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Abstract: This paper considers a dynamic matching model with imper-
fectly observable worker effort, combining the matching technology of Mortensen
and Pissarides (1994) with the shirking problem of Shapiro and Stiglitz (1984).
We characterize the equilibrium and propose a quick algorithm for computing
it to arbitrary accuracy.

In our economy, the no-shirking condition endogenously imposes real down-
ward wage rigidity on the matching market. This type of wage rigidity implies
that inefficient separations occur, as in Ramey and Watson (1997). Nonethe-
less, our main numerical finding is that imperfectly observable effort smoothes
job destruction over the cycle, because firms are forced, in good states, to
terminate some marginal jobs which they cannot commit to maintain in bad
states. This time-inconsistency problem casts doubt on the importance of inef-
ficient churning (”contractual fragility”) as an explanation of observed employ-
ment fluctuation. On the other hand, the no-shirking condition implies that
firms’ share of surplus is procyclical, which can amplify fluctuations in job
creation. Thus, our model is consistent with recent evidence that job creation
is more important than job destruction in driving labor market fluctuations,
and it therefore also tends to generate a robust Beveridge curve. However, the
overall impact on unemployment and vacancy volatility is ambiguous.

JEL classification: C78, E24, E32, J64
Keywords: Job matching, wage rigidity, efficiency wages, contractual

fragility

1



1 Introduction

1. Matching models are now standard model of labor market dynamics; but

lots of recent controversy about their empirical success. One key issue:

matching models have a hard time generating as much cyclical volatility

in unemployment and vacancies as is observed in the data (Shimer 2004,

2005; Costain and Reiter2003; Hall 2003).

2. Broadly speaking, two general classes of mechanisms have been identified

which might help generate cyclical labor market volatility.

(a) One line of research, stemming from the papers mentioned above,

suggests that rigid wages may generate volatility. In these models

rigid wages create large fluctuations in profits which amplify the

fluctuations in job creation and unemployment.

i. However, only few papers have attempted to incorporate mi-

crofoundations for wage stickiness into the model (Shimer 2004;

Hall 2005; Shimer and Wright 2005), and it remains an open

question whether the quantitative effects of wage stickiness are

large when a consistent model of wage stickiness is used.

(b) A second (but earlier) line of research, initiated by work of Ramey

and Watson (1997), shows that incentive problems may amplify

fluctuations in job destruction. In these models of “contractual

fragility” or “inefficient churning”, the effort of agents is imperfectly

observable and small perturbations of productivity may eliminate

incentive compatibility, causing a wave of job destruction.

i. The merit of this second line of research is that it is based

on a coherent theory for the rigidity of wages. However, so

far the existing papers have focused on steady states, or the

transition path after a single shock from exogenously-imposed

initial conditions.
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3. (a) In this paper, we study a matching model with incentive constraints

that lead to downward wage rigidity.

i. Like Mortensen and Pissarides (1994), we study job creation

and job destruction in a matching model with aggregate and

match-specific productivity shocks.

ii. But like Shapiro and Stiglitz (1988), we assume that wages

must satisfy an incentive compatibility constraint that prevents

shirking.

(b) Thus our paper incorporates a microfounded form of real downward

wage rigidity.

i. Interesting to see how labor market fluctuations change when

a microfounded wage is used instead of an ad hoc sticky wage.

ii. In particular, since we assume labor productivity is cyclical but

the disutility of effort is not, our model implies worker’s surplus

share may be higher in recessions. This suggests that it could

amplify the variation in firms’ hiring incentives.

(c) The incentive compatibility constraint also means that job matches

exhibit “contractual fragility”.

i. Unlike Ramey and Watson (1997), Mortensen and Pissarides

(2001), and Jansen (2001), we will characterize the equilibrium

labor market dynamics.

ii. In particular, need to see whether large waves of firing can occur

along the equilibrium path.

4. Combining the matching structure of Mortensen and Pissarides (1994)

with the “efficiency wages” of Shapiro and Stiglitz (1984) is not only in-

teresting for the light it sheds on the question of unemployment volatility.

Our model has potential to address several other prominent issues in re-

cent literature.
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(a) Using new data, Shimer and Hall have recently argued that fluctu-

ations in job creation are more important for explaining the move-

ment of unemployment, and fluctuations in job destruction are less

important, than was previously thought. The effects of downward

wage rigidity on job creation and the implications of “contractual

fragility” for job destruction means that our model has interesting

implications for both margins.

(b) One of the most robust stylized facts about the labor market is the

negative correlation between unemployment and vacancies (“Bev-

eridge curve”). But previous papers with time-varying job destruc-

tion (Cole and Rogerson, Mortensen and Pissarides, Costain and

Reiter, den Haan et.al.) have often found that the Beveridge curve

is delicate in the model.

(c) On the theoretical side, our paper helps to correct a misconception

about the dynamic properties of efficiency wage models. In models

without matching frictions (Kimball, Kiley), it has been argued

that efficiency wages serve to smooth the flow of profits to the firm,

by driving down the wage in periods when unemployment is high.

In a matching context, too, wages fall in recessions. But more

importantly, a negative aggregate shock makes it more likely that

the incentive compatibility constraint will bind, decreasing firms’

share of surplus, and thus amplifying changes in firms’ profits.

5. Previewing our simulation results, the surprising lesson of our paper

is that this problem tends to smooth the cyclical fluctuations in job

destruction.

(a) Job fragility means that continuation value of marginal jobs is low.

Therefore it is very expensive for firms to provide incentives in

marginal jobs during good times.

(b) Result may be that such marginal jobs are never formed.
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(c) Therefore economy never reaches state with large number of “fragile

jobs”. Waves of firing fail to occur. On the equilibrium path, “con-

tractual fratility” arguments fail; job destruction rate is constant.

6. On the other hand, fact that firms’ share of surplus rises in recessions

may increase volatility of hiring, and therefore of job creation.

(a) Overall effect of no-shirking constraint on unemployment volatil-

ity is ambiguous: it tends to smooth job destruction, but amplify

fluctuations in job creation.

(b) On the other hand, this result is consistent with recent claims that

unemployment variability is driven mostly by job creation, not by

job destruction.

(c) Fact that our model generates more fluctuations in job creation, and

less in job destruction, also helps our model generate a Beveridge

curve.

2 Model

This section presents a continuous-time, infinite horizon matching model with

imperfectly observable worker effort.

2.1 Preferences and production technology

Our economy is populated by a continuum of workers with measure normalized

to one. There is also a continuum of firms; the number of firms is infinitesimal

compared with the number of workers. All agents are risk-neutral and discount

the future at the common rate r.

