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Abstract

We use mechanism design to study the framework through which
transactions among financial institutions take place. We find that the
existence of an equilibrium in which banks transact with each other
through a payment system requires certain caps on banks’ short-term
borrowing. Networks that have knowledge of the member banks’ his-
tories support efficient transactions among their members. If banks
transact frequently outside their network, incentives constraints im-
ply that inter-network transactions can take place only at the cost of
fewer intra-network transactions. Whether the efficient arrangement
involves a centralized payment system or several local ones depends
on the relative frequency of transactions between different networks.
Banks are penalized for borrowing within the network and are re-
warded for lending outside the network.

∗We thank audiences at the ECB and the Cleveland Fed. We especially thank Neil
Wallace for several comments and suggestions.
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1 Introduction

The Walrasian competitive equilibrium model is one of the cornerstones of
economic theory. It has also proved useful as a framework within which ques-
tions about actual economies are formalized and studied. One of the features
of the economy that the Walrasian model abstracts from is the mechanism
through which payments for goods and services take place. While for the
study of certain questions this abstraction is indeed one of the main strengths
of the Walrasian model, this feature also makes it an inappropriate tool for
the study of questions related to transactions. Thus, new models are needed
to study payments, and our goal is to develop such models using mechanism
design theory.1

Some open questions in payment systems that we want to shed some light
on include:
- Should access to a centralized payment system (say TARGET, or FED-

WIRE) be directly available to everyone (say any bank, anywhere in Europe
or in the US, respectively) or should it be restricted to a small network
of intermediaries, with the other banks transferring payments through such
“correspondent” banks?
- Should there be binding limits or “caps” imposed by the payment sys-

tem on the short-term borrowing by banks? How should these caps be de-
termined? In particular, should they be fixed, or should they depend on the
individual banks’ histories of transactions?
- What are the effects of a bank’s reputation through its repeated interac-

tion with the payment system? Can reputation be used together with other
instruments, such as interest rate penalties, in order to induce socially effi-
cient behavior by banks? This question is of particular policy relevance since
TARGET and FEDWIRE use different ways to penalize banks for excessive
short term borrowing. One would like to know what the respective merits of
these policies are.
- What is the role of private information and imperfect monitoring in

answering the above questions? Can local bank networks or “correspondent
banks” lead to improved allocations through their improved information on

1To get some idea of the magnitudes involved in payment systems, the value of the
transactions processed through TARGET, the main public payment system in Europe,
during March 2004 was over 40 Euro billions, with a daily average of about 1.7 Euro
billions. In the United States, the average daily value of transfers through FEDWIRE,
the US equivalent of TARGET, during the first quarter of 2004 was 1,683,265 $ millions.
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local banks?
Our approach is motivated by the work of Kocherlakota (1998) and

Kocherlakota and Wallace (1998), who use results from mechanism design
to understand monetary exchange. More recently, and more related to our
modelling strategy, extending the model of Mirrlees (1971), Kocherlakota
and others have used dynamic mechanism design to study optimal taxation
under private information.2 We wish to emphasize the following methodolog-
ical innovation in our approach. Some of the questions that optimal payment
system design poses are inherently dynamic and, therefore, very hard or im-
possible to study within the existing payment systems literature, which is
almost exclusively static.3

In order to concentrate on the role of banks as players within a payment
system, we abstract from modeling explicitly the traditional role of banks
as deposit/loan contract providers. We model banks as abstract economic
agents that face random needs for liquidity as well as random opportunities
to build reserves over time in order to meet these needs. To perform either of
these activities, they need to interact through a network of other banks. The
model that we employ in our analysis is a model of decentralized exchange as
in Kiyotaki and Wright (1989,1993).4 This model is appropriate for our study
for several reasons. First, it is a game-theoretic model in which transactions
are explicit, and where it is natural to introduce and study the implications
of lack of commitment, incomplete information, and reputation. Second, the
abstract random matching shocks that agents are subject to in this model
are equivalent, under certain conditions, to random taste shocks. These
shocks are simply a tractable way of modelling random needs for liquidity
during certain periods. Finally, this setup naturally lends itself to mechanism
design analysis. It is important to note that, unlike the standard random
matching monetary approach, our model involves credit arrangements only,
in an otherwise non-monetary economy.5

2See Kocherlakota’s (2004) plenary talk at the Society of Economic Dynamics meetings
in Florence for an excellent introduction to this literature.

