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Abstract. Dynamic models with inequality constraints pose a challenging prob-

lem for two major reasons: Dynamic Programming techniques often necessitate a

non established differentiability of the value function, while Euler equation based

techniques have problematic or unknown convergence properties. This paper aims

to resolve these two concerns: An envelope theorem is presented that establishes

the differentiability of any element in the convergent sequence of approximate value

functions when inequality constraints may bind. As a corollary, convergence of an

iterative procedure on the Euler equation, usually referred to as time iteration, is

ascertained. This procedure turns out to be very convenient from a computational

perspective; dynamic economic problems with inequality constraints can be solved

reliably and extremely efficiently by exploiting the theoretical insights provided by

the paper.
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1. Introduction

Dynamic models with inequality constraints are of considerable interest to many

economists. In microeconomics, and in particular in consumption theory, the impor-

tance of liquidity constraints is widely recognized (e.g. Deaton 1991). With respect

to macroeconomic models of heterogeneous agents, a debt limit is generally a nec-

essary condition for the existence of an ergodic set (see for instance Ljungqvist and

Sargent (2004), Aiyagari (1994) and Krusell and Smith (1998)), and models with

limited enforcement have recently proven to provide a realistic description of inter-

national co-movements (Kehoe and Perri 2002). Additionally, inequality constraints

may convey substantial empirical relevance; for instance, employment laws may pro-

hibit firing and lending contracts may prevent bank runs. Foreign direct investments,

minimum wages, price regulations, etc. are all examples of potentially binding in-

equality constraints. Nonetheless, solving dynamic economic models with inequality

constraints is generally perceived as challenging: Methods that can handle inequal-

ity constraints with ease, generally suffers from the curse of dimensionality, while

methods that can moderate this curse have difficulties dealing with such constraints.

This paper shows the conditions under which the n-step value function for a dynamic

problem with inequality constraints is differentiable, and utilizes this result to show

how a Euler equation based method can deal with inequality constraints in an easily

implementable, efficient and accurate manner.1

In the context of discretized Dynamic Programming, dealing with inequality con-

straints is generally straightforward; the state space is trivially delimited such that

any inequality constraint cannot be violated. Nevertheless, discretized Dynamic Pro-

gramming severely suffers from the curse of dimensionality. To circumvent this dif-

ficulty, researchers have on many instances relied upon continuous state approxima-

tion methods.2 These procedures generally work well for interior problems where it

is known that the value function is differentiable, which is commonly a necessary

condition to recover the equilibrium policy function. However, given that Benveniste

and Scheinkman’s (1979) envelope theorem assumes interiority, this result does not

1The “n-step value function” refers to any element in the sequence {vn}n∈N.
2Or, equivalently, “Parameterized Dynamic Programming”.
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extend to models where inequality constraints may occasionally bind. In the liter-

ature, many researchers have chosen to ignore this problem and to proceed as the

value function is known to be differentiable even when such constraints are present.

An appealing approach to deal with inequality constraints in dynamic models is

to operate on the Euler equation. Christiano and Fisher (2000) show that such

constraints can be dealt with in a straightforward way when preferably using the

parameterized expectations algorithm developed by den Haan and Marcet (1990), or

a version thereof.3 However, when using such Euler equation based methods, conver-

gence is far from certain and, without an “educated” initial guess for the equilibrium

policy function, convergence may indeed often fail.4

This paper addresses these concerns. It will be shown that under certain conditions,

any element of the sequence of value functions defined by value function iteration is

differentiable when a general class of inequality constraints are considered. Moreover,

analytical expressions of their respective derivatives will be presented.

By exploiting these theoretical insights, an iterative procedure on the Euler equa-

tion, commonly known as time iteration, is derived. Given that this procedure is

equivalent to value function iteration, it is in effect a globally convergent method of

finding the equilibrium functions. Due to the concavity of the problem, this turns out

to be a very convenient and efficient technique from a computational perspective.

The outline of the paper is the following: Section 2 states and proves the paper’s

main propositions. Section 3 shows through three examples how the results in section

2 may be implemented in practice. Section 4 concludes.

2. Theory

In this section two central propositions will be presented: Proposition 1 establishes

the conditions under which any element of the convergent sequence of approximate

value functions, {vn}n∈N, is differentiable. After defining time iteration as a particular

3See McGrattan (1996) for an alternative Euler equation based technique that utilizes the notion

of a “penalty function”.
4In Christiano and Fisher (2000), a log linearized version of the model is solved and used as an

initial guess for the equilibrium functions.
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iterative procedure on the Euler equation, Proposition 2 will establish that the se-

quence of policy functions generated by this method converges to the unique solution.

