turn to the general Ramsey problem, when there is no ‘optimal’ tax,
that yields the ‘distorted steady state’ as it is termed by Benigno and Woodford (2004).
We implement the LQ-approximation by quadratifying the Hamiltonian of the optimal
control problem about the steady state. This idea stems from the sufficient conditions
for the solution to an optimal control to be a maximum; Magill (1977) appears to be the
first to have written up this result in the economics literature. We provide two simple
examples of this, one of which relates to the procedure used by Benigno and Woodford
(2003), henceforth BW, using a simple New Keynesian model and ad hoc policymaker’s
utility function as set out in Clarida et al. (1999). We demonstrate that for this simple
example the BW procedure is equivalent to the Hamiltonian approach.

Section 4 then focuses on a third example: a Ramsey problem based on the New Key-
nesian framework of Section 2, with habit in consumption, with the policymaker adopting

the utility function of consumers. We derive the corresponding LQ approximation to the



policymaker’s problem, and briefly comment on its representation when there is no habit.
Section 5 defines the notion of Target-Implementability; this is essentially about the set-
ting of targets by the Central Bank when it engages in stabilization. We show that this is
equivalent to a requirement that the quadratic approximation be negative semi-definite,
which is a sufficient but not necessary condition for optimality. We then obtain suffi-
cient conditions for both target implementability and for the Ramsey problem to have a

zero-inflation steady state and therefore natural rate of output.

2 The Social Planner’s Problem and the Ramsey Problem

assuming Efficiency

In this section we introduce the general form of the problem to be studied. We assume
a set of consumers, each with given endowments, whose objective is to maximize an in-
tertemporal utility function. Typically this will incorporate consumption and leisure, but
we shall state the objectives in a general fashion, so that they can incorporate habit as
well. Thus the objective is for individual i to maximize an expected utility function of the

form

By Bu(Wit; Wi1) (1)
t=0

where the vector W;; represents individual ¢’s choices e.g. consumption and labour supply.
This utility function may also incorporate habit or catching-up, and may therefore also
be dependent on aggregate or average choices made in the previous period Wy_;. There
are various resource constraints that we shall come to later.

Typically in economic models of this type we would assume monopolistic competition
by firms, which leads to mark-up pricing, and creates a wedge between the level of output
under competition - the natural rate - and the level of output that could be achieved by a
social planner - the efficient level. This wedge may be exacerbated if we assume that there
is labour market power as well. The latter is not incorporated by Benigno and Woodford
(2004), but is common in most other New Keynesian models e.g. Clarida et al. (2002).
We also assume that costs for firms are continuous, which rules out state-dependent S — s
policies; we do this because such policies cannot be easily aggregated. Initially we ignore

the stochastic problem because the deterministic problem is sufficient to set up the LQ



approximation.

Finally we assume that the resource constraints sum to an aggregate resource con-
straint. One can then define the social planner’s problem in terms of the representative
individual as that of

0o
max Y BU(X;1,Wi) st Xy = f(Xi1,W0) (2)

t=0
where the set of constraints in this problem represent the set of (intertemporal) resource
and other relevant constraints. Although there appear to be significant differences in the
functions u of (1) and U of (2), these are merely cosmetic; W; would appear in the same
way in U as did Wy in u, and W;_; is now a subset of the X; variables. Thus if we
represent the vector X; = [Xth Xg;], where X represent the resource constraints, then

Xot = Wy, and Xo ;1 appears in the same way in U as did W;_1 in u.

2.1 Characterization of the Efficient Level

Defining the Lagrangian
D B U (X, Wh) = A (X = f(Xim1, WA))] (3)
t=0

the following first order conditions provide the necessary conditions for the solution:

1

UW(Xt—hWt)—i-/\tTfW(Xt—l, Wy) =0 Ux (X1, Wt)-f—)\tTfX(Xt—l, Wit1) — 3

(4)

The steady state of the social planner’s problem, the efficient level (denoted by ), is then

given by

X* = f(X*, W) U (X*, W) + X f (X5, W) =0

Ux (X5, W*) + X7 fx (X5, W) — x0T =0 (5)

2.2 The Flexible-Price Solution and the Ramsey Problem

The difference between the efficient solution and that of the competitive or flexible-price
solution is due to the externalities of habit and of firm and labour market power. As we
shall see below for a particular example, the externality due to consumption habit works in

the opposite direction to the externalities that produce the mark-ups in prices and wages.



In principle it is possible to set a proportional tax (or subsidy) in the flexible-price case
that yields a ‘natural’ level of output exactly equal to the efficient level of output of the
social planner.

Thus far we have only discussed the efficient and flexible-price levels of output. A more
general model takes into account the fact that neither wages nor prices are completely
flexible. As a consequence, we must discuss the case where a policymaker is required to
maximize average welfare, in this case by choosing the optimal path for inflation. This is
a particular case of the Ramsey problem.

