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Abstract

In the literature, there are not satisfactory methods for measuring and present-
ing the performance of confidence regions. In this paper, techniques for measuring
effectiveness of confidence regions and for the graphical display of simulation evi-
dence concerning the coverage and effectiveness of confidence regions are developed
and illustrated. Three types of figures are discussed: called coverage plots, cover=
age discrepancy plots, and coverage effectiveness curves, that permits to show the
“true” effectiveness, rather than a spurious nominal effectiveness. We demonstrate
that when simulations are run to compute the coverage for only one confidence
level, which is done for classical presentations in tables, all the information useful
for building the coverage plot is present. Thus, there is absolutely no loss of comput-
ing time by using this method. These figures are used to illustrate the finite sample
properties of long range dependence confidence regions. Particularly, we present
and comment classical confidence intervals and confidence intervals based on in-
verting bootstrap tests for the long range dependence parameter in the ARFIMA
models. Monte Carlo results on these confidence intervals for various situations
are also presented. We show that classical confidence intervals have very poor
performances, even the percentile-t interval, whereas confidence intervals based on
inverting bootstrap tests have quite satisfactory performance. These intervals are
then applied on the S&P500 index to illustrate a realistic case.
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1 Introduction

To obtain evidence on the finite-sample properties of procedures giving confidence re-
gions, econometricians generally resort to Monte Carlo methods. Unfortunately, in the
literature there are not satisfactory methods for measuring and presenting the perfor-
mance of confidence regions. In this paper, techniques for measuring the effectiveness of
confidence regions and for the graphical display of simulation evidences as regards the
coverage probability and effectiveness of confidence regions are developed and illustrated.
These graphs convey much information, in a more easily assimilated form, than tables,
PP plots, and Q@) plots can do.

The conventional way to report the results of a Monte Carlo experiment is to tabulate
the proportion of confidence regions that contain the true value of the “unknown” param-
eter for a confidence level of 90%, 95% and 99%. This approach has two disadvantages.
First, the tables provide information about only a few points on the finite-sample distri-
bution of the estimator, this can be an important limitation. Second, the tables require
some effort to interpret, and they generally do not make it easy to see how changes in the
sample size, the number of degrees of freedom and other factors can affect confidence re-
gion coverage probability. In addition to tabular presentation, PP plots, and Q@) plots are
also discussed here, and their poor capacity to provide readable and informative results
is established. In this paper, we develop and advocate graphical methods that provide
more information, and yield graphs that are easy to interpret. Dealing with the
implementation, we demonstrate that when simulations are run to compute the coverage
for only one confidence level, what is made for classical presentations in tables, all the
information useful for building the coverage plot is present. Thus, there is absolutely no
loss of computing time by using this method.

It is often desirable to compare the effectiveness of alternative confidence regions, but
this can be difficult to do if all the regions do not have the correct coverage probability.
If the values of effectiveness criteria are plotted against (nominal) confidence level, the
result will not be very useful, since a method can have a good effectiveness curve due to
a coverage distortion and not because of a real effectiveness. Unfortunately, this is what
is often implicitly done when region effectiveness is reported in a table. For solving this
problem, we propose a method that plots the effectiveness criterion against the coverage
probability, i.e. the true confidence level; and then, the various methods can be compared.
The choice of effectiveness criteria are also discussed.

In order to illustrate and motivate coverage plots and coverage effectiveness curves,
these graphs are used to present the results of a study of the properties of confidence
regions for long range dependence (denoted LRD). Various confidence regions based on
Robinson’s estimator (1995) are compared: the confidence region using the asymptotic
distribution of the estimator, the percentile and the percentile-t confidence regions using
the bootstrapped distribution, and the confidence region based on inverting bootstrapped
Robinson’s test (1995). Double bootstrap versions of the procedures also exist.

In Section 2, we present the graphs that we propose for experiments dealing with
confidence region coverage probability. The use of coverage-effectiveness curves is also
presented and discussed. Then, in Section 3, classical and inverting tests confidence
intervals are applied on the estimation of the LRD parameter in the ARFIMA models. In
Section 4, a number of Monte Carlo results are presented on the various LRD confidence
intervals to illustrate the use of coverage plots, and the use of coverage-effectiveness
curves. In Section 5, the long memory confidence intervals are applied to the S&P500



index. Section |6 concludes.

2 Graphical methods

2.1 The position of the problem

Let 6 be the parameter vector of interest:
0 €O cCR".
For instance, let us consider the following classical regression model:

Yy = 20 +ey t=1,...,T, (1)
e~ i.i.d.NO0,c?),

where y s the vector of the dependent variable, z is a vector of an explanatory
variable (it is assumed to be stationary), 0 is a scalar of unknown parameter, and
e the unobserved vector of error terms (assumed to be independent of z).

Let 7 be the statistic used for constructing the confidence region:
T = T1x(0),
where X is the observed finite sample. 7 can also be a vector.

In our example, X = (yz), and T can be an estimator of 6 and an estimator of the
standard error of the estimator of : T = (0,52). If the OLS estimator is used,

6
_ (Zy &2 . 2y e
T = (E’ ~~ |, consequently, T depends on X, and thus on 0 since L = 0 + Z=.

Here, T depends indirectly on 6, but it can also depend directly on 0, for example
in the case of a confidence region based on inverting tests.

The cumulative distribution function (CDF) of 7 is denoted Fp. The distribution of 7
has to depend on 6 for being able to estimate it.

In our example, T ~ (N (9, %) ,%X%A), and thus, depends clearly on 0.
Let R be a confidence region for # with confidence level * 1 — o

R=R (T, {F9_1}9€@7 1-— Oé) .

However, there is an infinity of possibilities giving such a confidence region. Each of
the possibilities corresponds to a different method. When the notation R is used in the
following, we mean one of these methods.

Here are some examples of confidence regions for 0:

R, = [é—i—ta/g&g,é—l-tl_ap&g],
Ry = (—00,0+t1_460),
Ry = (—00,0+tgs5_a/200] U0 + to.540/200, +00).

'The confidence level for R is the probability of observing the true value of the parameter vector in
the random region R, according some distribution F'. See Davidson and MacKinnon (1993), chapter 5,
for more explanations.



About {Fg_l}ggg, we do not need the whole CDF of T here, but only of its studentised
form, i.e. the t(T—1) distribution. Consequently, let us consider Fy = F = t(T—1).
Since the studentised statistic is perfectly pivotal * in our example, F does not
depend on 0. With these notations, Ry = [0 + F~'(a/2)69,0 + F~1(1 — a/2)6y].
In general, the statistic of interest is not pivotal; this case will be treated in the
following.

If 6y is the true value of the parameter vector 6 that generates the random sample X,
then
vgo € @,Va € [0, 1], P (90 € R(T(Qo), {Fe_l}ge@, 1— CY)) =1-cq.

The graph of {(1 —a, P(6p € R)); € [0, 1]} is equal to the 45 degrees line. However,
the family {Fp}yco is not known in general.

Let our example be modified now by taking z: = yr—1. Since z is assumed stationary,
0 has to be lower than one in absolute value. In this situation, T does not follow a
t distribution, but a more complicated distribution that depends on 6.

Therefore, the family {Fy}gco has to be estimated and we denote its estimation by
{Fg}ge@ F, can be the asymptotic limit of { Fy }peo as T — o0, or it can be a distribution
derived by bootstrapping, or it can also be some other approximations of Fj (coming from
a first order Taylor expansion, for instance).

In our example, the asymptotic distribution of T is the t(T — 1) distribution. This
distribution is chosen for the estimation of Fy for all 6 € ©.

Let us denote K R
R=R (7’(00), {Fe_l}geg, 1— a) )

The difference between R and R can also come from an approximation in the analytical
calculus of R. Since Fjy is not exact, we have in general

P(Qoeff)?&l—&,
but we wish R such that R
Pye R)~1—a,
i.e. that the graph of
{(1 —a,P( € R);a € [0, 1]}
is near the 45 degrees line.

Figurelll presents the graph of P(6y € R) against 1 —a for the asymptotic confidence
interval for the long memory parameter in the ARFIMA(0,d,0) model when the long
memory parameter d = —0.4 and the sample size T = 256 (see section ).

P(6y € R) is the coverage probability, or just the coverage, of the random region R. It is
the true probability that the region will include, or cover, the true value of the parameter
vector.

2A statistic is pivotal if it does not depend on the parameters of the model under the null.



Figure 1: Case of ARFIMA(0,d,0) process
d=—-04 T =256
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2.2 The Monte Carlo procedure

Consider a Monte Carlo experiment in which S realisations of the interest statistic 7(0)
are generated using a data generating process (DGP) that is a special case of the model.
We may denote these simulated values by 75(0),s € {1,...,5}.

P («90 € R(15(6o), {Fa_l}ge@, 1— oz)) can be computed using the Monte Carlo experi-
ment:

P (eo € R(r.(60), {F; Yoco, 1 — @)) - %in (90 € R(ru(00), {F;  Yoco, 1 — @)

for S very large. I( . ) denoted an indicator function that takes the value 1 if its argument
is true an 0 otherwise.
Set 1 — a, the value of 1 — « such that

0, € OR (73(9@, (E Y geo 1 — a)

where 0 represents the border of a set of values.

For example:



o)

1 — a, can be called critical coverage. 1 — a;, can be multiple, but it is easy to assume
that it is unique by assuming the natural hypothesis that R (and 1:2) is increasing with
respect to 1 — « in the sense of inclusion. This hypothesis is obtained if R is optimised
using the maximum likelihood principle, for instance, but not only.