3See Kahn and Roberds (1998) for a well cited paper in this literature.
4Durrell Duffie et. al. (2004) use a similar model to study illiquidity in over-the-counter

financial markets.
5To be precise, there is no currency in our model. Abstracting from currency trades,

on which the Kiyotaki-Wright literature concentrates, seems appropriate for the issues we
study. Atkeson (2004), for example, criticizes this literature for concentrating on currency
exchanges.
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Our findings suggest that in a variety of environments, the existence of
an equilibrium in which banks transact with each other through a payment
system requires the existence of certain caps on the banks’ short-term bor-
rowing. Put differently, in order for liquidity to be of value, it has to be
scarce. Importantly, the introduction of caps implies a welfare loss, as it
rules out certain welfare improving transactions that would take place in the
absence of the information friction. This is an example of the common trade-
off between efficiency and incentives, since truthful revelation comes at some
cost. For optimality, caps should be set at the maximum sustainable level;
i.e., at the maximum value consistent with incentive compatibility.
Coming to the question of who should have access to the payment sys-

tem, we find that if banks are divided into local networks that have intimate
knowledge of the member banks’ histories of transactions, a standard repu-
tation argument implies that these networks will operate as local payment
systems, supporting efficient patterns of transactions among their members.
However, if banks need to transact frequently with other banks outside their
own network, incentives constraints have to be taken into consideration. We
find that this implies that inter-network transactions can take place only at
the cost of sacrificing some intra-network transactions. Thus, whether the
efficient arrangement involves a centralized payment system or several local
networks of banks depends on the relative frequency of transactions between
banks belonging to different networks. The implementation of the full-blown
mechanism design problem features bank-specific caps that depend on indi-
vidual banks’ histories of transactions as summarized by their current reserve
holdings. In addition, banks are penalized for borrowing within the network,
and are rewarded for lending to banks outside the network.

2 The Model and Preliminaries

We first introduce the basic economic setup and discuss some benchmark
cases. Then, we proceed by studying a variety of environments, involving
different degrees of private information by the payment system participants,
and we discuss payment system design in these environments. This section
derives some results that are of use later, when the full-blown mechanism
design problem is studied.
Time is discrete, t, measured over the positive integers. There is a [0, 1

k
]

continuum of each of k types of infinitely lived agents (the banks), and there
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are k ≥ 3 indivisible perishable goods.6 The total measure of banks in the
economy is 1. To generate transactions between banks, we assume that they
are specialized in terms of the goods they can offer as well as those they need
to be supplied by other banks. More precisely, banks of type i need good i
only and offer good i+ 1 only (mod k). Banks’ discount factor is β ∈ (0, 1).
Randomness in payments, and the corresponding need for liquidity by banks,
is captured by assuming that banks are randomly matched pairwise, once in
every period. Note that the assumptions on specialization rule out double
coincidence meetings. Henceforth, we will refer to meetings in which there is
a single coincidence of wants as trade meetings. Effectively, a bank will need
to use liquidity in order to consume, while a bank will create liquidity when it
produces. To keep track of production opportunities for banks, we introduce
a random variable s ∈ {0, 1}, which equals 1 if a meeting is a production
meeting and 0 otherwise.
Consumption of one unit of good gives utility u, and production of one

unit gives disutility e. We assume that u > e. We let p ∈ [0, 1] denote the
probability with which a bank agrees to produce. Therefore p(s) ∈ {0, 1}
denotes the outcome in a meeting of type s. If s = 1 and p(s) = 1, we will
assume that automatically, the consumer bank receives utility u, and the
producer receives disutility e. Thus, liquidity is both destroyed and created
within a production meeting. An allocation within a match is a function
p : s→ {0, 1}.
To familiarize the reader with the setup we first consider two benchmarks.

First, assume that banks are anonymous and that there is no fiat money
or other assets in the economy. An additional important feature of this
environment is that there is no commitment. The above assumptions rule
out reputation effects, as well as any type of trade using currency or any other
asset. We discuss symmetric stationary allocations that can be supported by
strategies that constitute perfect equilibria. We will refer to these allocations
as Incentive Feasible Allocations (IFAs).

Proposition 1 The only IFA in the above economy is autarky, i.e., p(s) = 0
for all s.

For a second benchmark we go to the other extreme. Assume the exis-
tence of a perfect monitoring and record-keeping technology that allows for

6We start with the case where goods are indivisible for expository purposes. Later we
will assume that goods are perfectly divisible.
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the types and actions of all banks to be perfectly observed and recorded in
every period. In this case, a “credit” equilibrium can be sustained through
a standard reputation argument. We have the following.