The standard New Keynesian model ascribes a fixed probability in each period of
changing prices (and wages). This leads to dynamic equations for the overall price index,
and in turn this leads in the Woodford (2003) case to different choices of labour supply
by individuals, and in the Clarida et al. (2002) case to each individual providing the same
quantity of labour. In the former, the policymaker takes the average of the utility function,
which for small variance of shocks is approximately the same as flexible-price level of the
utility function, but with an additional effect from the spread of prices. In the latter,
although labour supply is the same for each worker, it is dependent on the spread of
demand for each good; this in turn leads to the utility function differing from the flexible
price utility function by a term dependent on the spread of prices and wages. From the
point of view of the Ramsey policymaker, the problem can then be written approximately
as maximizing

> BU(Xe—1, W) + A(Xi—1, W) Df ] (6)
=0

where D/ represents the spread of prices, and we ignore the spread of wages to ease the
algebraic burden. In the case of standard New Keynesian models, the term A(X, W)
contains the disutility of labour because that is what is affected by price variability. This
Ramsey problem is subject to the resource constraints above, and in addition to further
constraints representing individual consumer and firm behaviour (arising for example from
staggered price and wage-setting). We assume that these can be aggregated, so that the
constraints that must be satisfied by the Ramsey policymaker constitute both the resource

constraints and constraints associated with price-setting:

Xi = f(Xe—1, Wh) Zy = 9(Zp—1, X4—1, W5 T) (7)



Woodford (2003), among others, shows that the spread of prices D} is approximately
obtained as a quadratic form in current and past levels of inflation, where inflation is one
of the variables included in the vector Z;.

It is important to appreciate that the the constraints associated with Z; represent
individuals’ and firms’ decisions, and may involve future expectations. We take the ap-
proach that the policymaker here has reputation for precommitment, so that we can take
expectations of the future as always being fulfilled, and therefore regard these equations
as backward looking. Secondly, if all factor prices are fixed so that inflation is 0 i.e. the
appropriate elements of the vector Z are set equal to 0, we obtain a solution to the ‘nat-
ural’ rate by solving for the steady state X = f(X, W), Z = g(Z, X, W;7). This is also
known as the flexible price equilibrium. An important consideration is that the natural

rate will be dependent on the tax/subsidy rate 7.

2.3 LQ Approximation of the Ramsey Problem: Efficient Case

Woodford (2003) now points out a key result for LQ-approximation. If at all possible,
the aim of the Ramsey policymaker is to stabilize the economy about the efficient level of
output. Let us assume therefore that the proportional tax/subsidy is set at exactly the
level at which the flexible price equilibrium achieves the efficient level of output. This
implies that there exists a value 7* such that the efficient rate, coupled with zero inflation,
is a solution to Z* = g(X*, Z*, W*; 7).

The main result of this section is dependent on the ability (a) to expand the utility
function about the steady steady state efficient solution without the presence of linear
terms and (b) to expand the constraints about the steady state efficient solution without

the presence of constant terms.

Theorem 1: The stabilization problem for the Ramsey policymaker can be approxi-

mately expressed as a quadratic expansion of the welfare function about the efficient level.



Proof: We first deal with the utility function:

> BUXi—1, Wi) + A(Xi1, Wi) Df |
=0

= Zﬁt[U(Xt—l, W) — NT(Xy — f(Xim1, W) + A(Xy1, Wi) DY)
=0

I

S BIUX* W*) + Ux X1 + Uw Wy — X7 (06X, — fx0Xy1 — fwoWr)
t=0
1
+§(6XtT_ VHxx0Xi 1 + 26X | Hxw oWy + W, Hyw oW, + A(X*, W*)DF
_ - t * * . l *T *T *T
= ) BUX W)+ (Ux GAT X)X+ (Uw + X fi )W
t=0
1
+§(5XtT_ VHxx0Xi 1 + 26X HxwoW; + WL Hyw oW, + A(X*, W*)DE(8)

where H = U(X, W) 4+ M1 f(X, W), and its second derivatives are evaluated at(X*, W*).
Hence, using (5), the linear terms in § Xy, 6W; vanish. We shall see below a representation
of D} that allows us to write the contribution from inflation as a simple quadratic term in
the utility function for each period ¢; this is why we were able to ignore first order changes
in the function A(X,W).

Now consider the constraints. Firstly the resource constraint is in steady state at the
efficient level, so that an expansion about the latter will contain no constant term. Sec-
ondly, the constraint involving Z, by appropriate choice of 7 is also in a zero-inflation
steady state at the efficient level, so that any approximation of its dynamics about the

efficient level will be without a constant term.

The implication of this proof is that the welfare function can always be approximated as a
constant plus quadratic terms, centred on the efficient rate, once the resource constraints
have been incorporated. It is only the equations describing private sector behaviour that

can make invalid this LQ approximation to stabilization.

2.4 The Small Distortion Case

Suppose that the tax/subsidy is insufficient to eliminate the inefficiency, but that the
latter is small. There are then two approaches to obtain an approximation to the LQ

approximation. The first is take deviations about the inefficient steady state. This will, as



we have seen above, produce an approximation to the welfare that contains a constant term
(the welfare in the efficient case), and a quadratic term. The error in the approximation
is then in the dynamic equation describing individual decisions. This is because we need
a vector of constants to be included in the dynamic equation for deviations in Z;, which
is given by Z — g(X, Z, W; 7);if this is small, it may be ignored.