Workers are identical and derive utility from consumption and leisure. The

instantaneous utility function of a worker is given by 1:

1This specification yields the same payoffs as in Mortensen and Pissarides (1999). More-
over, Marimon and Zilibotti (1999) and Rocheteau (2000) use similar utility specifications
to study the effects of working time reduction. For an analysis of labour supply decisions
with non-separable utility see Marimon and Zilibotti (1999).
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U(c, n) = c + (1− n)b, (1)

where c denotes consumption, n ∈ {0, 1} is the fraction of time devoted to

work and b is the imputed value of leisure. Without loss of generality we

assume that workers consume their entire income at any moment. During

employment c is therefore equal to the worker’s wage w. In addition, workers

can obtain a private gain from shirking that is assumed to be equal to the

leisure a worker would get from not going to work, b (this normalization is

also without loss of generality). Accordingly, we can write the flow utility

of a worker who exerts effort as U(w, 0) = w, while the utility of a worker

who shirks is U(w, 1) = w + b. Unemployed workers, on the contrary, receive

no income and just enjoy leisure U(0, 1) = b. Finally, the discounted lifetime

utility of a worker with income and working time paths {z(t); t ∈ R+} and

{n(t); t ∈ R+} equals

∫

R+
exp(−rt)U [z(t), n(t)]dt. (2)

All firms are identical and have a continuum of jobs that are either filled

with a worker or vacant. Besides effort, the productivity of a firm-worker pair

depends on two components: a match-specific shock x and an aggregate shock

X that affects all firms in the economy. Formally, the flow output of a match,

denoted by y(x,X; n), satisfies

y(x,X; n) =

{
y(x,X) if n = 1

0 otherwise.
(3)

According to the above specification, firms are a collection of independent

jobs. We assume that new idiosyncratic productivity shocks x arrive at Poisson

rate λ. These shocks are i.i.d. draws from a distribution F with support [x, x].

Shocks to the aggregate state of productivity X arrive at rate µ, and are drawn

from {1, 2, ...N}. The conditional probability that the current state changes
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from X to Z is denoted by GZX , and we write the matrix of Markov transition

rates as

G ≡



G11

GN1

...
G1N

GNN




Here, column j represents the probabilities of the N possible states that could

follow state j, so each column sums to one.

2.2 Moral hazard

To introduce a shirking motive, we assume that firms cannot perfectly monitor

individual effort. At any moment in time, the firm observes total output, but

given that the firm has a continuum of workers this does not reveal information

about the effort of individual workers.

Faced with this moral hazard problem, firms offer incentives by promising

to fire workers caught shirking. We assume that the firm’s participation in

the match causes it to observe worker’s effort at the Poisson rate φ. Firing

observed shirkers (off the equilibrium path) is an equilibrium strategy for the

firm if failing to do so would cause all workers to shirk. Shirking by all workers

(off the equilibrium path) is an equilibrium strategy for the workers since

individual workers cannot demonstrate to the firm that they are not shirking.2

In other words, an equilibrium within the firm involving effort by all workers,

under a threat of firing, is sustained by trigger strategies involving a jump to

a new equilibrium at that firm involving shirking by all workers, and therefore

separation of all that firm’s matches.

As in Shapiro and Stiglitz (1984), equilibria of this form must satisfy an in-

centive compatibility constraint. This constraint, referred to as the no-shirking

condition (NSC), will act as a lower-bound on the outcomes during the wage

negotiations. In the remainder of this section we embed our version of the

shirking model into a matching model of unemployment.

2Assuming that the firm is capable of monitoring more often, at a cost, equilibria with
monitoring rates higher than the exogenous rate φ might be sustainable. Such equilibria
would depend on workers’ ability to observe or infer the firm’s monitoring rate. We will not
enter into these complications here.
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2.3 Matching

Unemployed workers and firms are matched together in pairs through an im-

perfect matching technology (e.g. Pissarides 2000). The gross rate of formation

of new matches mt is given by

mt = M(ut, vt) (4)

where ut is the number of unemployed workers, and vt is the number of va-

cancies open, at time t. We assume M exhibits constant returns to scale.

Therefore, the worker’s probability of finding a match, per unit of time, can

be written in terms of tightness θt ≡ vt/ut as

p(θt) =
M(ut, vt)

ut

= M
(
1,

vt

ut

)
(5)

Similarly, the probability that an open vacancy finds a match is

q(θt) =
M(ut, vt)

vt

= M
(

ut

vt

, 1
)

(6)

so that p(θ) = θq(θ).

2.4 The value of matching

Before stating the Bellman equations for workers’ and firms’ value functions,

we assume two restrictions on the equilibrium which are known to be valid

for related models (Mortensen and Pissarides 1994, Cole and Rogerson 1999).

First, we assume that aggregate jump variables may depend on the aggregate

productivity state X, and that match-specific jump variables may depend on

x and X, but that neither may depend on other state variables, like the unem-

ployment rate or the distribution of idiosyncratic productivities across existing

jobs. We will see that the Bellman equations can be written in terms of x and

X only, so it is not unreasonable to conjecture that such a minimum-state equi-

librium exists. Second, we impose the reservation property. That is, we assume

there exists a vector of reservation productivities R(X) such that matches with

idiosyncratic productivity x continue in state X if and only if x ≥ R(X). In
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our numerical work, we prove by construction that equilibria of this form ex-

ist, although this does not rule out other types of equilibria. For notational

convenience, we will refer to the vector of reservation productivities as R, and

the continuation region as C(R). That is, a match continues if productivity

lies in the set C(R) ≡ {(x,X) : x ≥ R(X)}.
We can now spell out the Bellman equations. Call the wage w(x,X), and

let the value functions of employed and unemployed workers be W (x,X) and

U(X), respectively. For any state (x,X) ∈ C(R), function W must satisfy:

rW (x,X) = w(x,X)+δ (U(X)−W (x,X)) + λ

[∫ x

R(X)
W (z, X)dF (z) + F (R(X))U(X)−W (x,X)

]

+ µ





∑

Z:x≥R(Z)

GZX [W (x, Z)−W (x,X)] +
∑

Z:x<R(Z)

GZX [U(Z)−W (x,X)]




(7)

This equation states that the flow of returns to matched worker includes the

wage, plus three flows of expected capital losses and gains: the loss from ex-

ogenous separation, which occurs at rate δ; the gains from drawing a new

idiosyncratic shock z, at rate λ; and the gains from switching to a new aggre-

gate state Z, drawn with conditional probability GZX , at rate µ. Conditional

on an idiosyncratic shock, the separation probability is F (R(X)), and condi-

tional on an aggregate shock, separation occurs if the current idiosyncratic x

is less than the new reservation productivity, R(Z).

The unemployed obtain a constant flow payoff of b from leisure and search

for jobs. Let θ(X) be labor market tightness, and suppose the rate of job

finding is p (θ(X)). Then for any X, the value of unemployment satisfies:

rU(X) = b + p (θ(X)) NW (X) + µ
∑

Z

GZX [U(Z)− U(X)] (8)

where NW (X) is the worker’s expected increase in value from a new job of-

fer (which need not necessarily be accepted), conditional on aggregate state

X. We will consider two cases. On one hand, we consider the case where

all new jobs are drawn from the top of the distribution, so that NW (X) =
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[W (x, X)− U(X)], which guarantees acceptance. On the other hand, we

also consider the case where new jobs are drawn from the same produc-

tivity distribution that governs the idiosyncratic shocks, so that NW (X) =
∫ x
R(X) (W (z, X)− U(X)) dF (z). In this latter case, some new jobs are rejected,

and the value NW (X) reflects this.