Proposition 2 If β is sufficiently high, p(s) = 1, for all s = 1, is an IFA,
i.e., trade can be sustained in each production meeting.

Proof. Trade is sustained under the threat that if a bank deviates it is
punished to permanent autarky. Let vc stand for the value of a bank along
the equilibrium path and vd stand for that of a deviating bank. Also, note
that the binding constraint comes from the bank that has to produce during
the period. We then have that p(s) = 1 iff

−e+ β(u− e)
k(1− β)

> 0, (1)

or iff

u− e > (1− β

β
)ke. (2)

The interesting cases, of course concern situations in between these two
extremes. To begin studying such cases, suppose that a perfect monitoring
technology is not available. Assume instead that each bank is endowed with
the ability to costlessly record the situations in which it demanded produc-
tion, as well as the situations in which it produced for another bank, as
entries with a clearinghouse. The clearinghouse does not have a monitoring
technology to verify whether banks have a production opportunity within
a given period. However, production can be verified. In that case, if, say,
bank i produces for bank j, the “account” of bank i with the clearinghouse
is credited by “+1,” while the one of bank j receives an entry of “−1.” Thus,
banks now have the technology to record-keep their transactions by building
reserves with the clearinghouse. We let d denote the (integer, not restricted
in sign, no upper or lower bound) balance of a bank with the clearinghouse.
The fact that there is no bound on d can be interpreted as a clearinghouse
policy that imposes no caps on individual banks’ borrowing. We now index
the allocation in a match involving a bank with balance d by pd(s). We have
the following.

Proposition 3 For any β, the only IFA in this economy is autarky, i.e.,
pd(s) = 0 for all s and d.
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Proof. Clearly, no bank has an incentive to build reserves as it can always
claim that it did not have a production opportunity. At the same time,
since there is unlimited borrowing offered by the clearinghouse, declining to
increase ones reserve balance does not by itself decrease the probability of
consuming in the future.
The above Proposition is interesting because it establishes the need for

caps in order for any non-autarky arrangement to be viable. Put differently,
in order for liquidity to be valuable it has to be scarce. Thus, the need for caps
in banks’ borrowing is a necessary condition for banks to provide liquidity.
Later, we will derive a related but different argument for the existence of caps,
one that relates to the restrictions imposed by certain incentive compatibility
constraints.
In the next section we introduce borrowing caps by assuming that a clear-

inghouse can limit borrowing by imposing a cap of C ≤ 0. In this environ-
ment, no penalty is imposed on the banks that hit the cap other than that
they cannot borrow further unless they suffer the cost of production in order
to improve their reserve balance. As we show below, this policy can imple-
ment trade, provided that the discount factor is sufficiently high. Intuitively,
the existence of C implies that liquidity is now sufficiently scarce to be of
value. In addition, sufficiently patient banks will produce in order to avoid
being in a meeting in which the lack of liquidity prevents them from enjoying
consumption.
This discussion identifies an interesting trade-off created by a liquidity

providing clearinghouse. If the clearinghouse provides little or no liquidity,
by setting the cap close to or equal to zero, some welfare improving trades will
not be realized. In the context of the model, this occurs if a bank faced with a
consumption opportunity has run out of reserves. To minimize the frequency
of such inefficient meetings, the clearinghouse should set the borrowing cap
as high as possible. This, however, might result in the non-existence of an
equilibrium with trade. An optimal cap policy will involve the best way to
balance between these two effects.
In order to implement an allocation pd(s), we only consider the game

where the bank’s choice set is {0, 1}. If one bank chooses 0, both banks
remain in autarky in that match. If both banks choose 1, the allocation
is implemented. As we assumed before, if a bank produces, its balance is
credited by “+1,” while if it consumes it receives a “−1.”
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2.1 Stationary Incentive Feasible Allocations

We now turn to a characterization of IFA for the environment of the previous
section. We will restrict our attention to allocations in trade meetings (thus,
we drop the index s in what follows), assuming that no trade takes place in
all other meetings.
Let p = [p−C , ..., p0, p1, ...] denote the vector of allocations and let x =

[x−C , ..., x0, x1, ...] denote the distribution of banks (both in the population
and per type) across states. In an IFA, we have the following value functions
for a bank in state d:

v−C =
1

k
(1−x−C)[p−C(−e+βv1)+(1−p−C)βv0]+[1− 1

k
(1−x−C)]βv0, (3)

vd≥−C =
1

k
px[u+ βvd−1] +

1

k
(1− x−C)[pd(−e+ βvd+1) + (1− pd)βvd]