The alternative is to take deviations about the natural rate, as done by Woodford
(2003), Appendix E. The dynamic equations in deviation form then no longer contain a

constant, but the linear terms in the welfare approximation (8) are now of the form:

(Ux (1) = VT 4 X7 f (X W))6Xir + (Ui (X9 4 AT i (,10)0W;
= (Hx+ (X = X)THxx + (W =W Hyx)0 X1

+(Hy + (X — XTHxw + (W — WHT Hyryy )W,
= (X - X""Hxx +(W - WHTHyx)6X, 1

+((X = X" Hxw + (W = W5 Hyw ) sWs 9)

Thus the linear terms can be ignored provided that X — X* and W — W* are small.

We assess the limitations of the small distortion case in Section 4 by comparing the
weights on the quadratic terms of the LQ welfare approximation for the efficient and the
non-efficient case. This provides an arguably more direct assessment of the error in the
approximation; this is because it is less easy to assess the impact of the errors described

above.

3 The Hamiltonian LQ Approximation for Large Distor-

tions

In general, one cannot expect fiscal authorities to set a tax/subsidy so as to achieve the
efficient level of output. This means that the L(Q Approximation to the utility function
of the previous section will be inappropriate. A general statement of a Ramsey problem
in economics involves both backward-looking dynamics such as capital accumulation, and
forward-looking dynamics such as the Euler equation for consumption or, as below, an
equation for aggregate inflation in which the latter depends on expectations of future

inflation. Benigno and Woodford (2003) solve the stabilization aspect of such a problem by



expanding about the precommitment deterministic solution. They invoke a rather tortuous
method that is not obviously generalised. However there does exist a generalisation due
in part to Magill (1977). As a preliminary, instead of writing down a general economic
model that incorporates both backward and forward looking behaviour, we note that our
intention is to obtain an LQ approximation to the precommitment solution. Since formally
this solution makes no distinction between a variable dated at ¢ + 1 and its expectation
using information at time ¢, we can for the moment write down the general model as
purely backward-looking.

We now adopt a slight change of notation. Since in this section we are no longer
interested in approximating about the efficient level, the resource constraints do not play
the special role that they did in the section above. We therefore absorb all state variables
X, Z into just one state vector X, so that the general policymaker’s problem no longer
requires a special term representing the spread of prices.

The general dynamic programming problem is therefore:

0o
Maz )" BUXi1, W) st. Xe= f(Xio1, W) (10)
t=0
Define the Hamiltonian Hy = U(X;_1, W;) + Al f(X;_1,W;), where \; are the Lagrange

multipliers for the constraints, as in (3). The following is the discrete time version of

Magill (1977):

Theorem 2:
(a) If a steady state solution (X, W, \) to (10) exists, then any perturbation (6X;, W;)

about this steady state can be expressed as the solution to

o0 Hxx Hxw 0Xi1
MCLCCZ ﬂt |: 5Xt—1 5Wt s.t. 5Xt = fX5Xt—l+fW5Wt
t=0

Hwx Hww oWy
(11)

where all derivatives are evaluated at (X, W).
(b) A necessary and sufficient condition for the dynamic programming problem (10)
to constitute a maximum with steady state (X, W) is that the steady state Riccati matrix

associated with (11) is negative definite.



Note that the perturbed system is now in standard linear-quadratic format, which is
the basis for (b). Of course, if the function f(X,W) is linear and U(X, W) is concave
then (b) is irrelevant. However it is unlikely that f will be linear, so we have the following,
possibly stringent, condition:

Result 1: A sufficient condition for for the steady state to be a maximum is that the
matrix of second derivatives of H in (11) is negative semi-definite!.
Magill (1977)’s result extends to the stochastic case as well. Thus if the dynamic equations
are written as Xy = f(X;_1, Wy, &), where the e; have mean zero and are independently
normally distributed then any perturbations about the deterministic solution are solutions

to the problem

Hxx Hxw Hx. 50X 1

oo
Maz By Y '| 6X, oW, & || Hwx Hww Hx || oW
t=0
H.x Hew He &t
st. 0Xy = fx0Xi—1+ fwoWi + feer (12)

Before turning to the main model of the paper, we provide two examples of the Hamil-

tonian approach.

Example 1: We obtain a second-order accurate solution to the following problem that

motivates Kim and Kim (2003):
Maz InCi1 +1nCy st. C1+Co=Y1+Ys (13)

where [nY; ~ N(0,02) The solution to this is clearly C; = (Y3 + Y2)/2, so that the
deterministic solution centred at Y1 = Yo = 1 is C; = Cy = 1. If we define the Lagrangian
as L = InCy 4+ InCy — \(C1 + Co — Y] — Y3), then the value of A at the optimum is clearly
1. Using perturbations of the logs of C;,Y;, it is easy to show that the problem transforms

to

1
Maxcl+CQ+§(y1+y2+y%+y§—cl—@—c?—cg) st.cr+ca=y1+y2 (14)

! A simple example of a problem for which a maximum exists, but for which the sufficient condition does
not hold is: max z2 — y? such that y = az + b. It is easy to see that the stationary point is a maximum

when |a| > 1.



which has solution ¢; = (y1 +y2)/2, so that the maximand is equal to y; +y2 + %(y1 — y2)2,
as in Kim and Kim (2003).

Example 2: In this example we briefly outline the Benigno and Woodford (2004) ap-
proach for a monetary policy problem, and outline its equivalence to the Hamiltonian
method.