Now consider the value functions associated with vacancies, V (X), and

filled jobs, J (x,X). For any state (x,X) in the continuation region C(R), the

value of a filled vacancy satisfies:

rJ (x,X) = y (x,X)−w (x,X)+δ (V (X)− J (x,X)) + λ

[∫ x

R(X)
J (z, X) dF (z) + F (R(X))V (X)− J (x,X)

]

+ µ





∑

Z:x≥R(Z)

GZX [J (x, Z)− J (x, X)] +
∑

Z:x<R(Z)

GZX [V (Z)− J (x,X)]




(9)

Thus the flow of profits to the matched firm consists of output minus wages,

plus three flows of expected losses and gains analogous to those of the worker.

Next, suppose that maintaining a vacancy costs c per period, and that

vacancies are filled at rate q (θ(X)). Then for each X, the value of a vacancy

must satisfy:

rV (X) = −c + q (θ(X)) NF (X) + µ
∑

Z

GZX [V (Z)− V (X)] (10)

where NF (X) is a firm’s expected increase in value resulting from finding a

possible match. If all new jobs come from the top of the productivity distri-

bution, then NF (X) = [J (x,X)− V (X)]. On the other hand, if new jobs are

drawn from the same distribution F that governs idiosyncratic shocks, then

NF (X) =
∫ x
R(X) (J(z, X)− V (X)) dF (z), which includes the value of rejected

jobs.

Finally, we assume that firms are free to open any number of vacancies.

Thus, in equilibrium, the value of a vacancy is zero in any aggregate state X:

V (X) = 0 (11)

but for the time being we prefer to clarify the structure of the equations by

showing V where it appears, rather than eliminating it.
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2.5 Incentive compatibility

We are now in a position to derive the NSC. A worker will never shirk if the

gain from shirking during a short interval dt is less than the expected cost of

a disciplinary layoff in case the worker is detected. The logic also works in the

opposite direction. If it pays to shirk during a short period dt, then workers

will always choose this option.

Formally, let W s (x,X) denote the value function for a worker who shirks

during the interval dt. Assuming that the worker exerts effort during the rest

of the time the firm-worker pair remains together, we obtain

rW s (x,X) dt = w (x, X) dt+bdt+φdt [U (X)−W (x,X)]+δdt (U(X)−W (x,X))

+λdt

[∫ x

R(X)
W (z,X) dF (z) + F (R(X))U(X)−W (x,X)

]

+ µdt





∑

Z:x≥R(Z)

GZX [W (x, Z)−W (x,X)] +
∑

Z:x<R(Z)

GZX [U (Z)−W (x,X)]



+o (dt)

(12)

where o (dt) signifies a quantity which becomes negligible compared to dt as

dt → 0.

Comparing this equation to (7), dividing by dt and taking the limit as

dt → 0, we find that the only difference between shirking and not shirking is

rW s (x,X)− rW (x,X) = b + φ (U (X)−W (x,X)) .

Hence, workers (weakly) prefer not to shirk as long as their match surplus

exceeds b/φ:

W (x,X)− U (X) ≥ b

φ
, (13)

where b/φ is the expected gain in leisure (loss of effort) before the worker

is caught shirking.3 The above inequality acts as an incentive-compatibility

constraint that must be satisfied at all states (x,X) ∈ C(R) since we rule out

temporary layoffs.

3Below we will use the variable φ to generate different values for b/φ. This is why assum-
ing that the gain from shirking equals the value of unemployed leisure is just a notational
simplification that implies no loss of generality.
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2.6 Wages and turnover

The contract of a worker stipulates a wage flow w (x,X) that can be renego-

tiated after any shock. Other transfers that could alleviate the moral hazard

problem of workers, such as shirking penalties or bond payments, are ruled

out.

As is standard in the matching literature, we assume that the flow wage

is determined through Nash bargaining. For any state (x,X), we define the

total surplus relative to the threat point of separation, as follows:

S (x,X) = W (x,X)− U (X) + J (x,X)− V (X) (14)

We assume that the worker receives fraction β of this total surplus, unless the

incentive compatibility constraint binds, in which case the wage must rise until

the constraint is satisfied. (In the appendix, we derive these conditions from

a Nash bargaining game that determines the wage over a short interval dt.)

Thus, for states (x,X) in the continuation region C(R), the worker’s surplus

is given by:

W (x,X)− U(X) = max {βS(x,X), B/φ} (15)

and the firm’s surplus is

J(x,X)− V (X) = min {(1− β)S(x,X), S(x,X)−B/φ} (16)

Of course, the firm also has the possibility of separating from the match. So

for any (x,X) ∈ C(R), the firm’s surplus must satisfy

J(x,X)− V (X) ≥ 0 (17)

which, together with (13), (14), and (16) implies that

S(x,X) ≥ B/Φ (18)

for (x,X) in the continuation region C(R).

Given that surplus is split according to the rules (15) and (16), (18) is both

a necessary and sufficient condition on total surplus S for the match to con-

tinue. Since workers and firms are better off separated outside the continuation

region, for (x,X) outside C(R) we can define

W (x,X)− U(X) = J(x, X)− V (X) = S(x,X) = 0 (19)
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2.7 Privately optimal outcomes

In our economy separations correspond to layoffs. The firms sever a relation-

ship when it is no longer profitable to pay the worker an incentive compatible

wage. Workers, on the contrary, base their effort decisions on their beliefs

about the duration of their job. From existing studies we know that this non-

cooperative choice of effort and reservation strategies may lead to multiple

Pareto rankable outcomes (Den Haan et al. 1999; Mortensen and Pissarides

1999). This multiplicity is due to a positive feedback between the reserva-

tion productivities and the minimum incentive-compatible wage chosen inside

a particular match, taking as given aggregate tightness. Intuitively, suppose a

worker anticipates an increase in the reservation productivity for the current

state. Given the shorter job duration, the worker needs a higher flow wage in

order to exert effort, and given this increase in the wage floor the firm may

find it profitable to fire at the higher reservation productivity.

Since a mutually beneficial deviation by the worker and firm alone— with-

out any change in aggregate conditions— suffices to eliminate multiplicity of

this kind, we think it makes sense to focus on contracts that are constrained

optimal for the firm-worker pair. Thus, to rule out spurious job destruction, we

assume that the firm and the worker have perfect and symmetric information

about the current state (x,X) and about the stochastic process over x and X.

This information allows them to choose the vector of reservation productivities

and effort decisions that maximize their joint value, subject only to the NSC.4

In the next section we will characterize these privately optimal outcomes.