+[1− 1
k
px− 1

k
(1− x−C)]βvd. (4)

For the allocation to be incentive feasible, it must be the case that banks
are better off when they choose strategies which result in this allocation.
That is, it must be that, for all d such that pd = 1, we have

−e+ βvd+1 ≥ βvd, and (5)

u+ βvd0−1 ≥ βvd0 , ∀d0 ≥ −C. (6)

In addition, it must be the case that, for all d such that pd = 0, we have

−e+ βvd+1 ≤ βvd. (7)

Note that discounting implies that consuming today is always better than
consuming at a later date. Therefore, a bank with a consumption opportunity
will always prefer to consume. Hence, when pd = 0, only the producer can be
better off by not producing. Finally, note that the allocation p also affects
the law of motion of the distribution of banks x. We will only be interested
in IFA, pd, for which xd > 0.
We first show that the set of IFA where pd = 1, for some d, is non-empty.

Lemma 4 The set of stationary IFA in which pd = 1, for some d, is non-
empty.
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Proof. We demonstrate the existence of an incentive feasible allocation with
the desired properties for the special case where banks’ reserves are restricted
to {0, 1}. The value functions of the banks, imposing that p0 = 1 and p1 = 0,
are:

v0 =
1

k
x1(−e+ βv1) + [1− 1

k
x1]βv0,

v1 =
1

k
x0(u+ βv0) + [1− 1

k
x0]βv1. (8)

For the conjectured equilibrium to exist we need that −e + βv1 ≥ βv0,
or,

(k + βk − 2βx1)[−ek + β(x0u+ e(x0 − k))]
(β + 1)k[β(k − 1) + k] ≥ 0, (9)

or,

β ≥ ek

(u+ e)x0 − ek > 0. (10)

In addition, we need that −e + βv2 < βv1. Since v2 ≤ u + βv1, this
inequality holds if −e+ βu < β(1− β)v1, or if

e+
β(1− β)x0[(1 + β)ku− β(e+ u)x1]

(1 + β)k[β(k − 1) + k] ≥ βu. (11)

It can be shown that both of these constraints are satisfied in an open
subset of the parameter space.
We now can provide a partial characterization of the set of IFA. Autarky

is always an IFA. The next proposition asserts that all IFA in which there
is trade have the property that banks wish to increase their reserves up to
a point. If their reserves become sufficiently high, banks will find it indi-
vidually optimal to decline opportunities to increase their reserves further.
This results in some welfare loss, since consumption does not occur in some
production meetings.7

7The clearinghouse could induce such banks to produce by recording R(d) > 1 units of
reserves to the producer bank. We ignore this possibility for now but will discuss it later,
when we study the full-blown mechanism design problem.
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Proposition 5 Assume β is sufficiently high. All stationary IFAs have the
property that either pd = 0 for all d, or there exists D ≥ 0 such that (a)
pd = 1, ∀d ≤ D, and (b) pd = 0, ∀d > D.
It should be clear that as β becomes arbitrarily small, it is not possible

to implement production even if there are caps. For part (a), we assume
that the cap set by the clearinghouse is C = 0. Let p∗ denote a stationary
allocation. Then

vd+1 − vd =
1

k
xpβ(vd − vd−1) + (1− xp

k
)β(vd+1 − vd)

+
1

k
(1− x0)p∗d+1[β(vd+2 − vd+1)− e]

−1
k
(1− x0)p∗d[β(vd+1 − vd)− e]. (12)

The proof follows the earlier existence proof since vd is strictly increasing
in d. For the proof of part (b) we use the following Lemmas.

Lemma 6 Suppose that d0 > d. There is no IFA with d ≥ C such that
p∗d = 0 and p

∗
d0 = 1.

Proof. We proceed by contradiction. Without loss of generality, let d0 =
d+ 1. As p∗d = 0 and p

∗
d+1 = 1, we can use the expression for vd+2 − vd+1 to

get

β(vd+1 − vd) = β(vd+2 − vd+1) + 1− β

xp/k
(vd+2 − vd+1)

+
1− x0
k

β[(vd+2 − vd+1)− (vd+3 − vd+2)]. (13)

Since β(vd+2 − vd+1) + 1−β
xp/k

(vd+2 − vd+1) > e and p∗d = 0, it must be that
(vd+3 − vd+2) > (vd+2 − vd+1). For p∗ to be incentive feasible it must then
be that p∗d+2 = 1. In addition, re-writing the expression for vd+3 − vd+2, we
have that vd+4−vd+3 > vd+3−vd+2. Proceeding by induction, we obtain that
vd+n+1 − vd+n > vd+n− vd+n−1, for all n > 0, and p∗d+n+1 = 1, for all integers
n. Hence, for some n large enough, we must have β(vd+n+1 − vd+n) > u,
which contradicts the incentive feasibility condition (6).