This paper looks for solutions for problems that may be framed on the basis of the

following Bellman equation

(1) v(x, z) = max
y∈Γ(x,z)

{F (x, y, z) + β

∫

Z

v(y, z′)Q(z, dz′)}

Where x ∈ X is the endogenous state, z ∈ Z is the exogenous state with a law of

motion determined by the stationary transition function Q. The following is assumed:

i X is a convex Borel set in R` with Borel subsets X , and Z is a compact Borel

set in Rk with Borel subsets Z. Denote the (measurable) product space of

(X,X ) and (Z,Z) as (S,S).

ii The transition function, Q, has the Feller property.5

iii The feasibility correspondence Γ(x, z) is nonempty, compact-valued, and con-

tinuous. Moreover, the set A = {(y, x) ∈ X ×X : y ∈ Γ(x, z)} is convex in x,

for all z ∈ Z.

iv The return function F (·, ·, z) : A → R is, once continuously differentiable,

strictly concave and bounded on A for all z ∈ Z.

v The discount factor, β, is in the interval (0, 1).

It is important to note that the above definition of the feasibility correspondence

includes the possibility of inequality constraints.

If v0 is (weakly) concave and the above assumptions hold, the following statements

are true for any n ∈ N (Section 9.2 in Stokey, Lucas and Prescott 1989):

i The sequences of functions defined by

vn+1(x, z) = max
y∈Γ(x,z)

{F (x, y, z) + β

∫

Z

vn(y, z′)Q(z, dz′)}

gn+1(x, z) = argmax
y∈Γ(x,z)

{F (x, y, z) + β

∫

Z

vn(y, z′)Q(z, dz′)}

converge pointwise (in the sup-norm) to the unique fixed points v and g.6

ii v and vn are strictly concave.

iii g and gn are continuous functions.

5Alternatively one may assume that Z is countable and Z contains all subsets of Z.
6Where g is the argmax of (1).
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For subsequent reference, the following additional assumptions will be used

Assumption 1. The feasibility correspondence can be formulated as

Γ(x, z) = {y ∈ X : mj(x, y, z) ≤ 0, j = 1, . . . , r}
and the functions mj(x, y, z), j = 1, . . . , r, are, once continuously differentiable in x

and y, and convex in y.

Assumption 2. Linear Independence Constraint Qualification (LICQ): The Jaco-

bian of the p binding constraints has full (row) rank; i.e. rank(Jm) = p.

Assumption 3. The following hold

i Γ(x, z) ⊂ int(X) or

ii X is compact and gn(x, z) ∈ int(X).

Note that Assumption 2 implies that there exists a ŷ such that mj(x, ŷ, z) < 0, for

all x, z and j (Slater’s Condition). Moreover, part (i) in Assumption 3 implies part

(ii), but the converse is not necessarily true.

Define the operator T on C1(S), the space of bounded, strictly concave once con-

tinuously differentiable functions, as

(2) (Tf)(x, z) = max
y∈Γ(x,z)

{F (x, y, z) + β

∫

Z

f(y, z′)Q(z, dz′)}

Before moving ahead, it is important to note that under the above additional assump-

tions it is possible to express the problem in (2) as

(Tf)(x, z) = min
µ≥0

max
y∈X

L(x, y, z, µ) = max
y∈X

min
µ≥0

L(x, y, z, µ)(3)

L(x, y, z, µ) =F (x, y, z) + β

∫

Z

f(y, z′)Q(z, dz′)−
r∑

j=1

µjmj(x, y, z)

where L(x, y, z, µ) is a saddle function (see for instance Rockafellar 1970).

The ultimate goal of this section is to show that time iteration yields a convergent

sequence of policy functions. The following definition of time iteration will be used.7

7This definition covers of course the special cases of time iteration discussed in, for instance, Judd

(1998), and Coleman (1990). As far as the author is aware, there has been no application of “time

iteration” that has not complied with this definition.
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Definition 1. Denote the partial derivatives of F and m with respect to the ith

element of y as Fi(x, y, z) and mj,i(x, y, z), respectively. Then, time iteration is

the iterative procedure that finds the sequence {hn(x, z)}∞n=0 as y = hn+1(x, z) such

that

0 = Fi(x, y, z) + β

∫

Z

[Fi(y, hn(y, z′), z′)

−
r∑

j=1

µj,n(y, z′)mj,i(y, hn(y, z′), z′)]Q(z, dz′)−
r∑

j=1

µj,n+1(x, z)mj,i(x, y, z)

Notwithstanding the seemingly esoteric notation, time iteration can be thought of

as using the Euler equation to find today’s optimal policy, hn+1, given the policy of

tomorrow, hn.

In order to verify that this procedure yields a sequence of policy functions con-

verging to g, the following will be shown: Proposition 1 ascertains that the value

functions vn, all n ∈ N, are differentiable and, by exploiting this finding, Proposition

2 will establish the desired result.