3 Analysis

3.1 The match surplus equation

In this section, we will define equilibrium and propose an algorithm to compute

it. But first, we show how the model can be simplified in order to define

4For a thorough analysis of this problem, see Jansen (2001).
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the equilibrium concisely. Note that in the continuation region C(R), we can

simplify (7) by rewriting it as:

(r + λ + µ + δ) W (x,X) = w (x,X)+δU(X)+λ

[∫ x

R(X)
W (z,X) dF (z) + F (R(X))U(X)

]

+µ


 ∑

Z:x≥R(Z)

GZXW (x, Z) +
∑

Z:x<R(Z)

GZXU (Z)




Therefore, an employed worker’s surplus W (x, X)− U (X) satisfies

(r + λ + µ + δ) (W (x,X)− U (X)) = w (x,X)+λ
∫ x

R(X)
(W (z, X)− U (X)) dF (z)

−b− p(θ(X))NW (X) + µ
∑

Z:x≥R(Z)

GZX (W (x, Z)− U(Z)) (20)

where we have used (8) to eliminate rU(X) on the right hand side. The surplus

of a filled job is similar, but can be simplified further by setting V (X) = 0 for

all X:

(r + λ + µ + δ) J (x,X) = y(x,X)−w(x,X)+λ
∫ x

R(X)
J(z, X)dF (z)+µ

∑

Z:x≥R(Z)

GZXJ(x, Z)

(21)

Summing equations (20) and (21), we obtain:

(r + λ + µ + δ) S (x,X) = y(x,X)−b−p (θ(X)) NW (X)+λ
∫ x̄

R(X)
S (z, X) dF (z)+µ

∑

Z:x≥R(Z)

GZXS(x, Z)

(22)

This expression is fairly intuitive: we see that the surplus includes the flow

payoff y minus the flow payoff b associated with unemployment and minus the

gains that accrue to unemployed workers from finding new jobs, plus capital

gains due to individual and aggregate shocks. Solving (22) is the main chal-

lenge to characterizing our model. We now characterize S and explain how

(22) can be solved.
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3.2 Optimal time-consistent continuation

As we mentioned earlier, we assume that each worker-firm pair follows a con-

tinuation strategy that maximizes its joint surplus, subject to incentive com-

patibility. However, we must look at this issue in greater detail to be sure that

this assumption is well-defined.

Since we are looking for a solution based on a reservation strategy, the N ag-

gregate states imply the existence of N reservation productivities {R1, ...RN}.
However, these need not all be distinct: some aggregate states could have the

same reservation productivity. For notational convenience, we will number the

reservation productivities, in backwards order, as

RN+1 ≤ RN ≤ . . . ≤ R1 ≤ R0

where we have also defined the notation RN+1 ≡ x and R0 ≡ x. We can then

divide up the support [x, x] of the idiosyncratic shock into N + 1 intervals of

the form Ii ≡ [Ri, Ri−1). (If some of the reservation productivities are equal,

then some of the segments are empty. If we assume that all new jobs have the

best productivity, then the upper bound of the support should also be thought

of as a separate interval I0 ≡ {x}. Otherwise, this point should be included in

the first interval, defining I1 ≡ [R1, x]).

If the worker-firm pair maximizes surplus, then this means they must never

separate when incentive compatibility is satisfied. This condition determines

the reservation productivities. Given aggregate economic conditions, which

from the pair’s perspective are summarized by the vectors of tightness, θ,

and expected new job values, NW , guaranteeing incentive compatibility means

guaranteeing a sufficiently high surplus if the match continues. Thus, suppose

that the pair’s surplus function is S and suppose that the pair expects to play

the reservation strategy R in the future. Then, using equation (22), the surplus

associated with continuation at any state (x,X) can be defined as

T (x,X; S, R, θ, NW ) ≡
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(r + λ + µ + δ)−1



y(x,X)− b− p (θ(X)) NW (X) + λ

∫ x̄

R(X)
S (z, X) dF (z) + µ

∑

Z:x≥R(Z)

GZXS(x, Z)





(23)

Joint efficiency requires that the pair continue in state (x,X) as long as

T (x, X; S, R, θ, NW ) is at least equal to b/φ. Therefore the reservation pro-

ductivities must satisfy a fixed-point relation of the following form:

R(X) = min{x : T (x,X; S, R, θ,NW ) ≥ b/φ} (24)

Surplus inside the continuation region must satisfy (22); outside, by definition,

it is zero. This condition can also be written as a fixed-point relation in terms

of the function T :

S(x,X) =

{
T (x,X; S,R, θ, NW ) for x ≥ R(X)

0 for x < R(X)
(25)

Thus, given aggregate conditions, the matched pair’s strategies must satisfy

the two fixed point relations (24) and (25). However, we have not yet shown

that our assumption— that there exist strategies which maximize the surplus—

makes sense. In other words, we have not ruled out the possibility that there

might be two fixed points of (24) and (25), one involving a higher surplus

at some states (x,X), while the other involves higher surplus at other states.

This would not only be a mathematical problem. Economically, it would make

it impossible to find a time-consistent vector of reservation productivities: for

some states (x,X) one reservation strategy would be preferred, and for other

states, a different one. The following proposition shows that this problem does

not arise: in other words, given any aggregate conditions θ and NW , there

always exists a unique surplus-maximizing reservation strategy for the pair.

Proposition. For any aggregate conditions θ and NW , such that
y(x̄, N)− b > p(θ(N))NW (N), there exists a unique pair S̄ and
R such that:

1. R solves (24) given surplus function S̄

2. S̄ solves (25) given reservation vector R
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3. If there exists another pair (S ′, R′) that solve (24) and
(25), then R(X) ≤ R′(X) and S̄(x,X) ≥ S ′(x,X) for all
x and X.

Proof. This proof is based on the methods of Rustichini (1998). Note that
S0(x,X) = y(x̄, N)/r is an upper bound to the true surplus function, and that
the vector R0 which has each element equal to x is a lower bound to the true
reservation productivity vector.

Note that if we define mappings from the right-hand sides to the left-hand
sides of (24) and (25), then these mappings are monotonic both in R and S.
That is, plugging a higher S into the right-hand sides of (24) and (25), we
obtain a lower new R and a higher new S. Likewise, plugging a higher R into
the right-hand sides of (24) and (25), we obtain a higher new R and a lower
new S.

Now define a sequence of functions Si and Ri by iterating on the right hand
sides of (24) and (25). Since the coefficients on the integral and sum terms in T
are positive and less than one, we find immediately that S1(x,X) ≤ S0(x,X)
at all (x,X), and therefore R1(X) ≥ R0(X) for all X. Since the mapping is
monotonic with respect to S and R, it furthermore follows that Si+1(x,X) ≤
Si(x,X) at all (x,X) and Ri+1(X) ≥ Ri(X) for all X. However, the sequence
Si is bounded below by the constant function equal to zero, and the sequence
Ri is bounded above by the vector with all elements equal to x̄; therefore the
S and R sequences must converge. Call the limits of these sequences S̄ and R;
by definition, they are fixed points of (24) and (25).