It should be noted that

(Lﬂ%gl—a)¢é(%GQ@J%%Uyﬂ%&l—a»,
thus,

S
p (90 S R(Ts(eo), {Fe_l}gee, 1-— Oé)) = %ZH(l — Q5 € [O, 1-— Oé])

In practice, we just count the proportion of 1 — «a, smaller or equal to 1 — a. In fact, it
is the empirical cumulative distribution function of the random variable:

1- Og = 1— Qg (TSJ {F51}9€®7R; 00) .

All the graphs we discuss are based on the empirical cumulative distribution function
of the confidence level 1—a, of R(7,, {F; '} € ©, .) if the true value 6, of the parameter
vector is just over OR (the border of R).

Let Fjy denotes the finite-sample distribution of 1 — a such that the coverage proba-
bility is equal to the confidence level, i.e.

Fo(1— ) = P (0o € R(7(60), {F; '}oco,1 — ) =1 —au.
Let F' denote the generally unknown (true) finite-sample distribution of 1 — ay, i.e.
Fl—a) = Pl—a;<1—aq),
= P (00 € R(7(80). {F; " Joeo, 1~ )
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and F, its Monte Carlo computation:

~

Fl—a) = P (90 € R((0y), {5 Yoeo, 1 — a) ,

I(1—as <1—a).

I
| =
]

U0
Il

1

At any point x; in the (0, 1) interval, it is defined by

s
- 1
Fla) =5 > I —a, < x).
5=1
See appendix A for the choice of the z;’s.

2.3 Coverage Plots

The simplest graph that we will discuss is a plot of F (x;) against ;. We shall refer to such
a graph as a coverage plot since it presents the (true) coverage probability against the
(nominal) confidence level. If F' is correct, i.e. F' = Fj, each of the 1 — « is distributed
as an independent uniform random variable U(0,1). Therefore, when F (x;) is plotted
against x;, the resulting graph should be close to the 45 degrees line. Figure (1] presents
in fact a coverage plot.

On the one hand, coverage plots make it very easy to distinguish confidence regions
that perform badly. Moreover, because they show how a confidence region performs for
all confidence levels, coverage plots are particularly useful for regions that both over-
cover and under-cover the true value of the parameter. The corresponding potential
disadvantage of coverage plots is that they can take up a lot of space on the page: For
plotting the size against the level for a region, a two dimensional graph is required,
whereas the table need only one line or column (one dimension). Nevertheless, plots for
several regions can be put into the same graph, whereas a table need also two dimensions.
Since, in most cases, we are primarily interested in reasonably high confidence levels, it
may make sense to truncate the plot to some values of x more than zero, for instance,
x = 0.75. It should be clear why [coverage plots| (and also [coverage discrepancy plots
defined in subsection [2.4) are often much more informative than tables of coverages at
conventional confidence levels such as 0.95. First, why to choose the 0.95 level 7 There
is nothing special about this level: some investigators may prefer to use the 0.99 level or
even the 0.999 level, while predescriptions are often performed at level of 0.75 or even
higher. If the curves are plotted for various sample sizes or various parameter values,
these plots provide a great deal of information about how the sample size or a parameter
value affects the performances of confidences intervals.

Figure [2 presents the coverage plot for confidence intervals for the long memory
parameter in the ARFIMA(0,d,0) model when the long memory parameter d = —0.4
and the sample size T = 256 (see section /).

On the other hand, coverage plots do not make it easy to see patterns in the behaviour
of regions that perform satisfactory: coverage plots for all confidence regions that behave
approximately well will look roughly like the 45 degrees lines. These plots are therefore
not very useful for distinguishing among such confidence regions. In this case, we propose



Figure 2: Coverages plots in the case of ARFIMA(0,d,0) process
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the coverage discrepancy plots in subsection 2.4. Obviously, since they use one dimension
for confidence level, coverage plots (and coverage discrepancy plots) cannot use that
dimension to represent something else, such as the value of a parameter or the sample
size. However, the second dimension of the plots can be used either for plotting the curves
for other confidence regions, or for plotting the curves for the same confidence region but
for other parameter values or sample sizes.

It should be noted that for obtaining the whole plot (for all the confidence levels),
only one simulation experiment “ is necessary. For obtaining the coverage for only one
confidence level, what is made for classical presentations in tables, a full simulation ex-
periment has to be run, as for the coverage plot ! And for providing coverages for three
confidence levels: 90%, 95%, and 99% in a table, what is done in most of the paper is to
run three experiments ! Thus, there is absolutely no loss of computing time by us-
ing coverage plots. Moreover, some methods are very computational time consuming,
for instance, the double bootstrap-t based on the Robinson’s estimator (1995) confidence

3 We call one experiment the set of S simulated series following one same and unique DGP and
leading to only one computed result.



interval presented in subsection 3.4: first, for estimating the long memory parameter by
Robinson’s method (1995)), an iterative optimising algorithm is necessary. Second, for
estimating its standard deviation, a bootstrap loop is used in which a Robinson’s estima-
tion is run at each bootstrap iteration (this standard deviation is used for studentising
the estimator). And third, for computing the distribution function of the studentised
estimator, another bootstrap loop is run, in which a bootstrap loop for computing the
standard deviation is run at each step. In this circumstance, a simulation method for
providing performances that is not too much time consuming is very useful.

2.4 Coverage Discrepancy Plots

For dealing with confidence regions that are well-behaved, it is much more revealing to
graph F (x;) —x; against x;. We shall refer to such a graph as a coverage discrepancy plot.
However, the information provided by the graph is partly spurious, reflecting experimental
randomness. It is therefore natural to smooth the plots. In Davidson and MacKinnon
(1998), they discuss semi-parametric methods for smoothing similar plots. Moreover,
because there is no natural scale for the vertical axis, coverage discrepancy plots can be
harder to interpret than coverage.

Figure 3 presents the same results than figure 2 using coverage discrepancy plot.

Figure 3: Coverages discrepancy plots in the case of ARFIMA(0,d,0) process
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2.5 Coverage-Effectiveness Curves

Coverage plots and Coverage discrepancy plots are very useful for dealing with coverage
probability, but they are not useful at all for dealing with confidence region effectiveness.



We will discuss graphical methods for comparing the effectiveness of competing regions
using coverage-effectiveness curves. For an experiment (in which a given DGP is used),
these curves can be constructed using the empirical cumulative distribution function of
the critical coverage and the chosen effectiveness criterion. Effectiveness criteria will be
discussed in the next subsection.

It is often desirable to compare the effectiveness of alternative confidence regions, but
this can be difficult to do if all the regions do not have the correct coverage probability.
If the values of an leffectiveness criterionl are plotted against (nominal) confidence level,
the result will not be very useful, since claiming that a method is more satisfactory than
another one on the basis of an effectiveness criterion has no sense if the methods suffer
from different coverage distortions: for example, a criterion providing good results can
be spurious due to a default of coverage *. Unfortunately, this is what is often implicitly
done when region effectiveness is reported in a table.

In order to plot effectiveness against the (true) coverage probability, an experiment has
to be performed, preferably using the same sequence of random numbers for each region,
to avoid experimental errors. Let the points on the approximate empirical cumulative
distribution function be denoted F (x), and let the estimated effectiveness for a confidence
level of 2 = 1 — o be denoted E (x). They have to be evaluated at a pre-chosen set of
points {x;},—1.n. As before, F'(x) is the probability of getting a critical coverage less
than z. Similarly, E(x) is the effectiveness for a confidence level of z. Tracing the locus of
points (F(z), E(x)) as x varies from 0 to 1 thus generates a coverage-effectiveness curve
on a correct coverage-adjusted basis. Plotting the points (F(z;), E(x;)), does exactly
the same thing, except for experimental error due to the randomness of the Monte Carlo
simulations (however, the experimental error converges to zero when the number of Monte
Carlo replications goes to infinite). More precisely, it presents the effectiveness criterion
against the coverage probability, i.e. the true confidence level; and then, the various
methods can be compared.

Similarly to the coverage, calculating E(xz;) for a set {z;}; is done from the same
simulated series, and consequently, it is not necessary to run an additional experiment
for each confidence level x;, and thus, there is no loss of computing time. Moreover, in
practice, the calculation for a set {z;}; is often straightforward by matrix computation:
for instance, for the asymptotic, percentile and percentile-t confidence intervals presented
in Section 3, the calculus is written with only two lines in the Gauss program, and it
takes an almost nil computing time compared to the one for the bootstrap loop.

There is one practical problem with drawing coverage-effectiveness curves by plotting
E(x;) against F(z;). For regions that under- or over-cover severely, there may be a region
of the coverage-effectiveness curve that is left out by a choice of values of x;. For solving
this problem, a very large number of Monte Carlo replications should have to be chosen,
but it is not necessarily possible in practice because of the computing time. Nevertheless,
if a region under- or over-covers severely, it cannot be chosen for practical uses, and thus,
it is not useful to compute its “true” effectiveness by coverage-effectiveness curves.

4 For example, if the effectiveness criterion for a confidence interval is the length of the interval, the
length has to be as small as possible. However, if there is an error on the coverage of the confidence
interval such that it is lower than the confidence level, the length of the confidence interval associated
with this level corresponds to a lower coverage and therefore will be smaller than if there is no error since
the length is decreasing with the confidence level. The length being smaller, the method seems having
good performances, but it is spurious.
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2.6 How to choose the effectiveness criterion?

The effectiveness criterion depends on the mathematical problematics under considera-
tion, but also on the economic problematics.