Consider the following optimization problem for a monetary authority to choose state-

contingent path for its inflation target m; so as to minimize an ad hoc objective function

Ey Z A [( 2 4 (15)

where z; is the output gap in logarithms given by a ‘New Keynesian’ Phillips curve
T = BB+ f(@e) +ug; f1>0, f7 <0 (16)

where wu; is an i.i.d. supply shock. Let z,, be the natural rate of output defined by
f(zn) = 0. Then (15) z* > x, is the logarithm of the efficient level of output where
inefficiency arises from monopolistic competition in the output market.

A common procedure for reducing this to a LQ problem is to expand about the steady
state z so that f(z) = f(z)+ f'(z) (2 — z) + L f"(2) (2 — x)?=a(z; — z) — bz, — )2
Much of the literature? including Clarida et al. (1999) then erroneously adopts a linearized
Phillips curve

= BEymi+1 + a(z — ) + we (17)

and proceeds with the L(Q problem of minimizing (15) subject to (17). The error arises
from the objective function including a linear term in x;z*. From (16), z; = f~!(m —
BEymir1 — ug) so unless z* is small, there is a second-order term missing in the objective
function if one proceeds with the linear approximation (17). To get round this problem, the
procedure set out in BW selects a new steady state (7, z) satisfying (16) and a multiplier

h such that

ZAt (2—2)*+(m—7)? ZAt wy—") 2+ +hlB(mes —7) = (1 —7) = f (20) + f ()]
(18)

2Some previous work of one of the authors joins a distinguished list (see Currie and Levine (1993).
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up to a second order approximation in deviations about the steady state, give or take

constant terms. Then the problem becomes that of minimizing (18) subject to
T — T = ﬁEﬂTH_1 — 7_T> — f(.’IJt) + f(.’f) + up = ﬁEt’]TH_l — 7_T) + a(:z:t — i’) =+ Uyt (19)

The BW procedure then amounts to finding the values 7,%,60,¢ and h which are
consistent with the equalities in (18) and (19).
Using the Hamiltonian approach it is easy, but less tedious, to show that 7,z and h

are given by

2(z —2*) — hf'(2) =0 27‘r—|—h<1—§>:0 1-p8)7—f(z)=0  (20)

Details are provided in Appendix A.

4 Linear-Quadratic Approximation of Welfare in a DSGE
Model

The model is the cashless economy as in Batini et al. (2006) with habit in consumption.
Agents (or consumers) of type ¢ maximize the intemporal trade-off between consumption
Cy - taking into account a desire to consume at a level similar to that of last period’s
average consumption Cy_; - and leisure. The latter is accounted for by penalising working
time Nj;.

Unlike Clarida et al. (2000) we do not incorporate a proportional tax (or subsidy) into
the model in order to ensure that the steady state, or natural rate, of output is at the
efficient level®. Instead we use the methodology of the previous section to show how to
obtain a quadratic approximation to the welfare when the natural rate differs from the
efficient rate. This is an issue also addressed by Benigno and Woodford (2004) using the
the methods of Section 2.1.

We can summarize the model in a concise form as:

Household Utility

(Cit = hcCr1)' ™7 KNiltw
1—0 14+ ¢

> A

t=0

Qo = Ey (21)

3see Section 4.1 below
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Household Behaviour The first-order conditions for households are as follows:

B City1 —hoCr\ 7 1
L = 0B |Quen (Cit - hCCt—l> | P (22)
Wi K )
= NZ(Cy — heCi_1)° 23
Pt (1 _ l) Zt( t ct 1) ( )

n
where ()41 is the expected value of the stochastic discount factor on holdings of one-
period bonds, and the gross inflation rate II; is given by

I

II; =
T B

(24)

All consumers can trade in a complete set of state contingent bonds, and therefore engage
in complete risk-sharing, so that (22) represents the Keynes-Ramsey intertemporal first-
order condition for consumption across all consumers, taking habit into account. (23)
equates relative marginal utilities of consumption and leisure to the real wage. W, P
are measures of the nominal wage of the ith agent and of price respectively. (23) also
incorporates market power of individual consumers, who are all distinct from the point of
view of production skills, so that the elasticity of substitution between them corresponds to
an elasticity of demand for their services denoted by 7. Underlying this is an assumption
that output is CES in labour, with its level expressed by aggregating over all labour
inputs.

We make the simplest possible assumption here that there are no lags in wage-setting;
as a consequence there is market-clearing in wages, with all agents setting the same wage
and all working for the same number of hours. Thus (23) holds when i is deleted, so for
this setup there is no need to aggregate Wi, Ny via the elasticity of demand for labour 7.
Firms:

Unlike workers, firms only reset prices in any given period with probability 1 — £. Thus
the optimal price P for any firm that sets its price at ¢ must take into account any future
periods during which the price remains unchanged.*

The first-order condition for profit-maximization for the jth firm over the duration of

the optimal price not being reset takes into account the elasticity of substitution ¢ between

1t is easy to show that if there is planned indexation to the overall price index as well i.e. the future
price at time t + k is given by P,f)(Pt_~_k_1/Pt)7 then all the results presented here are the same when Il
is replaced by II,/II}_,.