The following lemma is necessary for Proposition 1.

Lemma 1. The minimizer, µ(x, z), of (3) is a continuous function with respect to x

and z.

Proof. By the definition of a saddle function, the fact that µ ≥ 0 and mj(x, ŷ, z) < 0,

for all x, z and j, it follows that

(Tf)(x, z) ≥ L(x, ŷ, z, µ∗) ≥ F (x, ŷ, z) + β

∫

Z

f(ŷ, z′)Q(z, dz′)− µj(x, z)mj(x, ŷ, z)

Which further implies that

µj(x, z) ≤ µ̄j ≡ max
x∈X

(Tf)(x, z)− F (x, ŷ, z)− β
∫

Z
f(ŷ, z′)Q(z, dz′)

−mj(x, ŷ, z)
< +∞

By Berge’s Theorem of the Maximum, L(x, h(x, z, µ), z, µ) is a continuous function.

Hence, the set of minimizers µ(x, z) that solve the dual problem

min
0≤µ≤µ̄

L(x, g̃(x, z, µ), z, µ)

is an upper hemicontinuous correspondence in x and z. By Assumptions 2 and 3,

µ(x, z) is single valued and consequently a continuous function in x and z. ¤
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Proposition 1. The n-step value function, vn, is (once) continuously differentiable

with respect to x ∈ int(X) and its partial derivatives are given by

vi,n(x, z) = Fi(x, gn(x, z), z)−
r∑

j=1

µj,n(x, z)mi,j(x, gn(x, z), z)

for i = 1, . . . , `.

Proof. It is sufficient to show that T : C1(S) → C1(S).

Define the saddle function

L(x, g(x, z), z, µ(x, z)) = F (x, g(x, z), z) + β

∫

Z

f(g(x, z), z′)Q(z, dz′)

−
r∑

j=1

µj(x, z)mj(x, g(x, z), z) = (Tf)(x, z)

Pick an x ∈ int(X) and an x′ in a neighborhood, Nε(x), of x such that ‖ x− x′ ‖ =

‖ xi − x′i ‖ for all x′ ∈ Nε(x), where xi denotes the ith element of the vector x.8 For

notational convenience, denote the policy and multiplier functions from (3) as g, µ

and g′, µ′ for (x, z) and (x′, z) respectively.

The definition of a saddle function implies

L(x′, g, z, µ′) ≤ L(x′, g′, z, µ′) ≤ L(x′, g′, z, µ)

and

L(x, g′, z, µ) ≤ L(x, g, z, µ) ≤ L(x, g, z, µ′)

Combine these two expressions and divide by x′i − xi

L(x′, g, z, µ′)− L(x, g, z, µ′)
x′i − xi

≤ (Tf)(x′, z)− (Tf)(x, z)

x′i − xi

≤ L(x′, g′, z, µ)− L(x, g′, z, µ)

x′i − xi

By Lemma 1 and the results on page 4, the functions g and µ are continuous. Conse-

quently the limits of g′ and µ′ exist and equal limx′→x g′ = g, limx′→x µ′ = µ. Hence

lim
x′→x

L(x′, g, z, µ′)− L(x, g, z, µ′)
x′i − xi

= lim
x′→x

L(x′, g′, z, µ)− L(x, g′, z, µ)

x′i − xi

8Where ‖ · ‖ denotes the Euclidian norm. This implies that the elements of vectors x and x′ are

identical except for element i.
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By the Pinching (Squeeze) Theorem

lim
x′→x

(Tf)(x′, z)− (Tf)(x, z)

x′i − xi

= Li(x, g, z, µ)

Thus
∂(Tf)(x, z)

∂xi

= Li(x, g, z, µ) = Fi(x, g, z)−
r∑

j=1

µjmj,i(x, g, z)

If v0 is a weakly concave and differentiable function, the desired result is achieved. ¤

Note that since the space C1(S) is not complete in the sup-norm, Proposition 1

does not imply that the limiting value function, v, is differentiable. Moreover, in the

proposition above, strict concavity of the problem and full rank of Jm is assumed.

This simplifies the proof given in Corollary 5, p. 597, in Milgrom and Segal (2002),

which essentially is equivalent for x ∈ [0, 1].

The final proposition will show that the sequence of policy functions obtained by

time iteration converges to the true policy function.