Lemma 7 There is no d ≥ C and d0 > d such that xd = 0 and xd0 > 0.
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Proof. Entries with the clearinghouse only increase by increments of one.
Therefore to get to d0, it must be that some banks have d entries with the
clearinghouse.
The lemma above is useful as it limits the number of cases we need to

consider for the following lemma.

Lemma 8 For β sufficiently large, in all IFAs vd+1−vd is strictly decreasing
in d.

Proof. The proof is by backward induction. We first show that vd+2−vd+1 <
vd+1 − vd whenever vd+1 − vd < vd − vd−1, for d such that p∗d+1 = 1. Then,
we show that vd+2 − vd+1 < vd+1 − vd for d such that p∗d+1 = 0. Finally, we
show that v2 − v1 < v1 − v0. Consider the following.

vd+1 − vd =
1

k
xpβ(vd − vd−1) + (1− xp

k
)β(vd+1 − vd)

+
1

k
(1− x0)p∗d+1[β(vd+2 − vd+1)− e]

−1
k
(1− x0)p∗d[β(vd+1 − vd)− e]. (14)

Let p∗d+1 = 1. Then by lemma above, we have that p
∗
d = 1. Rearranging

terms in order to obtain an expression for vd+2 − vd+1, we have
1− x0
k

β[(vd+2 − vd+1)− (vd+1 − vd)]
= (1− β)(vd+1 − vd)− xp

k
β[(vd − vd−1)− (vd+1 − vd)]. (15)

As β becomes large, the first term on the right hand side becomes ar-
bitrarily small and as vd − vd−1 > vd+1 − vd, the result follows. Now, let
p∗d+1 = 0. Then

vd+1 − vd
=

1

k
xpβ(vd − vd−1) + (1− xp

k
)β(vd+1 − vd)− 1

k
(1− x0)[β(vd+1 − vd)− e]

≤ 1

k
xpβ(vd − vd−1) + (1− xp

k
)β(vd+1 − vd). (16)
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Rearranging the terms and factoring out vd+1 − vd, we obtain

vd+1 − vd ≤ (1/k)xpβ

1− β(1− xp/k)(vd − vd−1) < vd − vd−1. (17)

This proves the second claim. Finally, in the special case where d = 0,
we have slightly different expression for v0 which gives

v1 − v0 =
xp

k
[u+ β(v0 − v1)] + β(v1 − v0)

+
1

k
(1− x0)p∗1[β(v2 − v1)− e]

− 1

k
(1− x0)p∗0[β(v1 − v0)− e]. (18)

If p∗1 = 0, we are done. If p∗1 = 1, rewrite the difference of the value
functions as

(1−β)(v1−v0) = xp

k
[u−β(v1−v0)]+ 1

k
(1−x0)β[(v2−v1)−(v1−v2)]. (19)

We know that v1 > v0 and β(v1− v0) < u. Therefore as β becomes large,
it must be that v2 − v1 < v1 − v0, as the left-hand side becomes arbitrarily
close to zero. This proves the third and last claim.
We have the following.

Lemma 9 If β is sufficiently high, all stationary IFAs have the property that
pd = 0, ∀d > D, for some D ≥ 0.

Proof. Given that vd+1 − vd is monotonically decreasing, it is easy to see
that vd+1 − vd < β(vd − vd−1) so that vd+1 − vd < βd(v1 − v0) ≤ βd−1u,
where the last inequality follows from the fact that β(v1 − v0) < u. Hence,
as β < 1, there is D sufficiently large so that β(vD+1 − vD) < e and p∗d = 0
for all d ≥ D.
We now turn to the choice of the borrowing cap, C, by the clearinghouse.

Recall that, unlike C, the variable D is not chosen by the clearinghouse.
Rather it is the endogenously determined level of reserves beyond which
a bank stops further improving its reserve position. The next proposition
asserts that for bank transactions to take place it must be that the cap is set
sufficiently low.
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Proposition 10 Assume that β is sufficiently high. There exist IFA with
pd = 1 for some d, iff C > C.