Classically, a confidence region for a parameter 6 is based on a studentised estima-
tor (say 0) statistic that follows an unimodal distribution as a Gaussian or a Student
distribution with mean 6. Let Ry and Ry be two (1 — «)-confidence regions:

R, = [é—cl,é—i-cl},
Ry, = (—0079—02} U [9—1—02,—1—00).

Both the intervals are correct, by definition, if their coverages are equal to 1 — «, but Rs
does not contain likely values for 6. More rigorously, the probability that an elementary
interval dx in Ry contains the true value of € is larger than if dz is in Ry. In fact, the
statistic distribution can be used as a likelihood function, and optimising the interval
according to this likelihood function is equivalent to minimising the length of the interval
(the proof is trivial by contradiction). The length is measured using the same (mathe-
matical) measure than the one from which the density function of the statistic is derived,
i.e. Borel or Lebesgue measure in general for the continuous case. Dirac measure can
be used for discrete parameters. More generally, even when the confidence region is not
directly based on a statistic distribution, as for inverting tests based confidence regions,
if two confidence regions have the same confidence level but two different lengths, the one
that has the small length must has the largest probability of presence in dx for € in an
elementary interval dx.

The likelihood of the values for # is not necessarily the only purpose when a confidence
region is built. For instance, the confidence intervals based on a Wald statistic are not
invariant under a nonlinear reparametrisation (see Davidson and MacKinnon (2001)).
Thus, the confidence interval depends on how the model is written. Consequently, in
certain situations, it can be preferable to use invariant confidence regions as the ones
based on inverting LM or LR tests (see Davidson and MacKinnon (2001)).

Finally, the choice of the effectiveness criterion can also depend on the economic
purpose. Let us consider the following example coming from Siani and Moatti (2003) in
the context of health economic evaluations.

In cost-effectiveness analyses, which compare one or more treatment(s) with a stan-
dard treatment on the two-fold basis of cost and medical effects, health economists
often use the incremental cost-effectiveness ratio (ICER) as a summary measure.
The ICER statistic, in which a new therapy 11 is compared with a standard therapy
To, is defined by:

HE1 — HEO HAE

R— Uct — pHco - BAC

)

where (1 s the true mean value of (subscripts) costs (C) and effects (E) for treat-
ments number 1 and number 0 ®. The ICER can be estimated (among other possi-
bilities) as follows: on the basis of data collected from two groups of patients, each
undergoing one of the forms of therapy (group number 1, consisting of individuals

5 This ICER can be interpreted as the additional resources necessary to obtain a gain of one additional
unit in health effects due to the use of treatment T} rather than treatment Tj.

11



that underwent treatment Th and group number 0, consisting of individuals that

underwent treatment Ty ):
. T -G _AC
 E1-Ey AE’
where C1, Cy are the sample mean of the costs and E1, Eq in the two treatments
arms are the sample mean of effects. The observed difference between the mean
costs is denoted AC, respectively the observed difference between the mean effects

is denoted AFE.
The cost-effectiveness (CE) plane (see Black (1990)) presented in Figure|/, is often

used to describe the decision-making rules which follow from the results of the CEA.
The wvertical, respectively horizontal, axis corresponds to AC, respectively AE.

Figure 4: The cost-effectiveness plane
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adapted from Black (1990)

The new treatment T is represented by the point T in Figure 4| and the standard
treatment Ty is represented by the point C'. It should be noted that the slope of the
semi-straight line (CT') corresponds to the value ofR O In order to decide whether
to adopt treatment T1 rather than treatment Ty, it is necessary to introduce a ceiling
ratio, denoted Rc, corresponding to some maximum value of the ICER that people
are prepared to pay to achieve this additional effectiveness ”. Thus, in quadrants

6 In QI, the steeper this slope is, the greater the cost of an additional unit of effect and the less
worthwhile the new therapy will be in comparison with the standard therapy.
7 This ceiling ratio is assumed to be determined in an exogenous way.
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QI and QII, if the ICER is lower than the ceiling ratio, then treatment Ty should be
adopted, and conversely, if the ICER is greater than the ceiling ratio, then treatment
Ty should be kept. In quadrants QIII and QIV, the opposite reasoning holds. In
fact, what is really determinant at the decision-making level, is whether the point
(AE,AC) is over or under the straight line associated with Rc.

A confidence interval should naturally have to be built from the distribution of R. It
should be noted that a confidence interval for R will be represented by a (angular)
sector around R on the CE plane. Nevertheless, this kind of confidence intervals is
very biased or has no mathematical sense when uag is statistically close to zero.
However, in this latter case, there is absolutely no problem for taking decision-
making on the basis of the (AE, AC) pair because the true question at the decision-
making level is whether the confidence sector is under or above the straight line
corresponding to the ceiling ratio on the CE plane (see Siani and Moatti (2005)
and Siani and de Peretti (2007)). Fieller’s method (195])) allows to solve perfectly
this problem because it is directly based on the distribution of (AE,AC): Fieller’s
method can structurally provide confidence region of the form | —oo, RV]U[RY, +o00]
that simply corresponds to a sector (also around R ) containing the vertical axis and
it permits to take decision. In this context, the length of the confidence region is not
relevant for measuring the performances of confidence regions since regions having
the form of the complement of an interval will have infinite length whereas they are
quite efficient for decision-making. Only, the angle of the confidence sector is really
informative since representing the uncertainty of the estimation (smaller the angle
is, smaller the uncertainty will be, better the confidence region will be) .

In addition, the angle criterion is not disconnected from the likelihood principle:
smaller the angle is, smaller the sector will be (in the sense of set inclusion, since
the surface is infinite), and more the region will be likely with respect to the bivariate

distribution of (AE, AC).

For concluding, the choice of the effectiveness criterion can be very different depending
on the situation (mathematical or economical problematics).

2.7 How to chose the “best” method ?

The coverage plots and the effectiveness curves are very useful for choosing among meth-
ods that have reasonable coverage distortions: they permit to make arbitrage between
the coverage distortion and the true effectiveness for each methods and then to chose the
most appropriate. There is no criterion that permits to select the “best” method from
the combination of both the whole coverage and the whole effectiveness curves. However,
the following rule can be used:

1. First, select the methods that have not their coverage plots too far from the 45°
degree line. The coverage is the most important feature, since if the coverage error
is too large, the method is false.

2. Among the methods selected in the first step, select the methods that have the
best effectiveness curves. A large gain in the effectiveness can compensate the a
small loss in the coverage. This largeness depends on the situation and on the
decision-maker.

8 The one-dimensional ICER confidence region is only a nonlinear transformation of the underlying
two dimensional confidence sector (that is really of interest), and it is presented only for practical reason
of presentation for decision makers.

13



2.8 Other common types of plots

In this subsection, two types of plots are presented and commented: the PP plots and
the QQ plots. However, we conclude that both these plots give too poor information for
analysing satisfactory the performances of confidence regions.

It would be more conventional to graph the CDF of the statistic 7 instead of the
CDF of its critical coverage 1 — as. The former can be graphed against the CDF of a
hypothesised distribution, for example, the one used for the building of the confidence
region. This graph would be what is often called a PP plot; see Wild and Gnanadesikan
(1968). Note that the [coverage plots are PP plots of critical coverage.

Another common type of plot is a Q@) plot, in which the quantiles of 7 are plotted
against the quantiles of its hypothesised distribution. If the distribution of 7 is closed to
the hypothesised one, the plot will be close to the 45° line. This approach, which has been
used by Chesher and Spady (1991)), among others, can yield useful information, because
it shows the distortion between the hypothesised distribution and the true distribution.
However, QQ plots have also disadvantages. One serious problem is that QQ plots have
no natural scale for the axes. Thus, if the hypothesised distribution changes, so will
that scale. This makes it difficult to plot on the same axes statistics that have different
distributions. Moreover, although the Q@ plots can certainly make clear that a confidence
region does not work perfectly, these plots provide much less useful information than
coverage plots. They also take up much more space than do coverage plots| restricted
to [0.75,1] x [0.75,1]. It is extremely difficult, on the basis of a Q@ plot, to see how
the performance of a confidence region changes with a parameter or the sample size,
something that is immediately obvious from the coverage plots and even from the coverage
discrepancy plots. More details about criticisms of these plots can be found in Davidson
and MacKinnon (1998)) Section 2 in the context of test statistics.

In our view, however, there are two major problems with the use of PP plots and Q@
plots. The first problem is that it is assumed that the confidence region is built from a
hypothesised distribution of a statistic. This is not the case, for example, for confidence
regions based on inverting tests (see subsection [3.5). Consequently, how to build the PP
plots or the QQ plots for these regions? This criticism holds also in the context of tests
since the acceptance region for a hypothesis test can be based on inverting confidence
regions.

The second problem, that holds for all confidence regions and hypothesis tests, is that
a procedure for providing a confidence region (for a parameter vector) or an acceptance
region (for a test hypothesis) is not totally defined by the underlying statistic and its
hypothesised distribution. A last step is missed: the building of the final region from
both these elements. This last step is neither unique nor necessarily simple. From an
one dimensional statistic distribution, for example, very different regions can be built:
unilateral, bilateral. In the case of a bilateral interval, it is desirable to choose its limits
by minimising the length of the interval. However, it is often too complicated and an
equiprobable interval (i.e. having the same probability at the right and at the left) is
generally preferred. In the case of a two dimensional statistic distribution, the region
can be an ellipse (if there is no constraint), or a sector (as for the ICER estimation, see
subsection [2.6)), or a band (as for the net benefit estimation, see (1998} [1998)) depending
on the economic problems. Thus, many different confidence regions and hypothesis tests
can be defined from the statistic and its distribution. Consequently, presenting only the
PP plots or the Q@) plots can be insufficient for showing the performances of the methods:
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they provide the error between the true distribution of the statistic and its hypothesised
distribution, but it can be very difficult to see how this error affects the performances of
the methods (i.e. the coverage and other criteria).