Proposition 2. The function y = hn+1(x, z) that solves

0 = Fi(x, y, z) + β

∫

Z

[Fi(y, gn(y, z′), z′)

−
r∑

j=1

µj,n(y, z′)mj,i(y, gn(y, z′), z′)]Q(z, dz′)−
r∑

j=1

µj,n+1(x, z)mj,i(x, y, z)

for i = 1, . . . , `, is equal to

gn+1(x, z) = argmax
y∈Γ(x,z)

{F (x, y, z) + β

∫

Z

vn(y, z′)Q(z, dz′)}

Proof. Due to the stated assumptions, a sufficient condition for a maximum is a saddle

point of the lagrangian

L(x, y, z, µ) = F (x, y, z) + β

∫

Z

vn(y, z′)Q(z, dz′)−
r∑

j=1

µj,n+1mj(x, y, z)

By Proposition 1, the value function vn(y, z′) is differentiable and by Assumption 3,

given minimizers µn+1, sufficient conditions for a saddle point are thus9

0 = Fi(x, y, z) + β

∫

Z

vn,i(y, z′)Q(z, dz′)−
r∑

j=1

µj,n+1(x, z)mj,i(x, y, z)

9Assuming that differentiation under the integral is legitimate.
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for i = 1, . . . , `. By Proposition 1, this can be rewritten as

0 =Fi(x, y, z) + β

∫

Z

[Fi(y, gn(y, z′), z′)

−
r∑

j=1

µj,n(y, z′)mj,i(y, gn(y, z′), z′)]Q(z, dz′)−
r∑

j=1

µj,n+1(x, z)mj,i(x, y, z)

Due to strict concavity the solution is unique and hn+1(x, z) = gn+1(x, z), which

concludes the proof. ¤

Since it is known that for all ε > 0 there exist an Ns such that sups |g(s)−gn(s)| < ε

for all n ≥ Ns, Proposition 2 states that sups |g(s)−hn(s)| < ε for all n ≥ Ns. Hence,

the sequence {hn}n∈N converges to the unique function g.10

Lastly, there are two additional remarks to be made: First, gn → g implies that

Fi(x, gn(x, z), z) → Fi(x, g(x, z), z). As a consequence, if mj(x, y, z) = mj(y, z), this

further implies that vi,n(x, z) → Fi(x, g(x, z), z).11 Hence, if convergence of gn is

uniform, then v(x, z) is, under these additional conditions, indeed differentiable and

its derivative is given by Fi(x, g(x, z), z). In fact, this result holds under weaker

assumptions than previously stated; undeniably, LICQ is dispensable.

Second, a sufficient condition for v(x, z) to be differentiable in the more general

setting, is that µ(s) is unique for each s ∈ S.12

2.1. Discussion. A natural question to ask is how the propositions above are useful

in the sense of finding the solution to an infinite horizon problem. Indeed, what

has been proven is an equivalence between value function and time iteration and, as

such, neither method has any advantage over the other. From a strict theoretical

viewpoint this is certainly true. However, it should be noted that very few problems

actually have an analytical solution, and a numerical approximation to the solution

is commonly required. When such procedures are necessary, the propositions above

can be used extensively if inequality constraints are present.

10If X is compact, Ns is independent of s.
11Such constraints, (endogenous) state independent constraints, corresponds, for instance, to debt

limits.
12If the dual objective function is strictly convex in µ (it is known to be weakly convex), then

µ(s) is unique for each s ∈ S.
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To appreciate this line of reasoning, note that in many applications Dynamic Pro-

gramming relies upon a discretized state space, and such a formulation makes any

inequality constraint easy to implement. Nonetheless, to achieve high accuracy the

discretization must be made on a very fine grid and this causes the procedure to

suffer severely from the curse of dimensionality. To avoid the curse of dimensionality,

scholars have relied upon sophisticated approximation methods to enhance accuracy

without markedly increasing computer time.13 Generally, such approximation meth-

ods use the derivative of a numerically approximated value function to find the se-

quence of policy functions. Clearly, Proposition 1 confirms that such continuous state

methods will converge to the true solution under a wide set of circumstances.

Moreover, when numerical approximations are used, there may be significant dif-

ferences between value function- and time iteration, and on some occasions there are

reasons to favor the latter: Depending on the character of the problem, the policy

function might behave in a less complicated way than the value function, and hence

might be more straightforward to approximate. More importantly, given that the de-

rivative of the value function is usually needed to find the policy function, an accurate

approximation of its slope is as important as its level. As a consequence, not only

are more data points needed for the approximation, but the choice of approximation

method is also restricted. This restriction generally causes Dynamic Programming to

suffer more from the curse of dimensionality than time iteration.14

As a final remark it ought to be mentioned that time iteration nests “The method of

endogenous gridpoints” as developed by Carroll (2005). Hence, problems within the

preceding framework can thus be solved extremely efficiently with sustained global

convergence.