Proof. The first part of the assertion follows from the last Lemma if we set
C = −D. The second part follows as in the first Proposition.
We turn now to the question of existence of a stationary distribution, x∗,

for banks across states. For any given distribution x, we have shown that
there exists D such that p∗d = 1, for all d < D, and p

∗
d = 0, otherwise. We

have the following.

Proposition 11 If β is sufficiently high, there exists a stationary IFA in
which pd = 1, for some d. The IFA gives rise to a uniform stationary distri-
bution of banks x∗. Furthermore, if D = 1, any distribution is a stationary
distribution.8

Proof. Fix D as the number of states where p∗d = 1, for all d < D. With
a stationary distribution, this set cannot change. The law of motion for x
given the banks’ decision rules is then characterized by

x00 = x0(1−
1

k
(1− x0)) + x1 1

k
(1− xD)

x0i = xi−1
1

k
(1− xk) + xi(1− 1

k
(2− x0 − xD)),

+xi+1
1

k
(1− x0), ∀1 < i < D,

x0
D
= xD−1

1

k
(1− x0) + xD[1−

1

k
(1− xD)]. (20)

For a stationary distribution we have x0i = xi for all i. Suppose x0 = xD.
Then, the law of motion for x implies that x0 = x1 and 2xi = xi+1 + xi−1.
Hence, xi = xj for all 0 < i, j ≤ D is a solution to the set of equations
describing the law of motion. In other words, the uniform distribution is
stationary.
Finally, supposeD = 1. Then, the conditions for a stationary distribution

collapse to x0 = 1− x1.
We remark that there is a connection between the pure “credit” economy

we have described so far and a monetary economy. The economy with a

8We cannot prove that the stationary distribution is either unique or stable since stan-
dard results on Markov chains cannot be directly applied as the transition matrix Π is
state dependent.
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clearinghouse and a cap of −C on banks’ borrowing, is equivalent to one
in which banks have no access to a clearinghouse but in which each has C
units of fiat money (that they can spend one at a time). Therefore, the
question of what is the optimal cap in the first economy is equivalent to
the question of what is the optimal quantity of money in the second. The
following proposition suggests that the clearinghouse should set the cap at
the maximum level that is consistent with the existence of an equilibrium
with trade.

Proposition 12 Consider two IFAs that are supported by a uniform distri-
bution of reserves and respective caps C and C 0, with C > C 0. Welfare is
higher in the allocation resulting from the greater cap, C.

Proof. Given the policy rules for banks, and given that the distribution
of money holdings is uniform, each individual bank will set p∗d = 1 for d <
C(C 0), and p∗d = 0, otherwise. In a cap y-allocation supported by a uniform
distribution of reserves, the probability of consuming is y/(y + 1), and the
probability of producing is y/(y + 1). Welfare is given by 1

k
(y/(y + 1))2,

which is clearly increasing in y. Hence, welfare is higher in the C-allocation.

We end this section by briefly discussing the case in which the CH can
condition its policy on reports by both banks involved in any given transac-
tion. More precisely, suppose that the clearinghouse can observe that banks
i and j are in a match during a given period and consider the following rule.
If both banks report that one produced for the other, say i for j, then the CH
assigns a “+1” and a “−1” to the producer and the consumer, respectively.
If the consumer reports that he did not receive production, the producer is
punished to permanent autarky. We have the following.

Proposition 13 Under the above policy, the allocation in which production
takes place in each trade meeting is incentive feasible. Furthermore, there is
no need for caps.

While the above Proposition asserts that the first best allocation can be
supported, its conclusion relies on rather strong informational requirements.
For example, it is necessary that the CH can verify that i and j are in a
trade meeting in which i is the potential producer. If this assumption is
withdrawn then i can claim (falsely) that it was j that did not produce for
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him, etc. In what follows, we shall restrict ourselves to environments in which
the CH does not possess such information and in which certain transactions
are subject to a form of imperfect monitoring.9