Now suppose there exists another fixed point pair (S ′, R′). Since S0 and
R0 are upper and lower bounds to all fixed points of (24) and (25), and since
the mapping is monotonic, we have

S1(x,X) ≡ T (x,X; S0, R, θ, NW ) ≥ T (x,X; S ′, R, θ, NW ) = S ′(x,X)

and likewise, R1 is a lower bound for R′. Now by induction, Si and Ri bound
S ′ and R′ for all i, and thus in the limit we have S̄(x,X) ≥ S ′(x,X) for all x
and X and R(X) ≤ R′(X) for all X.

Q.E.D.

The preceding proposition also helps us characterize the surplus function

and reservation productivities. Note that function S0 is weakly increasing in

x, and that the mapping (25) preserves this property. In fact, it maps weakly

increasing functions into functions that are strictly increasing in the continua-

tion interval. Function S0 is also weakly increasing in X, and it preserves this

property too under two conditions: first, the probabilities G exhibit first-order

stochastic dominance; and second:

y(x,X + 1)− y(x, X) > p(θ(X + 1))NW (X + 1)− p(θ(X))NW (X) (26)
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for all X ∈ {1, 2, ...N − 1}. Since these properties are preserved by each step

of mapping (25), they also hold in the limit. Therefore we have proved the

following corollary.

Corollary. Suppose θ and NW satisfy y(x̄, N)−b > p(θ(N))NW (N)
and also satisfy (26), and that G exhibits first-order stochastic
dominance. Then the fixed point pair (S ′, R′) of (24) and (25)
has the following properties:

1. Function S̄ is strictly increasing in x for x ≥ R(X)

2. Function S̄ is weakly increasing in X

3. The vector of reservation productivities R is weakly de-
creasing in X

From now on, we will assume that G exhibits first-order stochastic dom-

inance, and we will restrict attention to equilibria satisfying y(x̄, N) − b >

p(θ(N))NW (N) and(26), so that in equilibrium the reservation productiv-

ities are monotonic. Therefore the surplus function will be increasing in

both arguments, which immediately implies that the reservation productiv-

ities are decreasing. Hence, the N reservation productivities which we called

RN ≤ RN−1 ≤ ... ≤ R1 correspond, in order, to the N aggregate states:

R(N) ≤ R(NN−1) ≤ ... ≤ R(1). Thus we can use the notation RX inter-

changeably with R(X), and we know that on the (possibly empty) interval

Ii ≡ [Ri, Ri−1), all states X ≥ i will continue.

3.3 Characterizing the surplus function

We are now ready to describe in more detail what the solution to the surplus

equation (22) looks like.

3.3.1 Calculating the slope of the surplus function

Within the segments Ii, we can differentiate equation (22) to calculate the

slope of the surplus function (for each X) on that segment; we obtain

(r + λ + µ + δ)
∂S (x,X)

∂x
=

∂y (x,X)

∂x
+ µ

∑

Z:RZ≤x

GZX
∂S (x, Z)

∂x
(27)
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Notice that this equation contains just one value of x. Therefore, the equa-

tions on any segment Ii can be solved independently from those on all other

segments, and the possible existence of empty segments is irrelevant for the

solution. Since the reservation productivities are monotonic in X, on any non-

empty segment Ii (27) constitutes a system of N + 1− i differential equations

in the N + 1 − i unknowns ∂S(x,X)
∂x

, for X ≥ i. The equations for segment Ii

can be simplified as follows:




∂S(x,i)
∂x

...
∂S(x,N)

∂x


 = ((r + λ + µ + δ)I − µMi)

−1




∂y(x,i)
∂x

...
∂y(x,N)

∂x


 (28)

where I is an identity matrix of order N + 1− i and Mi is the matrix

Mi =




Gii

GiN

...
GNi

GNN




(Mi is the transpose of the last N + 1− i rows and columns of the matrix G.)

Thus, changes in S can be calculated explicitly on each segment Ii as long

as we choose a production function y(x,X) that can be integrated explicitly

with respect to the distribution of idiosyncratic shocks F . Similarly, we can

integrate the surplus functions W − U and J segment by segment, with one

additional caveat: workers must receive surplus B/Φ when the incentive com-

patibility constraint binds. Given that S is strictly increasing, we can uniquely

define the cutoff point x̂(X) below which incentive compatibility is binding,

by

βS (x,X) <
B

φ
for x < x̂(X) and βS (x,X) >

B

φ
for x > x̂(X) (29)

Thus the formula for the worker’s surplus, and likewise that for the firm’s

surplus, will differ depending on whether x is less or greater than x̂(X). Note

that, as with our definition of the reservation productivity R(X), the threshold

x̂(X) must be defined by an inequality instead of an equation because the

surplus S has discontinuities.
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3.3.2 Calculating the discontinuities in the surplus function

Now that we know how to integrate the surplus inside the segments [Ri, Ri−1),

we must next ask what happens to the surplus at the endpoints of these seg-

ments. As the incentive compatibility constraint (18) shows, the surplus func-

tion need not be continuous at the reservation productivities. To be precise,

the jump in S(x, X) at x = Ri can be defined as j(Ri, X) ≡ limdx→0 S(Ri +

dx,X) − S(Ri − dx,X). If there is continuation in state X on both sides of

Ri, then equation (22) must hold in a neighborhood around Ri, and therefore

the jumps at Ri must satisfy

(r + λ + µ + δ) j(Ri, X) = µ
∑

Z:RZ≤Ri

GZX j(Ri, Z) (30)

Thus the jumps at Ri are nonzero except in two possible cases. If there is

no incentive problem, so that S(Ri, i) = 0, then equation (30) is solved by

j(Ri, Z) = 0 for all Z. The jump would also be zero if GZX were zero for all

Z satisfying RZ ≤ Ri.

So far, we have characterized the jumps in S(x,X) at points x strictly

inside the continuation interval [RX , x̄]; these points must be reservation pro-

ductivities Ri for other states i > X. However, since S(x,X) is zero outside of

[RX , x̄] and satisfies (??) inside it, there must also be a jump of at least B/φ

at RX in state X.

As we saw earlier, the jump in S(x,X) at x = RX could in fact be strictly

greater than B/φ. Our analysis in section 3.2 shows that inequality (18)

can be seen as the definition of a set of complementary slackness conditions

governing the reservation productivities R(X) and the corresponding surpluses

S(R(X), X). For any i ∈ {2, 3, ...N}, monotonicity of the surplus implies:

Ri ≤ Ri−1

and incentive compatibility implies:

S(Ri, i) ≥ B

Φ
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The fact that the surplus is differentiable away from the reservation productiv-

ities implies that if dRi is strictly negative, then dSi must be zero. Therefore

at least one of the inequalities must hold with equality:

(Ri −Ri−1)
(
S(Ri, i)− B

Φ

)
≡ dRidSi = 0

Notice therefore that we can now summarize the entire surplus function by a

vector of N numbers: first R1, and then for each i ∈ {2, 3, ...N}, either dRi

or dSi. The two possible cases for these last N − 1 numbers can be easily

distinguished, since dRi is necessarily nonpositive, while dSi is nonnegative.