13For instance, Judd and Solnick (1994) show, in the case of the standard neoclassical growth

model, that using a grid with 12 nodes and applying a shape-preserving spline performs as well as

a discretized technique with 1200 nodes.
14Approximation methods that are capable of accurately approximating both the level and the

slope of a function - certain classes of finite element methods - are not even theoretically developed

to deal with high dimensions. Thus, time iteration is the only available technique for reliably solving

high-dimensional nonlinear problems.
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3. Examples

This section will provide three examples of problems with inequality constraints

where time iteration is applicable. The examples are variations of the infinite horizon

neoclassical growth model and are chosen on the basis that they represent a large

class of models used in the literature. For each respective model, the underlying

assumptions required for the results in section 2 will be explicitly verified. In addition,

the possible caveats and violations to Assumptions 2 and 3 will be explored.

It is not the purpose of this paper to establish the accuracy or efficiency of various

algorithms by solving large scale dynamic programming problems. However, since

the first example allows for a closed form solution, an accuracy verification is indeed

easily carried out and will thus be presented.

The economies are comprised by an infinite number of ex ante homogenous agents of

measure one. The agents maximize their utility by choosing a stochastic consumption

process that has to satisfy some feasibility restriction. In general, the problem faced

by any agent can be formulated as

v(k, z) = max
k′∈Γ(k,z)

{u(y(k, z)− k′) + β

∫

Z

v(k′, z′)Q(z, dz′)}

Γ(k, z) = {k′ ∈ K : mj(k, k′, z) ≤ 0, j = 1 . . . r}
Where y(k, z) − k′ denotes consumption, k denotes capital, y is some function de-

termining income and z denotes some stochastic element. Naturally, it is assumed

that u, β, K, Z, Q and m fulfill the assumptions stated on page 4. Moreover, it is

assumed that u(c) = limγ→σ
c1−γ

1−γ
, ∞ > σ ≥ 1, and that y(k, z) is concave in k and,

unless something else is specifically stated, that y is such that for all z ∈ Z there

exist an k̂ > 0 such that k ≤ y(k, z) ≤ k̂, all 0 ≤ k ≤ k̂, and y(k, z) < k, all k > k̂.

As in most of the neoclassical literature it is assumed that y depends on the function

f(k, h, z) = zkαh1−α, for α ∈ (0, 1). Labor, h, is assumed throughout to be supplied

inelastically and is normalized to one.

3.1. An analytical example. The purpose of this example is to show how the

results from Corollary 1 and Propositions 1 and 2 work in a setting with a closed

form solution.

It is assumed that σ = 1, y(k) = kα, K = [k, k], m1(k, k′) = b − k′, m2(k, k′) =

k′ − kα and α ∈ (0, 1). The economic model is hence characterized by the Bellman
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equation

v(k) = max
k′∈Γ(k)

{ln(kα − k′) + βv(k′)}

Γ(k) = {k′ ∈ K : b− k′ ≤ 0, k′ − kα ≤ 0}

The model is the deterministic neoclassical growth model with full depreciation and

logarithmic utility with an additional constraint on capital holdings. As long as k < b

and k > 1 = k̂, Assumption 3 is guaranteed to hold. Note that the specific choice

of utility function together with the additional assumption that 0 < b1/α < k will

ensure that k′− kα ≤ 0 never is breached. Hence, without violating Assumption 3, it

is possible to reduce the correspondence to

Γ(k) = {k′ ∈ K : b− k′ ≤ 0}

By construction Assumption 2 will hold. To eliminate uninteresting cases it is as-

sumed that b is set such that b < ( 1
αβ

)
1

α−1 .

Under the above conditions the results on page 4 hold, and the problem can be

solved with value function iteration. Assume for the sake of simplicity that (b/β)1/α <

k < b. Then finding

v1(k) = max
k′∈Γ(k)

{ln(kα − k′) + βv0(k
′)}

for v0(k) = α ln k+ln(1−β)
1−β

, corresponds to the time iteration step of finding k′ = g1(k)

such that
1

kα − k′
+ µ0(k) = β

1

k′α − g0(k′)
αkα−1

for g0(k) = βkα.15 Since, the problem itself is strictly concave, it is possible to ignore

the multiplier: The policy function from solving this equation is accordingly given by

g1(k) = max{ αβ
1−β+αβ

kα, b}. Let v and v denote the value functions when the agent is

and is not constrained respectively. Hence

v1(k) = α
1− β + αβ

1− β
ln k + A1, v1(k) = ln(kα − b) + βv0(b)

Where A1 is some constant. The derivatives of these two functions are given by

v′1(k) =
α

k

1− β + αβ

1− β
, v′1(k) =

1

kα − b
αkα−1

15Note that v0(k) = ln(kα−g0(k))
1−β . Moreover, g0 is a feasible policy for all k ∈ K. Feasibility of g0

is not a necessary requirement, but is merely used for the sake of simplicity.
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The value function v1 is consequently differentiable if, and only if, v′1(k) = v′1(k) at k

such that b = αβ
1−β+αβ

kα. Inserting this expression for b into v′1(k) yields

v′1(k) =
α

k

1− β + αβ

1− β
= v′1(k)