3 Long range dependence confidence regions

In order to illustrate and motivate coverage plots and coverage effectiveness curves, these
graphs are used to present the results of a study of the properties of long range de-
pendence confidence regions. Various confidence regions based on Robinson’s estimator
(1995) are compared: there are the confidence region using the asymptotic distribution of
the estimator (subsection [3.2)), the percentile (subsection [3.3) and the percentile-t (sub-
section 3.4) confidence regions using the bootstrapped distribution, and the confidence
region based on inverting bootstrapped Robinson’s test (1995) (subsection [3.5). Double
bootstrap versions of the procedures also exist. See table!l! for a listing of these methods.

Table 1: Listing of the confidence region methods

‘ H Classical ‘ Inverting tests ‘
Asymptotic | Wald confidence inverting
interval asymptotic tests
Bootstrap Percentile
Bootstrap-t | Percentile-t with Inverting
asymptotic variance | Bootstrap tests
Double Percentile-t with Inverting double
Bootstrap-t || bootstrap variance | bootstrap tests

Robinson’s estimator (1995) is chosen rather than others, because, for example, Hurst
and Lo methods have less satisfactory properties, and Higuchi’s estimator (1988) seems
to be consistent only for d € [—0.5,0.5] whereas Robinson’s estimator (1995)) is consistent
for d € [-0.5,1].

Since Robinson’s statistic (1995) is not exactly pivotal, bootstrapping will not perform
perfectly. However, Robinson’s statistic (1995) is asymptotically pivotal, which means
that its distribution does not depend asymptotically on any nuisance parameters. In that
case, bootstrapping should yield confidence regions that are accurate to higher order, in
the sample size, than the confidence provided by asymptotic theory; see Beran (1988),
Horowitz (1994), and Davidson and MacKinnon (1996b; [1996a)).

In our Monte Carlo simulations, we deal with the univariate linear ARFIMA (p,d,q)
model with Gaussian errors. Consequently, the error terms of the bootstrap samples in
the methods presented in this section are obtained from a Gaussian distribution rather
than by resampling from the residuals, since the error terms are normally distributed.
This case is deliberately chosen for the following reason. The finite sample distribution
of the statistic can suffer from two types of distortion from the asymptotic distribution:

1. The first type of distortion comes from the error terms that can be not Gaussian.
This distortion due to non-Gaussian error terms is often quickly reduced thanks to
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the limit central theorem (in many bootstrap studies, parametric bootstrap works
similarly than nonparametric bootstraps).

2. The second type of distortion coming from the fact that the denominator of the
studentised statistic is not independent from the numerator. Conversely, the second
type of distortion can be more persistent with respect to the sample size, especially
in the case of long range dependence time series (see de Peretti and Marimoutou
(2002) where parametric bootstrap and nonparametric bootstraps work similarly
but both have size distortions).

Thus, in our Monte Carlo experiments, we focus on the Gaussian case to show that
asymptotic methods have serious problems that are not due to a misspecification of the
error terms distribution but to the second type of distortion. In this situation, the use of
bootstrap combined with inverting tests is greatly advised.

In practice, macroeconomic series are often non-Gaussian and financial series are al-
most always strongly non Gaussian. The bootstrap procedure can be adapted to this
kind of data by the use of nonparametric methods. In our case, when the replications of
the series are generated, we just have to draw the bootstrap error terms in the empirical
distribution of the residuals of the estimation of the series rather than in a Gaussian
distribution (see section 5 for an application of this nonparametric bootstrap, and David-
son (1998) and appendix B.1! for examples and details of other nonparametric bootstrap
distributions).

3.1 The model and the estimator
Robinson’s estimator (1995) pertains to the normal linear ARFIMA (p,d,q) model “:

H(L)(1— L)z, = 6(L)e, te{l,...,T}, (2)
{e,} ~ i.i.d.N(0,0%), (3)

where
e ¢ and 6 are polynomials that have not necessarily all roots outside the unit circle,
® 02 < o0,
e [ is the lag operator,
e d is the differencing parameter and takes a real value.

In some circumstances, a long-memory process may be approximated by a fractionally
integrated model; hence estimating for long-memory can be done by an estimation of d.

For applying Robinson’s procedure (1995), a truncation point m has to be chosen and
we choose the rule proposed by de Peretti and Marimoutou (2002):

m=v1 x2.

9 The ARFIMA model is presented in detail by Granger and Joyeux (1930) and Hosking (1981).
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3.2 The classical asymptotic confidence region

The classical asymptotic confidence region for the long range dependence parameter d is
obtained from Robinson’s estimator (1995) as follows:

~

dyda) = [d=6(d) uo s d+5(d) qiap)|.
where:
e d is the estimate of d,

. 5(@) is the asymptotic estimate of the standard deviation of d, that is 0.5/y/m, (see
Robinson (1995)),

e ¢, is the a-quantile of the asymptotic distribution of the studentised d statistic,
that is the normal distribution, (see Robinson (1995)).

Since d is asymptotically Gaussian only for dy € [%, %) (see Velasco (1999)), the procedure
is valid only for this range of values.

For using our graphical methods, we need to calculate the confidence level 1 — a; such
that dy, the true value for d, is included in the border of the confidence region R, that
is {dy, ds} here. Consequently, we obtain:

A\ 2
l—a,=F doid
o(d)

where F is the CDF of a x? variable with one degree of freedom.

Dealing with the effectiveness, denoted E(1—«) in subsection 2.5, we measure it by the
confidence interval length expectation. It should be noted that the length of confidence
intervals depends on the confidence level 1 — a. Consequently, the length expectation,
corrected or not by the technique proposed in subsection 2.5, has to be calculated for all
the confidence levels. The length of the asymptotic confidence interval is:

e(l—a)=2q ap0(d).

For each replicated series, the length of the confidence interval is calculated for each level

1 — a. For the whole Monte Carlo experiment, i.e. for all the replicated series, the

expectations for each level are estimated by the sample mean of the lengths e(1 — «).
In the computational program, a set of values for the confidence level is defined:

{0.001,0.002, . ..,0.009,0.01,0.02, ...,0.09,0.1,0.2, ...
...,0.9,0.91,0.92, ...,0.99,0.991,0.992, ...,0.999}.

For each of these values, the vector e(1 — «) is computed (with matrix computation, it is

very straightforward).

3.3 The percentile confidence interval

For a general presentation of percentile and percentile-t methods, see Davidson and MacK-
innon (1993), Efron and Tibshirani (1993)), Hall (1992), Hjorth (1994), and Shao and Tu
(1995).

17



Let {ch}szl denotes the set of statistics simulated by bootstrap, where B is the number
of bootstrap replications. The percentile confidence interval is given by

(b1, by) = (J[Ba/ﬂ, JB(1=a)/2]

where [ . ] is the rank statistic of the integer part.
The level such that dy € JR is equal to:

1 — as = 2min{pv,1 — pv},

where
B

1 b
pv:EZI(d < dp).

b=1

Since d is consistent only for dy € [—2,1) (see Velasco (1999)), the procedure is valid
only for this range of values.

More details about the bootstrap procedure have to be provided. We go through the
following steps:

e First, the data must be estimated using a model as close as possible to the real data.
This model will be used as a data generating process (DGP) for generating simulated
samples, and then, the simulated replications d” of the statistic d. We propose here
to estimate an ARFIMA(1,d,1) model V. For the parameter d, the value d is chosen
(estimated in a semi-parametric way here by Robinson’s estimator). The remaining
parameters are estimated by maximum likelihood conditionally to d. We prefer this
procedure rather than estimating all the parameters by an one step estimation by
maximum likelihood, because we need the estimation of d in the ARFIMA(1,d,1)
model in the same way as the estimation of d for the confidence interval. Otherwise,
the replications d® can follow a probability law too different from the probability
law that generates d. Since the aim of the bootstrap procedure is to estimate the
distribution of OZ, the method can be biased.

e The second step of the bootstrap procedure is to generate B replications {z°}Z
of the time series x. B has to be sufficiently large to avoid random effect of the
bootstrap experiment: at least several hundreds, several thousands is desirable. It
is also desirable that (1 — «)(B + 1) be an integer (see Davidson and MacKinnon
(1993))). Each 2? is generated from a Gaussian ARFIMA(1,d,1) with the previously
estimated parameters (see section [ for the non-Gaussian bootstrap). For each x?,
d is estimated by Robinson’s procedure, providing db , a bootstrap replication of d.
And then, the critical coverage is calculated using the set of {d®},.