12



goods, which provides firms with monopolistic power. It is given by

PE, [Z Qi1 Yirr(§)] =

a=1/0 1/0 Zf Qtt+kLPr kM Cry Ve ()]
k=0

where marginal cost is given by the real product wage MCy = % and the stochastic

discount factor Q¢+ is given by

Ciyk —heCiyr-1,_, B

k
25
Qtirk = B"( C,heCroy Prr (25)
Noting that
Pto —¢
Vi) = () Vi (26)
t+k

and multiplying both sides of (25) by ( ) (Cy — h¢Ci—1)~7 and in addition noting that
Py /P, = I yg... 1141, then it is straightforward to express the solution to this problem

as follows:

Define variables ¢, H; and A; by

Q = P/P (27)
~ BB Hip] = Yi(Cr—heCio1) ™0 (28)
— SB[, Agya] = : YiN? (29)

(1=1/0)(1 = 1/n) A

Then the firms’ staggered price setting can be succinctly described by
Qr = A¢/Hy (30)
with price index inflation given by
L=yt + (1-9Q; ¢ (31)

Note that we have not yet determined the relationship between total output and the
aggregate measure of labour input. However at the firm level we can define it for firm &

as

Yi(k) = AiNi(k) (32)

where A; represents a common technology shock.

13



4.1 Effects of Inflation

Here we discuss the effects of inflation on the dispersion of prices due to firms’ behaviour
discussed above, and the implications for total employment. These dispersion effects will
lead to costs of inflation, as we shall see later.

Woodford (2003) has demonstrated the effect on price dispersion of inflation, and

derived the following relationship for the variance of the log of prices:

Dy =€Dy_q + (Inll;)? (33)

£
1-¢
The impact of price dispersion arises from labour input being the same for each indi-

vidual, but dependent on demand for each good:
B YY) Y P(i)\
Nt_th(])_ Atz }/2 - Atz Pt (34)

Now assume that that InP.(j) is approximately normally distributed as N (u, Dy),

which is a relatively innocuous assumption for & close to 1; by the law of large numbers,

it follows that the overall price index P; is given by
P = SR = E[e(1-9nPi()] = o(1-Onet3(1-0?Dy (35)
Similarly one can obtain an approximate expression for the last term of (34):

N\ —6
Z (Pt(3)> _ ZPtCE[e(—glnPit] _ e(m+§c(1—<)Dte—c/wr%g?Dt _ eéth (36)
P,

From this it follows that

Y 1 v, o1
Nf 2 S5ttt = —G (14 30CDy) (37)
t t

4.2 The Ex Ante Optimal (Ramsey) Problem

As a consequence of the price diversion result above, the problem for a policy maker is
characterised by solving the deterministic ex ante (commitment and Ramsey) problem by

choosing a trajectory for inflation to maximize

Qoziﬁt Yi-2Z)'" & (2>1+¢ <1+;§(1+¢>)Dt>] (38)

l—0o 149

subject to the constraints
_ s 1-¢ _
Zy = hcoCi_q 1=¢1L + (1 -9, QiHy = Ay (39)
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Hy — BB Hipa] = Yi(Yy— Z0)™° (40)

t+1
C K Y, 1+¢ 1
A @EME Al = oy () 0raen) )
Dy = §Dt—1+1§_§(lnnt)2 (42)

We can now write the Lagrangian for the policymaker’s optimal control problem as

follows:

L o= Q0+ B'u(Z—hoVi) + (1= €05 = (1-6)Q{ ™)
t=0

+ A3e(QeHy — Ay) + Ay (Hy — gﬂHtC;th+1 -V, - %))
k (Y; 1+¢ 1

+ Ase(Ay — fﬁﬂfﬂf\tﬂ ~ <At> 1+ §C¢Dt )

+ Aet(Dr —EDi—1 — &(Z”Ht)%] (43)
where we define a = (1 —1/¢)(1 —1/n).

First-order conditions are given by:
@
(¥ = Z0) 7 = rpis (1+ 5C(1+ 6)Dy) = Ahe

¢
B Y (1 L LoD = Ae (Vi — Z) 7 —oVa(Yi— Z) 7)) =0 (44)

o At1+¢
1
~(¥i = 2077 + FArt — Mo Yi(Yi — Zi)7 =0 (45)
_ _ _ 2 Inll
B(1— C)f)\2,t+1ﬂ,§+12 — Me€B(¢ — 1)H§+12Ht+1 - >\5t§5CH§+11At+1 ~ 1 iﬁg A6 t+1 Ht:—l =0
(46)
—Ag(1 = &)(1 — C)Qt_c + A3eHy =0 (47)
A3tQp + Age — €Ay =0 (48)
) VRRED WY 31 1D W) (49)
1 (' ke (Y '
- — Aot — EBA -2 == A5t =
2/€C <At> + X6t — £BX6, 41 20 \ 4, 5t =10 (50)
The zero-inflation equilibrium values are given by
_ Yl—a(l _ hc)—o 5 Y¢+J

N=Q=1 A=H
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1—Bho —
M= MOy M=(1-Oh A=

(1 Zgﬂ + 6 (1-¢)

(52)

V171 ho)T % 9
21-pE) kel

Now that we have the steady-state values of the Lagrange multipliers, we are in a position

X6 = (53)

to apply Theorem 2(a). We first linearize the relationships between the variables, and
then obtain the quadratic approximation of the Lagrangian. We shall leave discussion of

Theorem 2(b) till later.