Hence, v1 is differentiable and its derivative is given by

v′1(k) =
1

kα − g1(k)
αkα−1

Continuing by induction one finds that

gn(k) = max

{
αβ

(1− β)((αβ)n−1 − 1) + (αβ)n−1(αβ − 1)

(1− β)((αβ)n − 1) + (αβ)n(αβ − 1)
kα, b

}

vn(k) = α ln k
(1− β)((αβ)n − 1) + (αβ)n(αβ − 1)

(1− β)(αβ − 1)
+ An

vn(k) = ln(kα − b) + βvn−1(b)

And by the same argument, vn is differentiable and its derivative is given by

v′n(k) =
1

kα − gn(k)
αkα−1

The limiting functions are

g(k) = max {αβkα, b}

v(k) =
α

1− αβ
ln k +

αβ
1−αβ

ln(αβ) + ln(1− αβ)

1− β

v(k) = ln(kα − b) + βv(b)

And the limiting value function is differentiable with derivative

v′(k) =
1

kα − g(k)
αkα−1

Finally, the lagrange multiplier can be recovered as16

µ(k) =
1

kα − g(k)
− β

αg(k)α−1

g(k)α − g(g(k))

Since the problem allows for an analytical solution, accuracy of various numerical

algorithms can be assessed straightforwardly.

16Clearly, the complete sequence of multipliers, {µn}∞n=1, could be recovered in a similar fashion.
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Table 1. Performance of Algorithms

Value Iteration Time Iteration

Algorithm #1 #2 #3 #4

N 500 1000 20 20

Accuracy 5.3e-3 3.3e-3 5.8e-4 2.9e-6

ree 4.2e-3 2.1e-3 1.2e-3 3.2e-5

cpu-time 72 295 0.01 0.02

Remark Discrete grid Linear Spline

Table 1 lists the numerical results of applying discretized Value Function Iteration and

Time Iteration to the model with α = 0.3, β = 1.03−1/4 b = 0.15, K = [0.7kss, 1.3kss]

and kss = (1/αβ)1/(α−1). “Accuracy” refers to the maximum absolute value percent-

age error of the policy function in terms of capital and ree refers to the maximum

relative Euler equation errors defined in Judd (1998). Moreover, computer time is

0.1 0.11
0.1495

0.154

k’

 

 

k

Closed Form Solution
Value Function Iteration
Time Iteration

Figure 1. Policy functions for Algorithm #1 and #3.

denoted in seconds, Linear and Spline refer to the interpolation method used for the

equilibrium functions and N denotes the number of nodes in the grid. The advan-

tage of time iteration is here quite clear; time iteration outperforms value function

iteration in both norms, using a very small grid and in a fraction of the time. The

advantage of time iteration is further illuminated by Figure 1 where the policy func-

tions recovered from the procedures are graphed close to the debt limit. Even at the

binding point, time iteration performs extremely well.



INEQUALITY CONSTRAINTS IN RECURSIVE ECONOMIES 15

3.2. Irreversible investment. (Christiano and Fisher 2000) Irreversibility of in-

vestment in the neoclassical growth model is an important example given that it

captures the problem of state dependent inequality constraints.

For this economy it is assumed that y(k, z) = f(k, z) + (1 − δ)k, K = [k, k],

m1(k, k′, z) = (1 − δ)k − k′ and m2(k, k′, z) = k′ − y(k, z). Moreover, markets for

idiosyncratic risks are complete. The problem is thus characterized by the following

Bellman equation

v(k, z) = max
k′∈Γ(k,z)

{u(y(k, z)− k′) + β

∫

Z

v(k′, z′)Q(z, dz′)}

Γ(x, z) = {k′ ∈ K : (1− δ)k − k′ ≤ 0, k′ − y(k, z) ≤ 0}

In the previous example, it was possible to use an unbounded return function since the

“borrowing constraint” together with restrictions on the income function generated a

natural boundedness of the problem. However, in this formulation it is not possible to

impose a similar (debt) constraint, since such a restriction would clearly interfere with

the irreversibility constraint on investment and hence violate Assumption 2. As an

alternative it will be assumed ex ante that there exist an ε > 0 such that for all z ∈ Z,

n ∈ N, gn(k, z) > ε; that is, a lower interiority of gn(k, z) is ex ante assumed for all

k, z and n.17 By the definition of k̂ on page 11, the set of maintainable capital stocks

are thus given by K = [ε, k̂] and, given the specific choice of the utility function, the

feasibility correspondence can be reformulated as Γ(x, z) = {k′ ∈ K : (1−δ)k−k′ ≤ 0}
without violating Assumption 3.