For easily calculating the effectiveness, here the length of the interval, we propose the
following method. The length of the interval is given by

e(1 — a) = B2 _ jiBa/2),

Rather than calculating e(1 — o) for a predetermined set of 1 — «, as in subsection 3.2, we
prefer calculating each possible different length since the number of possibilities is finite,

10" A more sophisticated estimate can be done by estimating an ARFIMA (p,d,q) model and choosing
p and q by a selecting criterion as AIC or BIC, but the large flexibility of the ARFIMA(1,d,1) model is
sufficient for our illustration here.
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because the bootstrap distribution is discrete. The corresponding levels are calculated
only later. Using matrix computation, it is very straightforward: the vector of lengths is:

e = d*(trunc(B/2 + 1) : B) — d*(ceil(B/2) : 1),

where d* is the ordered vector of bootstrap replications. The function trunc gives the
greatest integer smaller than the argument and the function ceil give the smallest integer
greater than the argument. The associated confidence levels are the sequence:

2 B+1
{B—ﬁl}b where b € {0,...,trunc (T+) — 1}.

3.4 Percentile-t confidence interval

The percentile-t procedure is similar to the percentile procedure, but rather than using
directly the estimator of d, the studentised form of this statistic is used.

d—d
7-: ~ )
a(d)

&(CZ) will be discussed latter. This leads a to statistic that is asymptotically pivotal, and
this permits to obtain a higher rate of convergence for the method. 7 is bootstrapped to
obtain B replications, denoted 7°, as follows:

y_d—d

The percentile-t confidence interval is
d— 70=e/A5(d), d — TW%(CZ))
The coverage corresponding to dy € OR is equal to:

1 —a;=1-2min{pv, 1 — pv},

where
T
=5 ZI(% < 1),

b=1
and )

d—dp

To = .

a(d)

The length for the (1 — a)-confidence interval is:
(T[l—a/Z] _ T[a/2]) &(d)_

As for percentile procedure, the percentile-t procedure is valid only for dy € [—%, 1).
The DGP for replicating 7 is determined in the same way as for the percentile as well
as the lengths of the intervals.
6(62), the estimated variance of d, is calculated in two different ways: the first one is the
asymptotic estimate (see Subsection [3.2)), the second one is the bootstrap estimate. For
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A

obtaining the bootstrap estimator of o(d), the time series are estimated and replicated
Bs times in the same way as previously. By can be different from B. Since it is less
important, it is generally taken smaller than B. For each replicated series, d is computed

leading to a set of {azb} from which the standard error is computed. It should be noted

that when the percentillé—t method is used, and thus replicated series are generated for
computing the test P value, the bootstrap estimator of a(cZ) must be applied on each
bootstrap replication of the series for obtaining the studentised statistics. This leads to
replications of replicated series. This method is often called double bootstrap.

A last remark about the percentile-t method: even if it has a better asymptotic
convergence rate than the percentile method, in finite sample, the studentisation can
produce a statistic that is farther from pivotal than the original statistic. This instability
can be catastrophic, see among others Li and Maddala (1990), Berkowitz and Kilian
(2000), Davidson (2000), and Siani and Moatti (2003). Thus, we have to check by Monte
Carlo experiments that this method remains stable in finite sample.

3.5 Confidence region based on inverting tests

For a general presentation of confidence intervals based on inverting tests, see David-
son and MacKinnon (1993) Chapter 5, and for confidence intervals based on inverting
bootstrap tests, see Davidson and MacKinnon (2001)).

Let T}_o(d') denote the result of a test for Hy : d = d’ against Hy : d # d'.

1 if d = d' is retained
0 otherwise )

Ti_o(d) = {

The confidence region built by inverting tests for a confidence level of 1 — « is defined as
following: d’ is in the region if and only if the test retains d = d’ for a significance level
of 1 —a, i.e.

d e R(1—a) <= T_o(d) = 1.

Let p(d') denote the P value of the test for d = d’. We have
Tio(d) =1+ p(d) = a.

In our case, the region is an interval. Consequently, it can be defined by both its limits, say
dint and dgyp (corresponding respectively to the lower and the upper limit). These limits
correspond to both the values of d' such that p(d') = « (see Davidson and MacKinnon
(1993) Chapter 5). For computing the P value, see subsections 3.5.1/ and [3.5.2.

For using our graphical methods, the critical confidence level 1 — a;, has to be calcu-
lated. This level 1 — « is such that dy = dfj% or dy = déi}), where ) indicates that the
)=1—a = p(d%)), thus

values come from a simulated series. But it is known that p(dfj%

1— Qg :p(dO)a

where p(dp) is the P value of the underlying test at d = dy. Fortunately, for confidence
regions based on inverting tests, the critical confidence level is very easy to calculate.
With regard to the effectivenessl of this method, a problem arises since the test is not
defined for all values for d. For computing the confidence interval limits, the values d’ for
d such that p(d') = « have to be found. Classically, p(d) is a function that increases from
0 to 1 and then decreases from 1 to 0 when d goes from —oo to +00. In our situation, the
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method is only defined for dy € [—%, 1), thus, the function reaches its minimum values
for dg = —% and dy = 1 and the defined confidence levels go from 0 to a certain maximum
value, say 1 — aay, that is lower than 1.

Since p(d) is random, depending on the realisation of the observed time series, 1 —aupax
will be random, going from 0 to 1. The consequence is that for all predefined confidence
levels 1 — «, there is a positive probability that the confidence interval is not defined,
and thus the expectation of the interval length is also undefined. It should be noted
that this does not mean that the method does not work. In fact, it says rigorously that
there is no sufficient information in the time series for allowing an estimation whereas the
asymptotic confidence interval gives meaningless limits and the percentile(-t) methods
give always numerical limits based on computational proportions that can have no sense.
For illustrating all the same the effectiveness of confidence interval based on inverting
tests, we detail results for two particular series in section 5.

3.5.1 Inverting asymptotic tests

More precisely, if the asymptotic Wald test based on an estimator of d (Robinson’s one,
or another estimator) is used, the P value can be built as following *

pd) =1—Fy ((d)),

i—a\’
7(d) = _ ,
@) ((}(d))

Fy is the asymptotic cdf of 7(d’), and o(d) is the standard deviation of d. Any expla-
nations must be given for why F' is indexed by d' since we can think that 7(d’) follows
simply a xi. If d’ € (—3,3), the Robinson’s estimator is Gaussian under the null that
d = d', and Fy is simply the cdf of a x? random variable. In this case, the confidence
interval built by inverting asymptotic tests is equal to the classical asymptotic confidence
interval. However, when 1 — « goes to 1, then di,; goes to —oo and dgy,, goes to 400, and
we necessarily fall in the non Gaussian case, and Fj is not the cdf of a y2.

It is not very useful to develop this method only for obtaining an extension of the
classical asymptotic confidence interval (see Subsection [3.2)) for the case where djy is not
included in [—%, %) Moreover, confidence regions based on inverting bootstrap tests
(see Subsection [3.5.2) will provide better approximation than with asymptotic tests.
Consequently, this method is not presented.

where

3.5.2 Inverting bootstrap tests

We consider here bootstrap Wald tests based on an estimator of d (Robinson’s one, or
another estimator). More precisely, for the Monte Carlo experiments, the parametric
(single and double) bilateral bootstrap test based on Robinson’s estimator is used: see
its description in Appendix B.1". Obviously, as for percentile methods, nonparametric

' The P value will be more complicated for bootstrap because it takes into account the asymmetry of
the statistic distribution: see subsection [B.1.2.

12 Our procedure is inspired from the test of de Peretti (2003), but this last one is reduced to the case
where the null hypothesis is “no long memory” (dy = 0), whereas our procedure extends to the case
do € [—%., 1). So, for more discussions about double and single bilateral bootstrap tests for long memory,
see de Peretti (2003)).
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versions of the test can be used. In our experiments, nonparametric versions of the test are
not used. We restrict our attention to Gaussian procedures for permitting to see the gain
of the use of inverting tests confidence regions compared to not inverting tests, without
noisy error due to nonparametric estimation. Nevertheless, the basic nonparametric test
(only resampling) is applied in Section 5l and the details of this method and of others
are in appendix B.1. Both the single and the double bootstraps are discussed, since,
even if the double bootstrap is asymptotically better than the single bootstrap, it has the
disadvantage of having a computing time B, times larger than the single version, where
By is the number of bootstrap replications used for the computation of the standard
deviation of the test statistic. Finally, the unilateral version of the test is not presented,
since it has absolutely no advantage compared to the bilateral version.

3.5.3 Note on the LRD estimation of differentiated series

When the values for d such that p(d) = 1 — « are sought for building the confidence
interval based on inverting tests, it can be frustrating to stop at —0.5 and 1. A solution
that appears naturally is to differentiate the series such that they are stationary for
example. It can be done by successive ADF tests, differentiating the series at each
step, until the series looks stationary. If the series is differentiated n times, the LRD
estimate is then defined as equal to the LRD estimate of the differentiated series plus
n: d(A™z) +n. The problem is that the LRD estimate on the original series (when it
can be calculated) is in general unequal to CZ(A”x) + n because the bias coming from
the estimation on the original series is in general different from the bias coming from the
estimation on the differentiated series (even if both the estimators are consistent). This
difference causes jumps into the P value function, leading to problematic resolution of the
equation p(d) = 1 — a. Consequently, we advise to not use differentiation for inverting
tests without furthur improvement of this methodology in the future.

4 Monte Carlo experiments

All the experiments deal with Gaussian ARFIMA(p,d,q) processes. Since the constant
term is only a location parameter and does not influence the regions performances, it is
set to zero. Similarly, o, the standard deviation of the model, is only a scale parameter
and does not affect at all the performances, is set to one. The test statistic depends
then on the parameters (¢,d,f) and T in Equation 2. In a first step, we focus on the
coefficient d and the sample size T, setting ¢ and 6 to zero. T' = 2" is used, where n is an
integer. Each experiment is run with S = 10, 000 replications of the time series, using the
same random numbers for avoiding additional experimental errors (variance). For each
replication in each experiment, the same random numbers for bootstrapping are used for
avoiding random effect in the result of the bootstrap method between the replications.