3.4 Equilibrium

As we have seen, the surplus functions can be defined in terms of the produc-

tivity pair (x,X) without reference to the current distribution of employment

and unemployment. Therefore, it suffices to define (and calculate) an equilib-

rium in terms of the minimum state variable (x,X) before considering other

state variables. We therefore postpone for later the discussion of the dynamics

of unemployment.

Obviously this model has trivial equilibria in which workers always shirk,

and therefore firms never hire them. But we are interested in no-shirking

equilibria in which the worker’s surplus is sufficiently large to provide incen-

tives not to shirk. Summarizing the relationships discussed so far, such an

equilibrium can be defined in terms of just four objects, S, R, θ, and NW .

Definition. A no-shirking equilibrium is a surplus function S(x,X),
a vector of reservation productivities R, a labor market tight-
ness vector θ, and a vector of new job values NW that satisfy
the following conditions:

1. For each X, the surplus function satisfies the system of
differential equations (22) for all x ∈ [R(X), x̄], and is
zero for x ∈ [x,R(X)).

2. For each X, the surplus function satisfies the boundary
condition (24) at the reservation productivity R(X).
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3. If new jobs have productivity x̄, then labor market tight-
ness θ(X) and the new job value NW (X) are given by

c = q(θ(X)) min{S(x̄, X)−B/φ, (1− β)S(x̄, X)} (31)

NW (X) = max{B/φ, β(x̄, X)} (32)

4. Alternatively, if the productivity of new jobs is drawn from
distribution F , then labor market tightness θ(X) and the
new job value NW (X) are given by

c = q(θ(X))
∫ x̄

R(X)
min[S(z,X)−B/φ, (1−β)S(z, X)]dF (z)

(33)

NW (X) =
∫ x̄

R(X)
max[B/φ, βS(z, X)]dF (z) (34)

3.5 An algorithm to calculate equilibrium

By now it should be clear that the main challenge in solving our model is

solving equation (22) to find the surplus function S. We only need to be sure

that this surplus function takes as given a tightness vector consistent with zero

profits on vacancy creation. We will now outline an algorithm for calculating

S, using the formulas for the slopes and discontinuities given in subsections

3.3.1 and 3.3.2. Once we find an S consistent with zero profits, the simulation

of employment and productivity dynamics is straightforward.

One approach to solving for S would be to use backwards induction, con-

ditional on a given θ. The results of Rustichini (1998) guarantee that this

converges to the correct solution of the worker and firm’s optimal reservation

strategy. But this could be extremely slow. Therefore, we propose a faster al-

gorithm, based on the fact that the entire surplus function can be summarized

by a single N -dimensional vector which we will call Q. We define

Q1 ≡ R1 (35)

Qi ≡ dRi ≡ Ri −Ri−1 if Ri < Ri−1 (36)

Qi ≡ dSi ≡ S(Ri), i)−B/Φ if Ri = Ri−1 (37)
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This definition takes advantage of the complementary slackness relations that

govern the surplus at the reservation productivities. If (for i > 1) Qi is neg-

ative, then this indicates that Ri is strictly less than Ri−1, and therefore that

S(Ri, i) = B/Φ. In this case, Qi ≡ Ri − Ri−1. If (for i > 1) Qi is posi-

tive, then this indicates that Ri = Ri−1, and in this case Qi equals the excess

jump S(Ri, i) − B/Φ of the surplus function in state i. Qi = 0 indicates the

knife-edge case in which Ri = Ri−1 and S(Ri, i) = B/Φ.

All equilibrium quantities can be constructed from Q. Given a candidate

value of Q, we can construct the surplus S and related objects, and check

whether the equilibrium relationships hold. Thus, instead of repeatedly solving

a dynamic programming problem for each value of θ, we solve a single N -

dimensional root-finding problem to calculate S, R, and θ simultaneously.

The steps are as follows.

1. Loop over aggregate states X from 1 to N , using the information in Q
to calculate RX and S(RX , X).

2. For each X from 1 to N , loop over other aggregate states Z from X to 1.
If RZ−1 differs from RZ , solve the differential equations (28) to calculate
the increase in S on the interval IZ = [RZ , RZ−1), and use the equations
(30) to calculate the jump in S(x,X) at x = RZ−1.

5

Given these two steps, we have constructed the surplus function S implied

by the vector Q. Note that it will be a strictly increasing function. Therefore

we can calculate the intervals over which the incentive compatibility constraint

binds:

3. Use equation (29) to calculate the cutoffs x̂(X) for all X.

Next we calculate tightness in each state X:

4. Use equation (16) to calculate the firm’s value NF (X) of a new job in
state X, given the surplus function S.6

5If on the other hand RZ−1 = RZ , it is superfluous but may be numerically helpful to solve
the differential equations (28) on the empty interval IZ and to set S(RZ−1, X) = S(RZ , X).

6If new jobs have random productivity, this involves integrating the surplus function
J(x,X). Like S, it can be explicitly integrated, piecewise, given the function S, the reser-
vation productivities R, and the cutoffs x̂.
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5. Use equation (10), which reduces to the zero-profit condition c = q(θ(X))NF (X),
to calculate the firm’s probability of job finding q.

6. Use (6) to calculate labor market tightness θ(X).

7. Use equation (5) to calculate the worker’s job finding probability.

At this point, we know all the objects that appear in the surplus equation

(22). We can now check whether the complementary slackness conditions on

the surplus function are satisfied at the reservation productivities, given the

conjectured vector Q. Note that Q tells us directly the value of S(RX , X):

S(RX , X) =

{
B/Φ if Q(X) < 0
B/Φ + Q(X) if Q(X) ≥ 0

(38)

We can now check (for each X) whether (22) is satisfied at x = RX :

(r + λ + µ + δ) S(RX , X) = y (RX , X)−b+λ
∫ x

RX

S (z, X) dF (z)+µ
∑

Z:RX≥RZ

GZXS (RX , Z)−p (θ (X)) NW (X)

(39)

(Checking this equation involves integrating S(x,X), and will also involve

integrating W (x,X) if new jobs have random productivity. But this is no

problem since we know how to integrate them piecewise.)

If we find a vector Q that satisfies (39), then we have found the equilibrium

surplus function. With it, we have also found the reservation productivities.

Given the reservation productivities, we can next simulate the dynamics of the

distribution of employment and productivity.

3.6 Employment dynamics

This is a heterogeneous agent model in which the state variable of the econ-

omy includes the full distribution of idiosyncratic productivities. Nonetheless,

the model can be explicitly solved in two steps. First, we have seen (as in

Mortensen and Pissarides 1994) that the equations defining values, surpluses,

and labor market tightness can be written without reference to the unemploy-

ment rate or the distribution of idiosyncratic productivities. The characteriza-

tion of the surplus function in subsection 3.3 gives us sufficient information to
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solve for the surplus and all jump variables, including the reservation produc-

tivities, independently of employment. Once the reservation productivities are

known, we can then simulate the dynamics of employment and productivity.