4.3 Linearization of Dynamics

We linearize about a zero-inflation steady state. Define hy, A, ¢, m as deviations of
Hy, Ay, Qy, Ty from their steady state values. In addition define y, = (Y; = Y)/Y, a; =
(At — A)/A and define 2 = (Z; — Z)/Y .

Linearization of the constraints yields

Hg =M—My Emp=(1-8q (54)

zt41 = hoyy (55)

= BE(C = DHEimisy = B = Y2 (1—he) "y = 75— = =) (56)
Y1+¢>

— BECAE i — BEE A 11 = Ww(yt —ay) (57)

Now subtract (56) from (57). Noting that A = H, and substituting from (54) yields a

Phillips curve relationship of the form:

(1-91 - pBg) a
§

= BEymiq + (Pys + T

h (ye —2t) — (1 + ¢)ar) (58)
C

Note that linearization of the dispersion term around zero inflation is irrelevant, since it

reduces to d; — £dy—1 = 0.

4.4 The Commitment Solution: Quadratification of Lagrangian

At this point we apply the result of Section 2, in order to obtain a quadratic approximation

to the period t value of the Lagrangian. Ignoring the steady state value of the latter, the
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remaining terms are given by:

1 o 1yl K yl+e
—§(Y -2)7° 1Y2U(yt - Zt)2 - iﬁﬁﬁwyg - )\5£¢(1 + ¢)Wy752

yl+é K yl+e
+r(1+ ¢)Wytat + Asa(l + d))QWytat
1
AoV Y = Z)7  y — z)ye + §>\50(U +DYY = 2)77 (g — =)°
26

=5 ((C = DC =22l + (€= DC = DI A+ Os(C = DIT?A + 7=573)
—EmMCATI T = Emphy (¢ — 1) AT
5l =1 - Q™ + ks (59)

After eliminating hy, ¢, ¢¢ using (54), and substituting the steady state values above, we
finally arrive at the correct quadratic approximation to the single-period wutility in the

expected intertemporal utility function (38):

Kk Yite o

2 5
“5g AT m(yt — )"+ ¢+ As(1+ 9))y;

—2(1+ )(a + As (14 @))yrar + 2257 _“hc (v — 20)us
. oo+ _ )2 £¢ N 2
)\5(1_hc)2(yt 1)” + a _5)(1_&)( + (1+ ¢)As)m; (60)

4.5 The Social Planner’s Problem

The Social Planner can be regarded as maximizing (21) viewing all agents as identical,
and so can set Cj;; = Cy, Niy = Ny, subject to the constraint Cy = Y; = A;N;. The social
planner chooses a trajectory for output which satisfies the first-order condition

thb

[Cy — hcCi—1]77 — heB[Cra1 — heCy] ™7 = KA%H’

(61)

The efficient steady-state level of output Y11 = Y; = Y;_1 = Y™, say, is therefore given by

1 — heB)AT?
H(l — hc)”

vy = | (62)

We can now examine the inefficiency of the zero-inflation steady state. From (51) the

zero-inflation steady state output in the Ramsey problem is given by Y = Y% where

_1 _1 1+¢
(YR)#+o = (:(1 f%f)la(ln_);v)(t, (63)
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It is easy to check that this is exactly the same steady-state level as that of the flexi-price
economy where firms set prices optimally at every period. Comparing (62) and (63) we

have the result first obtained by Choudhary and Levine (2005):

Result 2:

The natural level of output, Y%, is below the efficient level, Y*, if and only if

a=(1-7) (1-1) <1-nes (64)

In the case where there is no habit persistence in consumption, he = 0, then (64)
always holds. In this case market power in the output and labour markets captured by
the elasticities n, ¢ respectively drive the natural rate of output below the efficient level.
If habit persistence in consumption is sufficiently high, then (64) does not hold and the
natural rate of output and employment proportional are then too high compared with the
efficient outcome and people are working too much. Is there empirical support that (64)
holds? Terms <1 — %) and (1 — %) are the inverses of mark-ups over marginal costs in
the output and labour markets respectively. A plausible upper bound on these mark-ups
is 20% so o = (1 - %) (1 - %) > # A condition on h¢ for (64) to hold is therefore
hoB < 0.306. Most empirical estimates of habit in a quarterly model are in the range

he = [0.5,0.9] which would see these condition not holding (see, for example, Smets and

Wouters (2003)).

4.6 The Small Distortion Case

The small distortion case assumes that the inefficiency of the zero-inflation steady state
about which we have linearized is approximately efficient. From result 2 this implies that
1—(hc—a is small. We are now in a position to examine the nature of this ‘approximation
to an approximation’ by examining correctly quadratified single-period utility (60). From
(52) we can see that the approximates means that A5 is small. An examination of (60)
reveals that the small distortion case, which would omit all terms involving s, is valid

only if | A\5(1 + ¢) |<< « or, using the definition of A5, only if

| 1— Bhe — o
(1+¢)0_— <<« (65)
(}_Zgﬁ) +¢



Typical estimated parameter values are ¢ = 3 (with this value or higher being confirmed
within other contexts as well), ¢ = 1.3. With h¢ at the mid-point of the range of estimates
at hco = 0.7 this gives the left-hand-side of (65) as 0.22 and the right-hand side as 0.69.