4.1 Case of ARFIMA(0,d,0) processes

We pick combinations of d and T in table 2 to investigate. B is the number of bootstrap
replications *. It should be noted that the values for B chosen for these experiments are
sufficient for illustrating the methods since in our case the distortions found in the results

3B is chosen to meet the capacity of Gauss software to store a T' x B matrix which is used in matrix
computation for these simulation experiments.
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Table 2: choice of d and T

‘CaseH d‘ T‘ B‘Bg‘
1.1 -0.4 | 256 | 488 | O
1.2 0 |512|244| O
1.3 0.4 256 | 488 | 0
1.4 081128 1976 | O

are not due to a gap of bootstrap replications (even if increasing B can improve a little
the results) but to large distortions of the distribution of the test statistic depending on
the parameter values. Since the bootstrap methods have to estimate these parameters, an
error in the estimations lead to an error in the coverage. The plot of the P value function
with respect to various parameters makes it clear (see de Peretti (2003)). However, for
a real data study, there is not the same constraint than for Monte Carlo experiments,
and we advise to use much more bootstrap replications than used in our experiments,
since the user may want more precision for the coverage. Bs is the number of bootstrap
replications used in the estimation of the variance in the double bootstrap. It is taken
equal to 0 for the moment (instead, the asymptotic estimation of the variance is used).

4.1.1 Coverage plots

The standard deviation of the coverage plots is equal to

c(l—a)(l—c(l—-a))
\/ 5 (4)

where ¢(1 — «) is the coverage. Thus, when 1 — « goes from 0 to 1, and for S = 10, 000,
the standard deviation goes from 0 to 0.005.

Figure |5 presents the coverage plots of the asymptotic confidence interval, the per-
centilel interval, the (single) percentile-t| interval, and the interval based on [nverting
(single) bootstrap tests for the four cases of the parameters described in table 2. Table
3 presents the same results than the third graph in figure 5l (i.e. the case 1.3 of the
parameter in table 2) but using a tabular presentation. Is this table pleasant to read ?
Figure 5/ shows clearly that the confidence interval based on inverting bootstrap tests is

Table 3: Coverages in the case of an ARFIMA(0,d,0) process
d=04 T =256

Confidence levels
[ Method 75% | 90% | 95% | 99%

Asymptotic 0.60 | 0.77 | 0.85 | 0.94
Percentile 0.89 1 0.96 | 0.97 | 0.99
Percentile-t 0.64 | 0.77 | 0.82 | 0.91
Inverting tests || 0.77 | 0.92 | 0.95 | 0.98

by far the best method on the basis of coverage accuracy criterion in all the situations.
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Percentile and percentile-t| methods have large coverage distortions, that are as large as
for the asymptotic confidence interval, except for the case d = 0 (i.e. i.i.d.) where the
asymptotic method dominates them a little (there is no curve for the asymptotic method
in the case of d = 0.8 since it is not applicable in this situation). It is not surprising
that the percentile method does not perform for estimating the long memory parameter,
since the percentile does not correct the bias in the estimates whereas it is known that
the long memory estimators are generally very biased. What is more surprising is the
unsatisfactory result for the percentile-t method that normally corrects the bias. The
unsatisfactory result is probably due to the studentisation of the statistic that does not
bring it closer to pivotal (closer to pivotal the statistic is, better the bootstrap methods
will perform) since for the single bootstrap, only the asymptotic standard error of the
statistic if used for studentising it, and for Robinson’s method (1995), this asymptotic
standard error is only a constant depending on the sample size (see Robinson (1995)).
Double bootstrap should lead to more satisfactory results for the percentile-t| methods,
but also for confidence interval based on invertingl double bootstrap tests, that will still
dominate all the methods.

It should be noted that the specification of the data model is not necessarily well
chosen by the bootstrap DGP. For example, in this paper, the bootstrap DGP is an
ARFIMA(1,d,1) process whereas the true DGPs of the first set of simulations are ARFIMA(0,d,0)
processes, and the true DGPs of the second set of simulations are ARFIMA(1,d,0) pro-
cesses. Nevertheless, our Monte Carlo experiments are more realistic if the true DGP be
used, since in practice the real DGP (the one of nature) is not known, and the orders
of the ARFIMA (p,d,q) model have to be chosen a priori (the ARFIMA(1,d,1) model is
often chosen) or estimated by any methods (AIC or BIC criteria or by inference tests).

Since the differences between the confidence regions are very clear with |coverage plots,
the use of coverage discrepancy plots is not necessary in this situation.

4.1.2 Coverage-effectiveness curves

Figure 6 presents the confidence level-effectiveness curves of the asymptotic confidence
interval, the percentile interval, the (single) [percentile-t| interval for the four cases of
the parameters of the table 2. The results for the interval based on [inverting (single)
bootstrap tests are not presented here because of the difficulty of estimating the length
of the interval (see subsection [3.5). Several results will be provided later about this point.
On the basis of confidence level-effectiveness curves, the percentile and the percentile-t
seem to have the same effectiveness and to be dominated by the asymptotic method that
has a lower average length.

However, before concluding hastily, let us have a look to figure 7 that presents the
coverage-effectiveness curves for the intervals obtained with the same methods. Following
the results on figure |7, the percentile method has the most satisfactory “true” effective-
ness. For these three methods, this information is not very interesting since these methods
have too large coverage distortions to be used in practice. What the graphics in figure [7
can tell us is only that if the coverage distortions could be corrected, the percentile/method
will have the most satisfactory effectiveness compared to both other methods. Neverthe-
less, this kind of graphic is very useful for choosing among methods that have reasonable
coverage distortions: it permits to make arbitrage between the coverage distortion and
the true effectiveness for each methods and then to chose the most appropriate.

In addition, the standard errors of the lengths of the confidence intervals are plotted
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Figure 6: Confidence level-effectiveness curves in the case of an ARFIMA(0,d,0) process
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Figure 8: Coverage-‘Standard error of the length’ curves in the case of an ARFIMA(0,d,0)

process
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Figure 10: Coverage-effectiveness curves in the case of an ARFIMA(0,d,0) process
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against their coverages. This leads to what can be called Coverage-‘Standard error of
the length’ curves that can be viewed as coverage-effectiveness curves for a secondary
effectiveness criterion (see figure8). The same conclusion than previously holds. However,
the graphics on figure [8 allow to see that the larger d is, the larger the standard error of
the length. This is unsatisfactory since for large values of d, even if the average length of
an interval is satisfactory, the probability to have a large length is great, and thus there
is a big uncertainty on the value for the true value for d. This disadvantage cannot be
viewed only on the basis of average length, but also on the basis of length standard error.

For the length of confidence interval based on inverting tests, see the analysis in

G

subsection 5.3

4.2 Case of ARFIMA(1,d,0) processes

We choose combinations of d and 7" in table 4 for the investigation. Figure 9 presents the

Table 4: choice of ¢, d, and T

‘ Case H 0] ‘ d ‘ T ‘ B ‘
2.1 0.4 011024 | 122
2.2 0.8104 11024 | 122

coverage plots of the asymptotic confidence interval, the [percentile interval, the (single)
percentile-t interval, and the interval based on [inverting (single) bootstrap tests for the
two cases of the parameters described in table [4). Figure 10 presents the [coverage-
effectiveness curves for the three first methods. For ¢ = 0.4 d =0 T = 1024, the same
conclusion than for the previous subsection holds. Conversely, the case ¢ = 0.8 d =
0.4 T = 1024 shows catastrophic results which remind us that when the short memory
parameters are too strong (close to unit root), the short memory property is confused
with long memory property.

5 Application to the S&P500 index

We propose to investigate the long memory properties of the daily S&P500 index from
01/01/1994 to 13/02/2002. The number of observation is 2048. Data comes from Ter-
rance Mills’ book. Figure 11/ plots the S&P500 index in level. Table /5 presents some
descriptive statistics.

Table 5: Descriptive statistics for the S&P500 index.

‘ Time series H Mean ‘ Standard error ‘ Skewness ‘ Kurtosis
Returns 0.0004 0.0107 -0.3055 7.2131
Absolute returns || 0.0075 0.0075 2.2990 | 12.3470
Squared returns || 0.0001 0.0003 8.6066 | 116.5850
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Figure 11: S&P500 index, returns, and absolute returns
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5.1 The S&P500 returns

Since the S&P500 series (denoted x;) is clearly nonstationary, the returns of the series

re=1In (aj;) (5)

will be used in the following (see figure [11)).

For studying the stationarity of the S&P500 returns, parametric and nonparametric
bootstrapped versions of the augmented of Dickey-Fuller (ADF) tests are used, with
unilateral and bilateral bootstrap P values (see Appendix (). The number of bootstrap
replications being 999. For selecting the number of augmentations, the residuals from the
ADF regressions are tested for serial correlation using Ljung-Box and Box-Pierce tests
(from 1 to 8 lags) until they look like white noise. For the S&P500 returns, the number of
augmentations is 0. All tests have been conducted by using our own programs via Gauss
software. All the P values are close to zero (they are not presented) concluding that the
series is clearly stationary.

For studying the normality hypothesis, three tests for normality are used. The first
procedure tests for the nullity of the skewness. The second one tests whether the kurtosis
is equal to 3. Finally, the last one tests for both simultaneously: it is the Jarque-Bera
test. Since the critical values of the Jarque-Bera test are not exact in finite sample due to
the correlation between the estimated skewness and the estimated remind, and since the
finite sample distribution for all the tests are not equal to their asymptotic distributions,
we propose to use bootstrap versions of these tests (see appendix [D)). Of course, it is
a parametric bootstrap since the null hypothesis is the normality of the series, but in
addition, we allow the Gaussian process under the null to be autocorrelated because if it
is not taken into account, the autocorrelation amplifies the distortion of the test statistic
distribution compared to the asymptotic distribution. Unilateral and bilateral bootstrap
P values are also used (except for the asymptotic tests, since the asymptotic distributions
are symmetric: both the P values are the same, and for Bera-Jarque’s test because it is
unilateral by construction). The number of bootstrap replications is 999. There is a lag
of the dependent variable in the regressor set. The number of lags is chosen by Ljung-Box
and Box-Pierce tests using 1 to 8 lags until the residuals seem independent. Again, all the
P values are close to zero, showing that the series is strongly non-Gaussian. Consequently,
nonparametric methods have to be used in the following.