To define these dynamics, note that new matches mt may or may not result

in employment. If all new matches offer productivity x, then in equilibrium

such matches will never be rejected, so new jobs formed will equal mt. On

the other hand, if we assume that new matches are drawn from the same pro-

ductivity distribution as continuing matches, then when the current aggregate

state is Xt, only fraction 1 − F (R(Xt)) of the new matches mt will result in

employment.

Next, to describe the dynamics of the distribution of employment produc-

tivity, we keep track of the mass of employment in each interval Ii ≡ [Ri, Ri−1)

separately. Jobs with productivity in [R1, x] are stable: they will not be de-

stroyed under any value of aggregate productivity. But when the current ag-

gregate shock is X ≥ 2, then there will be some other continuing jobs that are

fragile, because they can be destroyed when aggregate productivity decreases;

these jobs have individual productivity less than R1. Finally, any job that

receives an individual shock x < RN will be immediately destroyed under all

circumstances.

Suppose new jobs have the highest possible productivity, x̄. Let et (X ) be

the measure of employed workers whose productivities lie in the set X . Thus

we can write the mass of new jobs as et ({x}), and the mass of jobs in any other

interval Ii, i ∈ {1, 2, ...N} as et ([Ri, Ri−1)). (The following notation is correct

even for empty intervals Ri = Ri−1.) Let unemployment be ut, and total

employment be et ≡ et ([RN , x]) ≡ et ({x}) +
∑N

i=1 et (Ii). Then the change in

the mass of individuals in each of these employment states over a short time

interval dt can be written as follows, dropping terms of order o(dt):

det ({x}) = p(θ(Xt))utdt− (λ + δ) et ({x}) dt (40)

det ([Ri, Ri−1)) = 1 (Xt+dt ≥ i) [λ(F (Ri)− F (Ri−1))et − (λ + δ) et ([Ri, Ri−1))] dt − 1 (Xt+dt < i) et ([Ri, Ri−1))

(41)

25



dut = (δ + λF (R(Xt+dt))) et ([R(Xt+dt), x]) dt − p(θ(Xt))utdt + 1 (Xt+dt < Xt) et ([R(Xt), R(Xt+dt)))

(42)

It can be verified that these flows sum to zero. Note that the terms 1 (Xt+dt < i) et ([Ri, Ri−1))

and 1 (Xt+dt < Xt) et ([R(Xt), R(Xt+dt))) which appear as outflows from frag-

ile employment and an inflow to unemployment, are not of order dt. These

terms represent the spike of destruction of fragile jobs that occurs any time

the aggregate state X decreases.

Next, suppose new jobs are drawn from distribution F . Let et (X ) be the

measure of employed workers whose productivities lie in the set X . Thus

we can write the mass of jobs in any other interval Ii, i ∈ {1, 2, ...N} as

et ([Ri, Ri−1)), defining R0 ≡ x. Let unemployment be ut, and total employ-

ment be et ≡ et ([RN , x]) ≡ ∑N
i=1 et (Ii). Then the change in the mass of

individuals in each of these employment states over a short time interval dt

can be written as follows, dropping terms of order o(dt):

det ([Ri, Ri−1)) = 1 (Xt+dt ≥ i) [(F (Ri)− F (Ri−1)) (λet + p(θ(Xt))ut)− (λ + δ) et ([Ri, Ri−1))] dt

− 1 (Xt+dt < i) et ([Ri, Ri−1)) (43)

dut = (δ + λF (R(Xt+dt))) et ([R(Xt+dt), x]) dt − (1− F (R(Xt+dt)))p(θ(Xt))utdt

+ 1 (Xt+dt < Xt) et ([R(Xt), R(Xt+dt))) (44)

4 Intuition: two aggregate states

To illustrate the main features of the model we will solve the asset value

equations for a simple example with two aggregate states, called 1 and 2, that

correspond to recessions and booms, respectively. Suppose, for concreteness,

that F is uniform and that output is given by y (x,X) = x + ζX . Thus, the

surplus functions are linear upper semi-continuous functions. For moderate

values of b/φ (or equivalently large aggregate shocks), this example generates

counter-cyclical job destruction, i.e. R1 > R2. In booms some jobs survive

that are destroyed when the economy enters into a recession. On the contrary,
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when the moral hazard problem is severe, it is too costly for firms to provide

incentives in fragile jobs and R1 = R2, resulting in acyclical job destruction.

For further simplification, we will assume that G12 = G21 = 1: that is,

any aggregate shock takes us to the opposite state, which means that the two

aggregate states each occur 50% of the time, on average. Finally, suppose that

new jobs start are the most productive jobs and that the support of F is wide

enough to ensure that job destruction takes place in both states.

4.1 Counter-cyclical job destruction

For the case in which R1 > R2, our solution for the surplus slopes, (28), gives

us
∂S(x,X)

∂x
=

1

r + λ + δ
for both X, if x > R (1)

and
∂S(x, 2)

∂x
=

1

r + λ + µ + δ
if x < R (1)

Since job destruction condition occurs at a surplus value of b/φ in both states,

we can write the surplus functions as follows:

S(x, 1) =
x−R1

r + λ + δ
+

b

φ
(45)

or

S(x, 2) =
x−R2

r + λ + µ + δ
+

b

φ
for x < R1 (46)

and

S(x, 2) =
x−R1

r + λ + δ
+

µb/φ + R1 −R2

r + λ + µ + δ
+

B

φ
for x ≥ R1 (47)

Inspection of (46) shows that output of fragile jobs is discounted at a higher

rate than the output of robust jobs that will survive during a recession. The

slope of the surplus function S (x, 2) is therefore lower to the left of R1 than

to the right of this point. Finally, at R1 the surplus function jumps up by an

amount

j (R1, 2) =
µ

r + λ + µ + δ

b

φ
(48)

.
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The above surplus functions are illustrated in figure 1. Finally, using (11),

(9), and (16), we can write the free-entry condition on vacancies in terms of

the surplus of new jobs (x = 1) as:

c = q(θ(X)) min

{
(1− β)S(x,X), S(x,X)− B

φ

}
(49)

Similarly, evaluating surplus equation (14) at the reservation productivity

and substituting Ri = b/φ for i = 1, 2, we find that job destruction in booms

is governed by

(r + λ + µ + δ)
b

φ
= R2 + ζ2 − b + λ

∫ x

R2

S (z, 2) dF (z)− p (θ (2)) NW (2) (50)

because the marginal job does not survive if the cycle changes. In recessions,

on the contrary, the job destruction condition satisfies:

(r + λ + µ + δ)
b

φ
= R1 + ζ1 − b + λ

∫ x

R1

S (z, 1) dF (z) + µS (R1, 2)− p (θ (1)) NW (1) (51)

where µS (R1, 2) denotes the option value from the improvement in the pro-

ductivity of the marginal job if the economy inters into a boom.