Neglected terms are therefore of the order of one third of those retained.

5 Target Implementability and the Ramsey Inflation Rate

Although the previous section has solved the policymaker’s Ramsey problem, in practice
there is no guarantee that monetary policy will be implemented in this fashion. Firstly,
the usual instrument of monetary policy is the interest rate, which is under the control of
the Central Bank. Secondly, although an increasing number of central banks have become
more independent, transparent and accountable, none satisfies all the criteria for these
attributes. As a consequence there can be no certainty that central banks will adopt a
fully optimal precommitment policy. What is more likely is that any precommitment is
likely to be to some simple rule, such as feedback on inflation and the output gap. This
is much more easily monitored than the fully optimal rule, and simulations by numerous
authors have shown that the welfare losses from using precommitted simple rules are
considerably less than those from optimal rules under no commitment.

There is one aspect of fully optimal rules that appears not to be in dispute. Since the
steady state setting of the optimal rule is potentially easily monitored, there is no reason
why the central bank cannot commit to it, so the only issue with regard to precommitment
is its stabilization aspect. It is therefore at this point that that use of the quadratic
approximation to utility is appropriate.

Svensson (2005) suggests that central banks engage in ‘forecast targeting’, so that in
effect they set targets for a set of variables of which inflation is but one. In the context of
our quadratic approximations we can interpret these targets as ‘bliss points’, provided that
the period ¢t quadratic approximation achieves a maximum at these. This is also related to
operational transparency of central banks, ‘defined as the extent to which the monetary
control errors are disclosed to the private sector’ Geraats (2002). Faust and Svensson
(2001) show that social welfare is improved with greater operational transparency provided
that the output target is the natural rate, and not an ‘ambitious’ one.

Definition: A period-t welfare function is Target-Implementable if it is a maximum
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at its ‘bliss points’.

This leads to the following, which follows directly from Result 1:
Result 2: The Ramsey solution is Target-Implementable if the quadratic approxima-
tion to the Lagrangian is negative semi-definite’.

We now turn to the issue of whether the zero-inflation steady-state of the system does
indeed constitute a maximum to the Ramsey problem. In the absence of habit, hc = 0,

it turns out that the sufficient condition of Result 1 is indeed satisfied; after some further

effort (and subtracting an appropriate term in a?), (60) further reduces to
—KY¢+1 1 + Qb Cé‘
—RYTT 1— 2 2 2
2aA1+¢(¢+Ua+ a) |(y; a+¢at) +(1—§)(1—ﬁ§)(0+¢)ﬂt (66)

This is clearly negative definite, so that the zero-inflation equilibrium is indeed an optimum
in the absence of habit.

From (66) we note that the stochastic output target implied by this expression is %at,
as one would expect from first principles. We also note that this is a very similar expression
to that derived by Benigno and Woodford (2004), although their setup is slightly different;
it is easiest to think of their model as each firm only employing one type of labour, so
that each agent supplies a different quantity of labour. Price dispersion then plays a
role as a consequence of the policymaker maximizing over the average utility function.
A comparison of their efforts to obtain a quadratic approximation shows that it is much
more laborious than the Lagrangian method adopted here.

Now suppose that hco > 0 and that (64) is not satisfied (as would seem plausible).
So far we have not yet demonstrated whether the natural rate as calculated, with zero
inflation, is actually the steady state for the Ramsey problem. To check this, we need
either to solve the corresponding Riccati equation or to check the sufficient conditions of
Target-Implementability. If the sufficient conditions of the latter are not satisfied, then
checking the steady state Riccati matrix will not yield analytic results. This is because
the equation governing it is highly nonlinear, and in addition the matrix is of dimension
2, so analytic solutions will not in general be found.

We therefore focus on Target-Implementability, and determine what conditions on the

underlying parameters are required for (60) to be negative semi-definite. In order to reduce

5This means that the period-t utility in the LQ-approximation can be written as a weighted sum of

squares of linear terms, with all weights negative.
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the algebraic burden, we make the relatively innocuous approximation § = 1, since most
quarterly models would assume a value of the order of 0.99. Before stating the result, we
recall that the solution for the steady state level of output provided in Section 3 satisfies

the first-order conditions when inflation is zero.

Proposition
A sufficient condition for the Ramsey problem with habit in consumption to have a non-
inflationary steady state with a natural rate of output (63) and to be Target-Implementable
is that (i) o > 1 (ii) ¢po? > ¢ + 0.
Proof: See Appendix.

Using typical estimated parameter values discussed above both of these sufficient con-

ditions are easily satisfied.

6 Conclusions

We introduced LQ approximations by expanding the welfare function for the Ramsey
problem about the steady state zero-inflation efficient level. We remarked that lineariza-
tion of the dynamics is only valid about this steady state if there is a tax/subsidy that
ensures that the steady state of the Ramsey problem is itself efficient.

We have shown that a procedure proposed by Benigno and Woodford (2003) for large
underlying distortions in the economy can be more easily implemented through a second-
order approximation of the Lagrangian used to compute the ex ante optimal policy with
commitment (the Ramsey problem). We have also examined in detail the LQ approxima-
tion of a particular Dynamic Stochastic General Equilibrium (DSGE) model, pointing out
the necessary and sufficient conditions for a maximum. We show the limitations of the
‘small distortions’ approximation to an approximation both generally and in the context
of this particular model.