2.2 Local Clearinghouses

Throughout this paper, we wish to study the effects of various kinds of inter-
actions between banks and the payment system. Indirect interactions are of
particular interest and could occur, for example, if small banks interact with
the central clearinghouse through a small network of larger, correspondent
banks. Such banks might have specific information about the local network
of banks and, indeed, might act themselves as local payment systems.
To this end, we now assume that the continuum of banks is divided equally

into two symmetric locations or networks: I and II. The distribution of
banks across types is also symmetric across the two networks. We assume
that a bank needs to transact with another bank from the same network with
probability α and with a bank outside the network with probability 1 − α.
In order to isolate the effects of local information on banks within a network
from the effects related to the frequency of meetings, we will sometimes
assume that any two banks are matched with equal probability regardless of
their respective networks, i.e., α = 1/2. In that case, the only asymmetry
between the two networks concerns the flow of information of the banks’
histories of interactions with the payment system. We first consider two
benchmark cases regarding the information structure. In one case, banks
in each network are connected to a Local Clearinghouse (LCH) that can
monitor the types and actions of all banks in every meeting in which both
banks belong to the network. There is no record-keeping regarding meetings
among banks belonging to different networks. In this environment, a “local
credit” equilibrium can be sustained within each network through a standard
reputation argument. On the other hand, no inter-network trade is possible.
The following Proposition characterizes IFAs for the first benchmark. It can
easily be demonstrated using arguments from the previous section.

Proposition 14 If β is sufficiently high, the allocation where production oc-

9Even in such cases, the CH can accomplish more by reverting to collective punish-
ments. For example, even if a trade meeting is not verifiable, the CH could punish both i
and j to permanent autarky unless their reports were mutually consistent. We shall ignore
collective punishments in what follows.
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curs in each trade meeting between banks belonging to the same network is IF,
under the threat that if a bank deviates it is punished to permanent autarky.
All IFAs imply autarky in meetings between banks belonging to different net-
works.

The second benchmark concerns the case where such LCHs do not exist.
Instead, each bank is endowed with the ability to costlessly record its borrow-
ing and its reserves in each period with a Central Clearinghouse (CH). As
before, unlike local networks, the CH does not have a monitoring technology
which would allow it to verify whether banks have a production opportunity
within a given period. However, if bank i produces for bank j then, like
before, bank i’s account is credited and bank j’s account is debited. Thus,
banks now have a capacity to record-keep their transactions, independent of
the network of their trading partner, by building reserves with the CH. The
second benchmark gives rise to the same environment as that of the previous
section. Therefore, we have the following.

Proposition 15 The IFA are characterized by the same conditions as in the
previous section. The optimal cap policy is also the same.

Now consider the case in which the probability with which two banks
need to transact, α ∈ [0, 1], depends on whether or not they belong to the
same network. We have the following.

Proposition 16 The first benchmark arrangement, when it exists, domi-
nates the second if α is sufficiently high. The second benchmark arrangement,
when it exists, dominates the first if α is sufficiently low.

The first assertion is true since the first arrangement involves no caps.
Therefore, consumption takes place in each production meeting between two
banks belonging to the same network. The second assertion is true since the
first benchmark will involve very little or no trade. This is because meetings
between banks belonging to different networks always result in autarky under
this benchmark. We now turn to the main part of this project, which involves
dynamic clearing arrangements under private information.
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3 Dynamic Clearing under Private Informa-

tion

Here we build on the first benchmark of the previous section. We apply
mechanism design to study optimal transactions under private information,
no commitment, and imperfect monitoring. We still assume that the popu-
lation of banks is divided into two symmetric networks, I and II, and that
banks are matched with other banks belonging to the same network with
probability α. Banks in each network are connected to a local clearinghouse
(LCH). Currently, we shall think of each LCH as a local planner and will
rule out communication between clearinghouses.10

We want to capture the feature that sometimes a is involved in trans-
actions that are observed by the LCH, while in other cases, a bank’s trans-
actions are its own private information and the LCH will have to rely on
incentives that will induce truthful revelation. To this end, we assume that
the information technology is such that the LCH can observe the types and
actions of banks only in meetings in which both banks belong to the network,
while there is no record-keeping regarding meetings among banks belonging
to different networks. The first Proposition in the previous section estab-
lishes that if β is sufficiently high, an equilibrium can be sustained in which
trade takes place in each production meeting between banks from the same
network, under the threat that if a bank deviates it is punished to autarky.
While the above mechanism gives rise to an efficient exchange within

each network, it implies no transactions across networks, with the resulting
efficiency loss. Thus, an obvious question is whether the above allocation
can be improved upon via the use of a different mechanism. The difficulty
lies in that LCHs cannot verify whether a trade meeting has taken place
in situations involving banks belonging to different networks. To see this,
consider a distinguished bank from location I which, say, for the n-th time
in a row reports to the LCH that it could not produce since it did not have
the necessary trade meeting with a bank outside the network. Given the
information structure, the LCH in network I can verify that the bank had
n consecutive meetings with banks belonging to network II (this is an event