The presence of long memory in the series is estimated using a confidence inter-
val based on Robinson’s test. The classical asymptotic confidence interval is used. In
addition, nonparametric percentile and percentile-t are also used. The nonparametric
bootstraps are based on the empirical distribution of the residuals (they resample the
residuals). There are also single and double versions of bootstrap. Table [ presents the
confidence intervals for the long memory parameter in the S&P500 returns. The meth-
ods are the asymptotic one, (single) percentile, (single) percentile-t, and [inverting| (single
bootstrap) tests. The number of bootstrap replication is B = 999. Since zero is in all the
interval, the results suggests that there is no long memory in the returns of the index.

5.2 The S&P500 volatility

We propose to explore the long memory property of the S&P500 volatility. The following
measure of the volatility is used:

V1 = |1y (6)
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Table 6: Long memory confidence interval on the S&P500 returns

Confidence Lower | Upper | Interval
interval limit limit | length
Asymptotic -0.0893 | 0.1556 | 0.2449
Percentile -0.0926 | 0.0877 | 0.1803
Percentile-t -0.0875 | 0.0928 | 0.1803
Inverting tests || -0.0968 | 0.104 | 0.2008

Two other measures are often used in practice:

2
U2,t = Ty,

U3t = ln(|7“t\).

vs, cannot be used here because of zero values for some observations of ;. The absolute
returns are presented in figure 11/ .

For these real data, our confidence intervals have to be modified. For the return series,
the bootstrap Data Generating Process (DGP) is an ARFIMA (p,d,q) process. But for the
volatility series, a heteroskedastic model have to be used. Consequently, the bootstrap
DGP has to be changed from an ARFIMA (p,d,q) process to a FIGARCH(p,d,q) process.
More precisely, for the volatility measured by the absolute value of the returns, the
bootstrap DGP is the absolute value of a FIGARCH(p,d,q) process. The same reasoning
holds for the volatility measured by the logarithm absolute returns or the squared returns.
The results are presented in table 7. The long memory property is clearly found in the

Table 7: Long memory confidence interval on the absolute returns

Confidence Lower | Upper | Interval
interval limit | limit | length
Asymptotic 0.3320 | 0.5770 | 0.2450
Percentile 0.2261 | 0.5404 | 0.3143
Percentile-t 0.3686 | 0.6830 | 0.3144
Inverting tests || 0.3528 | 0.7791 | 0.4263

The number of bootstrap replication is B = 999.

volatility. The possible values for the long memory parameter are between the stationary
and the nonstationary cases.

5.3 Length of confidence interval based on inverting tests: case
of S&P500 volatility

The limits of the confidence interval based on inverting (single bootstrap) tests presented
in table 7 are determined by the values for d such that the test P value is equal to
5%. The P value function with respect to d is presented in figure 12. Table [7! shows
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Figure 12: P value function corresponding to confidence interval based on inverting tests
Case of volatility series
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that the confidence interval based on inverting tests is the largest. However, the Monte
Carlo experiments suggest that inverting tests leads to much more accurate interval on
the basis of the coverage. They also suggest that the asymptotic and the percentile-t
intervals undercover the LRD parameter, that can explain by their smaller length.

6 Conclusion

Monte Carlo experiments are a valuable tool for obtaining information about the prop-
erties of confidence region procedures in finite samples. However, the rich detail in the
results they provide can be difficult to apprehend if they are presented in the usual tab-
ular form. In this paper, we have discussed several graphical techniques that can make
the principal results of an experiment immediately obvious, namely, coverage plots, cov-
erage discrepancy plots| (which may optionally be smoothed), and [coverage effectiveness
curves. All of these techniques are based on the construction of an estimated cumulative
distribution function of the (true) coverage associated with some confidence regions and
on effectiveness criteria that were discussed, without loss of computing time compared to
classical tabular presentation.

These techniques were illustrated by presenting the results of a number of experiments
concerning long memory confidence regions. We think that results, which are entirely pre-
sented in graphical form, are of interest and provide more information in a more easily
assimilable fashion than a tabular presentation or Q@) plots could possibly have done. The
results show that percentile and percentile-t methods does not perform well at all, con-
versely to confidence interval based oninverting bootstrap tests that works quasi-perfectly
compared to the confidence intervals obtained with the previous methods: the coverage is
much more close to the confidence level.
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A Details about the graphical representation

When S is large, storage space can be conserved by evaluating the edf (1) only at N
points z;,2 = 1,..., N, which should be chosen in advance so as to provide a reasonable
snapshot of the (0, 1) interval, or of that part of it which is of interest. As parsimonious
way to choose the x; is

z; = 0.001,0.002,...,0.009,0.01,0.02,...,0.09,0.1,0.15, ...
...,0.85,0.9,0.91...,0.98,0.99,0.991,...,0.998,0.999 (N =53) (7)

There are extra points near 0 and 1 in order to ensure that we do not miss any unusual
behaviour in the tails.

B Details on the LRD confidence intervals

B.1 Bilateral (single) bootstrap tests for long memory

For more details in the case of the null of no long memory, see de Peretti (2003). While the
asymptotic tests are asymptotically valid, the tests based on the asymptotic distributions
are not exact in finite samples, and so, it is natural to “bootstrap” them. For the
conception of the bootstrap see Efron (1979), for its development, see Davidson and
MacKinnon (1993)), and for further analysis, see Davidson and Mackinnon (1996b; 19962).

B.1.1 The bootstrap procedure

The procedure is as follows:

1. Compute the test statistic (Hurst, Lo, Robinson, Higuchi, Jensen, or others), which
will be denoted 7.

2. Estimate the ARFIMA((p,d,q) model by maximum likelihood under the null Hy:
d = dy, for obtaining the model parameters (é,é,&?) and the residuals €. For
our simulations, p = 1 and ¢ = 1 are chosen, but for estimating real data, we
strongly advice users to determine p and ¢ by information criterions or other efficient
methods because an error in the choice of p and/or ¢ generally yields to large bias
in the estimation and the inference of d (see Hauser et al. (1999).

3. Draw B sets of bootstrap error terms, €, and use them to generate B bootstrap
samples °. There are numerous ways to drawn the error terms, four of which are
described below. The elements of z° should be generated from the equation

2= (1— L)y ™(L)79(L)ed  te{l,...,T}. (8)

In practice, we do as the GAUSS procedure for generating ARFIMA series: we
calculate the MA(q) filtre corresponding to (1 — L)_dOQAS(L)_lé(L) with a very large
ordre ¢ (T for example), and we apply it to €® for obtaining x,. For that, of course,
we have to generate €” with a larger sample size (2 x T for example).

4. For each bootstrap sample, compute the statistic (Hurst, Lo, Robinson, Higuchi,
Jensen, or others), denoted 7°, with 2° instead of z.
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5. Then, compute the estimated bootstrap P value: see equation 10 or equations
11H12.

I examine four ways for generating the % (see Davidson (1998)):

1. The parametric bootstrap, called by: the €% are independent draws from the N (0, 52)
distribution.

2. The simplest nonparametric bootstrap, called b;: the €% are obtained by re-sampling
with replacement from the vector of {&}/ ..

3. A slightly more complicated from of nonparametric bootstrap called by: the £° are
generated by re-sampling with replacement from the vector

T 1« '
—_— ét — ~ Z éz) } . (9)
{ T—-2p—1 ( T_pi:ﬁ—i—l i

4. The most complicated nonparametric bootstrap, called bs: the €* are generated by
re-sampling from the vector with typical element &, constructed as follows:

e let d; be the t'* diagonal element of P (-1)- d0¢(L) (1)) the matrix projecting
onto the space spanned by (1 — L)~%¢(L)"0(L);

e divide each element of & by v/1 — d;

e re-centre the resulting vector;

e re-scale it so that it has variance 62

This type of procedure is advocated in Weber (19874).

B.1.2 The choice of the bootstrap P value

By making a large number of drawings of bootstrap statistics 7°, a bootstrap P value can
be computed by the following formula:

(7)== D 1((7") > 72), (10)

see Davidson and MacKinnon (1993)). This formula corresponds to an unilateral test.
This sort of formulae is often associated with symmetric bilateral tests. However, the
size distortion is not necessarily symmetric. Thus, I prefer to use the following formula:

P(7) = 2min{Puni(7), 1 — Puni(7) } (11)
where

pum B ZI T > T (12)

that corresponds to a bilateral (asymmetric) test. Further considerations about this
P value can be found in Chapter 5 of Davidson and MacKinnon (1993) dealing with
confidence intervals.
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B.2 Bilateral double bootstrap tests for long memory

The standard error of d, say [7(62), used for studentising d can be calculated in two
different ways: the first one is the asymptotic estimate (see subsection [3.2)), the second
one is the bootstrap estimate. For obtaining the bootstrap estimator of o(d), the time
series are estimated and replicated Bs times in the same way as previously: for each

replicated series, d is computed leading to a set of {db} from which the standard error

b
is computed. It should be noted that when this test is used, and thus replicated series
are generated, the bootstrap estimator of o(d) must be applied on each replicated series
for obtaining the test statistics leading to replications of replicated series. This method

is often called double bootstrap.