Under these restrictions it is known that

vn+1(k, z) = max
k′≥(1−δ)k

{u(y(k, z)− k′) + β

∫

Z

vn(k′, z′)Q(z, dz′)}

converges to v. By Proposition 2 and for a given µn+1(k, z), this procedure reduces

to finding k′ = gn+1(k, z) such that

u′(y(k, z)− k′)− µn+1(k, z) = β

∫

Z

[u′(y(k′, z′)− gn(k′, z′))yk(k
′, z′)(4)

− µn(k′, z′)(1− δ)]Q(z, dz′)

As can be seen from (4), the multiplier from the previous iteration is in the expectation

term. This indicates the presence of a state dependent constraint.

17Naturally, such a conjecture needs to be verified when solving the model.
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Although it is necessary to find both a policy function and a multiplier at each it-

eration, this is a trivial task. Since the problem itself is strictly concave, it is possible

to ignore µn+1 in (4) and find the function ĝn+1 that solves the (reduced) equation.

The true policy function gn+1 can then be recovered as gn+1 = max{ĝn+1, (1 − δ)k}
and µn+1 is merely the residual in (4) when gn+1 is inserted into the equation.

For a parameterization given by α = 0.3, β = 1.03−1/4, δ = 0.02, σ = 1, Z =

exp({0.23,−0.23}) and Q(z, z′) = 1/2 for all (z, z′) pairs, the solution is depicted in

Figure 2. Figure 2 illustrates how distinctly the procedure captures the Kuhn-Tucker

condition of µ(k, z)m1(k, k′, z) = 0. The Matlab program for this model, presented

24 26 28 30 32 34 36 38 40
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

k

g(k,z)−(1−δ)k, µ(k,z)

µ(k,z
low

)

g(k,z
low

)−(1−δ)k

Figure 2. Investment function and multiplier for the model with ir-

reversible investment.

in Appendix A, clearly illustrates the simplicity of the procedure.

3.3. Incomplete markets. (Aiyagari 1994) Standard models with incomplete mar-

ket are relevant for the procedure proposed in this paper since the assumption of

risk-free borrowing induces a debt limit as a necessary condition for the characteri-

zation of the economy to be valid.

It is assumed that y(k, z) = wz+(1+r)k, K = [k, k], Z is countable, m1(k, k′, z) =

−φ − k′ and, as before, m2(k, k′, z) = k′ − y(k, z). Here z denotes an uninsurable

idiosyncratic component; markets are incomplete. However, there is no aggregate

risk in the economy.18 Moreover, w and r are given by fh(k̃, h) and 1 + fk(k̃, h) − δ

18See Krusell and Smith (1998) for an economy where this assumption is relaxed.
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respectively. k̃ represents the aggregate capital stock in the economy and, as be-

fore, h represent the employment rate, normalized to unity. The problem is thus

characterized by the following equations

v(k, z) = max
k′∈Γ(k,z)

{u(y(k, z)− k′) + β

∫

Z

v(k′, z′)Q(z, z′)}

Γ(k, z) = {k′ ∈ K : −φ− k′ ≤ 0, k′ − y(k, z) ≤ 0}

k̃ =
∑

z

∫
kλ(k, z) dk

λ(k′, z′) =
∑

z

∫

{k:k′=g(k,z)}
λ(k, z)Q(z, z′) dk

Where that λ(k, ε) denotes the (stationary) distribution of asset holdings and em-

ployment status.

Note that y(k, z) does not fulfill the desired properties to ensure an upper bound

on the endogenous state space (as stated on page 11). However, as noted in Aiyagari

(1994), for all z ∈ Z there exist a k∗ such that for all k ≥ k∗, k′ ≤ k. In order to ensure

that Assumption 3 holds, set k > k∗ and k < −φ < wz + k(1 + r), where z = inf Z.

By again exploiting the properties of the functional form of the return function, the

feasibility correspondence can be reformulated as Γ(k, z) = {k′ ∈ K : −φ − k′ ≤ 0}
and Assumption 2 will, by construction, hold.19

Under the above stated conditions, it is known that the procedure

vn+1(k, z) = max
−φ≤k′

{u(y(k, z)− k′) + β

∫

Z

vn(k′, z′)Q(z, z′)}

converges to v. Given µn+1(k, z), Proposition 2 asserts that this procedure reduces

to finding k′ = gn+1(k, z) such that

u′(y(k, z)− k′)− µn+1(k, z) = β

∫

Z

u′(y(k′, z′)− gn(k′, z′))(1 + r)Q(z, z′)

As in the previous example, it is possible due to the concavity of the problem, to

ignore the multiplier µn+1 and solve the problem to find ĝn+1. Again, the true policy

function gn+1 is recovered as gn+1 = max{−φ, ĝn+1}. The multiplier can then be ob-

tained as a residual. Thus, except for a applying a “max” operator at each iteration,

19Note that −φ in the above analysis is set strictly higher than what Aiyagari (1994) refers to

as “the natural debt limit”. Here, −φ is what is usually referred to as an “ad-hoc constraint”; an

important feature in the current setting to ensure the boundedness of the problem. See for instance

Krusell and Smith (1997) for the empirical relevance of ad-hoc constraints.
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such a procedure is no more difficult to solve than a model with no constraints at all.