We then defined the notion of Target-Implementability, which we argue is desirable for
the transparency of stabilization policy in that the objectives in the loss function can be
formulated in terms of bliss points. We assessed Target-Implementability for the particular
case of habit inducing excessive labour input compared with the efficient level. We showed

that the condition for both Target-Implementability and a zero inflation steady state to
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the Ramsey problem is that the quadratic approximation of the single-period utility about
such a steady state is negative semi-definite. We obtain a sufficient condition for negative

semi-definiteness and we find it indeed is satisfied for all plausible parameter values.

A Example 2: Equivalence of the Benigno-Woodford and

Hamiltonian Procedures

A.1 The Benigno-Woodford Procedure

To find (7, Z) and h first write
(i — "2 +72 = (@ —Z+2—2°)°+ (m —7+7)°
= (z:—2)° 42z — 3)(& —2%) + (7 — 7)2 + 27 (7 — 7)
+ constant terms (A.1)

Then (15) holds iff at each time t

O(z; — )2 + o(m—7) = (x—2)2+ 2 — 2)(T — 2*) + (7 — 7)° + 27 (7, — 7)

+ h<§(7rt—7_r)—(7rt—7_r)—a(xt—a_c)—i—b(:vt—a_c)Q) (AQ)

Equating quadratic and linear terms we arrive at

0 = 1+hd (A.3)
o = 1 (A.4)
2z —2")—ha = 0 (A.5)
27r+h<f—1> =0 (A.6)
Then together with the condition for (7, Z) to be a steady state:
(B=17—f(z)=0 (A7)
we have 5 equations to solve to 8, ¢, h, @ and Z. The solution is
2a* — 7
ho o= —(xax)<0ifx*>£ (A.8)
_ B\ h . o =
To= 1_X §>01ffﬁ>)\andm > (A.9)
0 = 1+hb<lifa* >z (A.10)
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where Z is the solution to

(B-1) <1—§> MJJ(@) =0 (A.11)

If the policymaker adopts the same discount factor as the private sector, then A = j3
and m = 0; that is the steady state is the same deterministic non-inflationary steady
state x, where f(x) = 0, we chose for (17). Let us assume that indeed A\ = 3. Then
comparing the BW procedure with the standard linear-quadratic approximation discussed
at the beginning of this section, we see that the later is only a good approximation if
(z* — Z) or b are small. In the former case this implies that the output target is close to
the non-inflationary stated state of x4, whilst in the latter case the Phillips curve is nearly

linear. If neither of these conditions apply then the BW procedure must be used.

A.2 The Hamiltonian Procedure

We now show that the LQ procedure of BW is equivalent to a rather simpler one. Consider

the deterministic problem to choose at ¢ = 0 a trajectory {m;} so as to minimize

> N [(w — 2%)? + 7] (A.12)
t=0
subject to
= B + f(zy) (A.13)

To solve this problem we minimize a Lagrangian
oo
L= N{(z— 2"+ a7 + pu(m — s — f(ar))] (A.14)
t=0

with respect to {m:}, {z:} and the Lagrangian multiplier {u;}. This is the deterministic
component of our original non-linear optimization problem available to the policymaker if

she can commit. The first-order conditions for this problem are

2y — ") = mf'(z) = 0 (A.15)
2m + py — gut—l =0 (A.16)
T — By — fle) = 0 (A.17)
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This system has a steady state (x, 7, 1) at

20 —2*) —pf'(z) = 0 (A.18)
27 + 1 (1 — §> =0 (A.19)
Q=B —flz) = 0 (A.20)

Comparing (A.18) to (A.20) with (A.5) to (A.7) and noting that a = f'(Z) in (A.5) it
is immediately apparent that (x,7,u) = (Z,7, h) found in the BW procedure. Then the
modified loss function (?7?) is a second-order Taylor series approximation to the Lagrangian
(A.14) evaluated at the steady state of the optimal commitment solution p; = p in the

vicinity of (z, 7).

B Proof of Proposition

Firstly, we require the coefficient of 77 inside the brackets of (60), a + (1 + ¢))s, to be
positive. A little calculation shows that (with o > 1 —h¢) this term is greater than 1 —h¢
provided that o > 1. Ignoring the shock term a;, if we now consider the remaining terms as
a quadratic function of y; and y; — z;, then this quadratic will always be positive provided

that (a) &+ (14 ¢)As > 0, (b) =%=(1 — 24ED) > 0 and (c) ¢lor+ (1+ ¢)As) 5= (1 —

>\5(1+a)) _Mo?
1—-h¢ (1—=he

7 > 0. (a) has already been shown, and it is easy to show that the left
hand side of (b) is greater than o/(1 — h¢)?. After some manipulation we can show that

after multiplying (c) through by (1 — h¢)? the left hand side becomes

(¢° — ¢ —0)(1 — he)? +20(1 — he)(0¢* + ¢+ 0) + (¢0° — ¢ — 0)a

> (6 + 0621 — he)? + a(l — ho)(06? + 6+ 0) + (607 — 6 — a)a?  (B.21)
where the inequality holds when a > 1 —h¢. Thus the sufficient condition ¢o? —¢—o > 0
is likely to be considerably more stringent a condition than is required.
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