The above conditions for job creation and job destruction define a set of

four equations in four unknowns, namely (θ1, θ2, R1, R2). Moreover, these con-

ditions confirm that job destruction decisions are driven by the NSC while job

creation decisions are either driven by the bargained wages w (x,X) or by the

minimum incentive compatible wages. In the latter case, the wage distribution

is degenerate since the NSC would bind on all jobs. Finally, if the NSC binds

on new jobs in recessions but not in booms, the surplus share of firms is clearly

pro-cyclical. 7

7With stochastic initial match values this is always the case. Since S (x, X1) < S (x,X2),
in recessions the NSC will bind on a larger fraction of new jobs than in booms. For positive
values of b/φ the expected surplus share of firms is therefore smaller than (1− β) even
though the wage distribution is not degenerate.
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4.2 Acyclical job destruction

The case of acyclical job destruction is illustrated in figure 2. Since S (R1, 2) <

(µ/ (r + λ + µ + δ)) ∗ (b/φ), firms cannot maintain fragile jobs because the

increase in the flow wage needed to enduce effort would make the profits of the

firm negative. Hence, R1 = R2 = R and given that S (x, 1) and S (x, 2) have

the same slope we can write

S (x, 2) = S (x, 1) + j (R, 2) (52)

The size of the jump j (R, 2) can be determined using the surplus equations

associated with the case of acyclical job destruction:

(r + λ + µ + δ) S (x, 2) = x+ζ2−rU (2)+λ
∫ x

R
S (z, 2) dF (z)+µS (x, 1) (53)

(r + λ + µ + δ) S (x, 1) = x+ζ1−rU (1)+λ
∫ x

R
S (z, 1) dF (z)+µS (x, 2) (54)

Subtracting (54) from (53), and using (52) to replace S (x, 2) − S (x, 1) by

j (R, 2), we get:

(r + λF (R) + δ + 2µ) j (R, 2) = (ζ2 − ζ1)− r (U (2)− U (1)) (55)

The above equation defines the jump as the appropriately discounted dif-

ference between the operating surplus x + ζX − r (U (X)) in both periods.

This difference is increasing in the size of the aggregate shocks, ζ2 − ζ1, and

decreasing in the frequency of aggregate shocks, µ.

On the basis of the above solutions we can write the surplus functions as:

S (x, 1) =
x−R

r + λ + µ + δ
+ b/φ (56)

S (x, 2) = S (x, 1) + j (R, 2) (57)

where j (R, 2) satisfies (55).

Together with job creation conditions (49) and the job destruction con-

dition for state 1 (condition 54 evaluated at R with S (R, 1) = b/φ ) these

equations deliver a solution for θ1, θ2 and R.
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5 Numerical results

In this section we present some (preliminary) numerical results for the case of

three aggregate states. The baseline parameters are shown in Table 1. The

model period corresponds to a quarter, the idiosyncratic shocks are uniformly

distributed and the relative bargaining strength of workers, β is chosen to

satisfy Hosios’ (1990) condition. The decentralized equilibrium with b/φ = 0

is therefore constrained efficient.

Parameter Values
ζX [−0.053, 0, 0.053]
x U ∼ [0, 1]
r 0.01
b 0.9

m(u, v) u0.5v0.5

β 0.5
c 0.125
µ 0.067
λ 0.081
δ 0

In Table 2 we present results for the case in which new jobs start with

the maximum value of the idiosyncratic shock x = 1. In the first column we

present the business cycle facts for the post-war period in the U.S. reported in

Shimer (2005). Comparing the data to the efficient decentralized equilibrium

(Column 2), we see that the baseline model performs well in many respects.

In particular, our baseline model generates virtually the same coefficient of

variation for the unemployment rate as observed in the U.S.. The level of the

average unemployment rate in the baseline model is 5.8% which is also close

to the U.S. average. The feature that is responsible for this high degree of

cyclical volatility in u is our choice of b. The value of leisure is equivalent to

90% of the initial match value in the intermediate state. As a result, the match

surplus is small and tiny variations in productivity generate large variations

in the surplus value and entry.
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Model
Coefficient of variation Data Efficient Low Medium High

u 0.188 0.1950 0.1620 0.1577 0.2283
v 0.183 0.0933 0.0952 0.1233 0.2670

y (x,X) 0.0306 0.0282 0.0282 0.0286 0.0290
w (x,X) 0.013 0.0265 0.0206 0.0180 0.0211

job creation (jc) 0.117 0.0979 0.0636 0.0414 0.0625
job destruction (jd) 0.197 0.2390 0.1639 0.1161 0.0575

Correlations
corr (u, y) -0.367 -0.877 -0.9015 -0.8995 -0.9146
corr (v, y) 0.362 0.6032 0.8581 0.9515 0.9717
corr (u, v) -0.896 -0.2274 -0.6135 -0.8075 -0.8212

corr (jc, jd) -0.65 0.3349 0.2327 0.1984 -0.0697

The next three columns report the results for different values of b/φ: Low

(0.05), Medium (0.10) and High (0.15). The main variable of interest is the

coefficient of variation for job destruction (Row 6). Inspection of Table 2 shows

that this variable decreases monotonically from a value of 0.2390 in the efficient

outcome to 0.0575 in the case where b/φ = 0.15. These results confirm our

claim that moral hazard problems tend to smooth the cyclical fluctuations in

job destruction. Moving from Low to High, the reservation productivities in

all three states increase, but the increase is higher in the good aggregate state

than in the bad aggregate state.

On the contrary, the coefficient of variation of job creation follows a non-

monotonic pattern. Initially, the introduction of moral hazard reduces the

values of jobs due to inefficient separations. Moreover, this effect is stronger in

good states than in bad states because in relatively good states firms are forced

to terminate some fragile jobs that do not survive after a negative productivity

shock. However, beyond b/φ = 0.10 we find the opposite result. When we move

from Medium to High, the coefficient of variation of job creation increases from

0.0414 to 0.0625. The explanation is simple. In the last column the NSC is

binding on all jobs in a recession (ζ = −0.053). In other words, in a recession

workers get a larger share of the surplus than in the remaining two states. As
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a result, the surplus share of jobs becomes pro-cyclical and this gives rise to

an increase in the cyclical volatility of job creation.

The above results for the variation in the pattern of job creation and job

destruction also explain the changes in the evolution of the coefficient of vari-

ation of unemployment. As in the case of job creation, this variable follows a

U-shape pattern in b/φ.

Another feature of the model that deserves attention is the Beveridge curve

relation. In our benchmark model the negative correlation between u and

v is much smaller than in the data. But when we introduce a lowerbound

on the match surplus of 0.10 or 0.15 we observe that our model generates a

very realistic Beveridge curve relation. This feature is noteworthy because

models with endogenous job destruction typically face problems to generate

this feature. The failure of the standard matching model to produce a strong

Beveridge curve relation is due to the so-called ”echo-problem”. Since firms

shed many workers in recessions, this is typically a good period to search

for a new worker. An increase in job destruction is therefore followed by a

strong increase in vacancy creation, leading to a positive rather than a negative

correlation between u and v. In our model this is not the case because the

inefficient separations reduce the gains from job creation.8
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