For a parameterization given by α = 0.3, β = 0.95, δ = 0.1, σ = 1, φ = −2,

Z = {1, 0.5} and Q(z, z′) = 1/2 for all (z, z′) pairs, the solution is depicted in Figure

3. Again, Figure 3 illustrates how ably the procedure captures the Kuhn-Tucker

condition of µ(k, z)m1(k, k′, z) = 0.

2 2.5 3 3.5
0
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0.8

1

1.2

1.4
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1.8
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k

g(k,z)+φ,µ(k,z)

µ(k,z
low

)

g(k,z
high

)+φ

g(k,z
low

)+φ

Figure 3. Policy and multiplier for an Aiygari economy with an ad

hoc constraint (φ = −2).

4. Conclusion

Recursive models with inequality constraints are generally problematic to solve:

Discretized Dynamic Programming suffers severely from the curse of dimensionality

and Parameterized Dynamic Programming imposes a differentiability property of the

value function that might be false. Furthermore, Euler equation techniques have

unknown or very poor convergence properties, and are thus difficult to solve without

making initial educated guesses for the equilibrium functions.

This paper has resolved parts of these problems: It has been established that under

weak conditions, the n-step value function is differentiable for problems with inequal-

ity constraints. Thus, solution techniques that impose a differentiability of the value

function will, at least theoretically, converge to the true solution. Moreover, through a

derived analytical expression of the derivative of the value function, an iterative Euler

equation based method has been shown to be convergent when inequality constraints

might be present.
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Moreover, as shown in section 3, time iteration proposes an iterative procedure that

is appealing from a computational perspective. Firstly, high-dimensional approxima-

tion methods are applicable given that there is no need to approximate the slope of

any equilibrium function. Secondly, policy functions possibly have a relatively un-

complicated behavior relatively to the value function and are hence more accurately

approximated. Thirdly, in the iterative procedure, lagrange multipliers come out as

residuals from the Euler equation and these are, in the case of state dependent con-

straints, merely needed to be interpolated at each iteration.

As a direction for future research, it would be desirable to establish under which

additional conditions the limiting value function is differentiable when inequality con-

straints potentially bind. Moreover, methods for evaluating the accuracy of numerical

solutions using the Euler equation residuals, are well developed for interior problems

(Santos 2000). However, they are not extended to deal with problems formulated in

the context of this paper.
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Appendix A. Matlab code

1 % The neoclassical growth model with irreversible investment

2 % in the setting of Christiano and Fischer (2000), model (1),

3 % solved by the method of endogenous gridpoints using a finite

4 % element method (linear interpolation is default).

5

6 % Parameters: exp(z) is the solow residual, a is the capital share

7 % of output, b is the discount factor, d is the depreciation

8 % rate and g is the coefficient of relative riskaversion.

9 % Z is the exogenous state space with associated transition

10 % matrix, Q.

11

12 %N defines the number of nodes in the endogenous state space.

13

14 N=200; p=0; z=0.23; a=0.3; b=1.03ˆ(−1/4); d=0.02; g=1;

15 Q=[(1+p)/2,(1−p)/2;(1−p)/2,(1+p)/2]; Z=exp([z;−z]);
16

17 n=ones(size(Z')); nn=ones(N,1); d1=0.5;

18 khat=((1−b*(1−d))/(a*b))ˆ(1/(a−1)); kmax=khat*1.9;

19 kmin=khat*0.3;

20 kp=(linspace(kmin,kmax,N))'; kpp=(1−d)*kp*n; mp=0; mup=0*nn*n;

21 m0=(kp./(1−d)).ˆa*Z';
22

23 while d1>1e−8
24 up=(kp.ˆ(a)*Z'+(1−d)*kp*n−max(kpp,(1−d)*kp*n)).ˆ(−g);
25 r=a*kp.ˆ(a−1)*Z'−d;
26 m=(b*(up.*(1+r)−max(mup,0))*Q').ˆ(−1/g)+kp*n;
27 mu=(m0).ˆ(−g)−b*(up.*(1+r)−max(mup,0))*Q';
28 d1=max(max(abs(mp−m)./(1+abs(m))));
29 mp=m;

30 for i=1:length(Z)

31 kpp(:,i)=interp1(m(:,i),kp,Z(i)*kp.ˆa+(1−d)*kp);
32 mup(:,i)=interp1(m(:,i),mu(:,i),Z(i)*kp.ˆa+(1−d)*kp);
33 end

34 end