C Bootstrapped ADF tests

The following variables have to be defined:
e B, the number of bootstrap replications,
e p, the number of augmentations in the ADF regressions.

B has to be chosen as large as possible, depending on the characteristics of the computer.
The choice of p is more difficult. We recall that the ADF regressions are:

Ay, = ayi—1 + BiAy1 + ..+ BpAyp + e,
Ay, =  constant + ayi—1 + b1y + ...+ BpAy_, + ey,
Ay, = constant + trend + ayi—1 + F1Ay—1 + ..o+ BpAyp, + ey,

where y; is the time series, and e; are the error terms, ¢ goed from 1 to 7. We propose
the following procedure for chosing p: The procedure starts at p = 0. The residuals
of each ADF regressions with p augmentations are tested for independence using both
the Ljung-Box’s and Box-Pierce’s tests. The number of autocorrelation coefficients taken
into account for the Ljung-Box’s and Box-Pierce’s tests go from 1 to 8. If the residuals
are not independent, p is incremented by 1 until the residuals look independent.

The steps of the bootstrapped ADF test are the following:

1. The Student test statistics for o for each ADF regression are computed. Let the
statistics be denoted t,. At this step, the residuals can be kept to be tested for
independence.

2. The boostrap procedure needs a DGP for generating simulated samples under the
null. This DGP is determined by estimating the model under the null using the
data and the OLS procedure.

3. The bootstrap loop starts now. The simulated error terms, denoted e?, are generated
for a sample. There are four ways for generating the simulated error terms:

(a) Parametric bootstrap: The simulated error terms are drawn from the normal
distribution

ef? ~ N(O,SQ),

where s is the standard error of the error terms estimated from the ADF
regression using the data.
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(b) Basic nonparametric boostrap: The simulated error terms are drawn by ...

(c) Nonparametric bootstrap with corrected degree of freedom: since E(¢é?) #E(e?)
where ¢€?) are the residuals of the ADF regression, but E(é?) =

For our program, the parametric and the second nonparametric bootstrap are cho-
sen.

4. The simulated time series under the null, denoted (1), is generated recursively
using both the following steps:

(a) first, define Ay? recursively:

Ayi’ = . @lAyf—l +...+ @pAy?—p + 6?,
Ayt = constant + Bily;_ + .+ BpAyp, + €l

Ayt = constant + trend + GOyl + ...+ Ayl + €,

The p first values for y? can be chosen equal to the the p first values of y;,
interpreted as initial conditions. (Another way is to choose them randomly.)

(b) second, compute 3?:
t
W=t o
i=2

yp 1s an initial condition.

5. The Student test statistics for « for each ADF regression are computed using the
simulated series (y°);. Let the statistics be denoted #°..

6. The steps [3-5] are done again B times. A set of statistics t%, b = 1,..., B, is then
obtained for each the three ADF regressions, and for each both the parametric and
nonparametric bootstraps (thus there are six statistics).

7. The bootstrap P value is finally computed depending on the test hypothesis:

(a) If the null hypothesis Hy : a = 0 is tested against the alternative hypothesis
H, : a <0, the classical P value is

B
1 b
puni = EZI<ta S ta)v
b=1

where [ is the indicator function. This P value corresponds to an unilateral
test.

(b) If the null hypothesis Hy : a = 0 is tested against the alternative hypothesis
H; @ a # 0, the classical bootstrap P value is

B

1 b

This P value corresponds to a bilateral test.

40



(c¢) In the case where the null hypothesis Hy : o« = 0 is tested against the al-
ternative hypothesis H; : a # 0, we also propose the following bootstrap P

value:
Pbilagym ~ 2min{pypi, 1 = Pyni}t-

This P value also corresponds to a bilateral test, but it takes into account the
asymmetry of the statistic distribution in addition. This P value can be found
in Davidson and MacKinnon (1993), chapter 5, in the context of confidence
regions.

In our program, the two last P values are used.

8. Finally, a significance level is chosen and compared to the P values. If a P value is
lower to the significance level, H; is retained, otherwise Hj is retained.

D Bootstrapped tests for normallity

It is first assumed that the processes that will be tested are stationary and independent.

D.1 The test statistics

First, the estimated centered moments are presented:

:;>
S

I
S|
[M] =

Yt,

t=1

(ye — 11 (y))?,

=
X}
S
|
el
[~

t=1

(ye — m(y))*,

=>
wWo
S
I
el
[~

t=1

(Y — Ml(y))4a

=>
=0
S

I
N =
(1]~

1

o+
I

where 7' is the sample size, and y is the time series. The estimated skewness and estimated
the kurtosis are defined as following:

S = ) 7
W)= )™

T V()
W = sy

From the skewness and the kurtosis, three statistics can be built:
e a statistic based on the skewness:

~ ku(y)
tsk(@/) - \/(6/T),
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e a statistic based on the kurtosis:
_ ku(y) -3
JCuT)

e and a statistic based on both the the skewness and the kurtosis: the Jarque-Bera
statistic (see Jarque and Bera (?)):

tku(y)

tin(y) = (tsk(y))z + (tku(y))2.

D.2 The asymptotic tests

Under the null hypothesis Hy: “y is a Gaussian process”, the asymptotic theory establishes
that:

tsk(y) ~ N(Ov 1)’ (13)
tku(?J) ~ N(0> 1)? (14)
) ~ ) (15)

However, in finite sample, the two first statistics do not follow the normal distribution,
even if the time series is Gaussian. Consequently, the third statistic do not follow the
chi?(2) distribution. This is a first reason for bootstrapping them. In addition, Jarque-
Bera statistic follows asymptotically a chi?(2) because of asymptotic independence of
toc(y) and t,,(y). However, in finite sample, these two components are dependent,
leading to a second error in Jarque-Bera test. This is a second reason for bootstrap-
ping Jarque-Bera statistic, since the bootstrap techniques are naturally able to take into
account this dependence.

D.3 The bootstrap tests

Let B denotes the number of bootstrap replications. B has to be chosen as large as
possible, depending on the characteristics of the computer. y; is the time series, ¢ goed
from 1 to T. The steps of the bootstrapped test for normality are the following:

1. The test statistics defined in equations [13-15 are computed. Let 7(y) denote the
chosen statistic.

2. The boostrap procedure needs a DGP for generating simulated samples under the
null that is simply Hp : y; ~ 1.i.d.N(u1, (45)?). This DGP is determined by estimat-
ing the model under the null using the data, i.e. by estimating gy nad p§. This
estimation can be made simply by fi;(y) and i5(y). Of course, it is a parametric
bootstrap since the null hypothesis is the normality of the process.

3. The bootstrap loop starts now. The simulated time series under the null, denoted
(y?)s, is generated by independently drawing from the normal distribution:

. fel N2
yp ~ N (i (y), (35(9))°) ,
It is necessarilly a parametric bootstrap.

4. The three test statistics are computed using the simulated series (y?);.

42



5. The steps 3-4 are done again B times. A set of bootstrap statistics is then obtained
for each original statistic.

6. The bootstrap P value is finally computed: the classical bootstrap P value is

poym = 5 17" 2 17 (w)?),

We also propose the following bootstrap P value:
Pasym = 2 M| Punis 1 — Puni )

where
1 B
Puni = EZI(\T(yb)I <Ir)l).
b=1

This P value takes into account the asymmetry of the statistic distribution in ad-
dition ¥ This P value can be found in Davidson and MacKinnon (1993)), chapter 5,
in the context of confidence regions. This P value can be used only for ¢ (y) and
tq(¥), but not for tjb(y) because py;p,; cannot be compute for tjb(y) since there are
two underlying statistics. An extension of the asymmetric P value could be done
for two dimensions, but in practice, it is very difficult.

7. Finally, a significance level is chosen and compared to the P values. If a P value is
lower to the significance level, H; is retained, otherwise Hj is retained.

D.4 Extension to linear dependence

We propose here an extension of the bootstrap tests to linearly dependent processes. For
the asymptotic tests, the time series has to be independent, since the skewness and the
kurtosis depend on the dependence parameters. However, if the linear dependence is
specified in the bootstrap procedure, the bootstrap tests can applyed easily to linearly
dependent processes, if they are stationary. If the linear dependence is not taken into
account, the autocorrelation amplifies the distortion of the test statistic distribution
compared to the asymptotic distribution. Two steps change: the DGP estimation under
the null, and the simulated series generation. We propose the following procedure:

2 The null is now y; ~ Gaussian AR(p). This DGP is determined by estimating the
model under the null using the data and the OLS procedure. p is determined by the
AIC and SIC criteria. Let the estimated DGP be denoted AR(p). p can be chosen
by criteria as AIC and SIC, and also by Ljung-Box and Box-Pierce tests (using 1
to 8 lags for example) until the residuals seem independent.

3a The simulated error terms, denoted e?, are generated for a sample. The simulated
error terms are drawn from the normal distribution

e? ~ N(O,SQ),

where s is the standard error of the error terms estimated from the AR(p) regression
using the data.

14This bilateral bootstrap P value is not useful for the asymptotic tests, since the asymptotic distri-
butions are symmetric: both the P values are the same, or unilateral.
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3b The simulated time series under the null, denoted (y?);, is generated recursively
using both the Gaussian AR(p) model.

D.5 Monte Carlo results

The Monte Carlo results, that are not presented here, suggest that the bootstrap tests
are much more reliable than the asymptotic tests. The bootstrap tests are not perfect,
and suffer from size distortion, but only for very small sample size.
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