10This is consistent with viewing the LC as acting on behalf of the grand coalition of
banks prior to each bank learning which network it will belong to. However, there are
incentive issues that will arise if we assume that the LC acts as a representative of the
local coalition of banks. We intend to study these issues in the future.
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of probability (1 − α)n). It can also verify that the bank did not produce
in any of these meetings. What the LCH cannot verify, however, is whether
that bank had an opportunity to produce and simply declined or whether it
did not have any meetings in which it could produce (an event of probability
(1− 1

k
)n).11

To see that the above difficulty could be overcome, consider the following
candidate policy. Recall that the LCHs observe banks’ trading histories in
meetings within their network. Assume that the local banks are asked to
make reports about their transactions in meetings with banks outside the
network. Further, assume that each LCH triggers a penalty on banks that
report histories that are “unlikely fortunate.” For example, the penalty of
“no consumption unless they produce for l periods for banks within their
network” could be imposed on any bank who reports no production for banks
outside the network for, say, n periods in a row. Such a policy, however, will
typically imply a social cost. This is because a bank might simply reach
the punishment threshold, n, due to bad luck. On the other hand, the
benefits come from the fact that, for certain parameters, such a policy induces
trade among banks in different networks. To analyze this issue formally, one
could employ techniques in Green and Porter (1984) and Abreu, Pearce, and
Stacchetti (1986, 1990).
Throughout this section we assume that the goods are perfectly divisible.

Let u(q) stand for the utility that a consumer receives if he consumes q units
of his favorite good. Similarly, let e(q) be the cost to the producer. We

assume that e
0
(q) > 0, e

00
(q) > 0, and ∃q s.t. e(q) < q, if q < q, and e(q) > q,

if q ≥ q. It is then without loss of generality to assume that u(q) = q. We
proceed to setup the problem as a mechanism design problem.
In each period, a bank may have a meeting as a consumer, as a producer,

or a no trade meeting within its network. In that case, the LCH observes
the type of the meeting, as well as the quantity consumed or produced.
It is only when the bank has a meeting with a bank outside the network
that its state is private information. In that case, q−it < 0 indicates that
bank i reports production of q units, while q−it > 0 indicates that bank i
reports consumption of q units. The bank reports a no trade meeting if
it sets n−it = 1. Otherwise, it sets n−it = 0. Summarizing, the reported

11Since meetings between banks from different networks are anonymous, the distin-
guished bank cannot be identified outside its network. As mentioned before, we will rule
out collective penalties throughout.
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experience of a bank belonging to network i in any period t, is given by the
following array of functions: θt = {qit, nit, q−it , n−it } ∈ R2 = Θt. We want
to design a mechanism that induces truthful revelation in every period. Let
θT = (θ0, θ1, ..., θT ) ∈ ΘT = ×TΘt denote a history of experiences of length
T , T = 0, 1, ...,∞. Let µ be a probability measure over the Borel subsets of
Θ∞. Risk is modelled as follows. At the beginning of period 0, an element of
Θ∞ is realized for each bank, consistent with the probability measure µ. In
each period T , a bank’s choice in each period T has to be a θT -measurable
function.
In any given period, a banks’s allocation depends on its reported history.

In meetings between banks belonging to the same network the allocation
may depend on the reported history of both banks. We wish to study re-
sulting allocations that are incentive compatible. To this end, we will use the
revelation principle and restrict ourselves to direct revelation mechanisms.
Allocations that are both incentive and resource feasible are, like before,
referred to as Incentive Feasible (IFAs). Incentive feasible allocations that
maximize ex-ante expected utility are called Incentive Efficient Allocations
or, simply, Optimal. The problem can be divided into two parts. The first
part involves characterizing the set of optimal allocations. The second part
involves finding the clearinghouse policy, the payment system, that imple-
ments an optimal allocation, i.e., that supports an optimal allocation as a
perfect equilibrium of the resulting game.

3.1 Optimal Allocations

The planner’s problem involves maximization of period 0 expected utility
subject to resource and incentive constraints. The objective is given by

maxE
∞X
t=0

βtIt(q), (21)

where It(q) ∈ R, for all t, and it is positive or negative depending on
whether there is consumption or production. LetHt denote the entire history
of length t. Let I = {It}∞t=0 denote an allocation, where I : H∞ → I(q)∞.
The expectation in the above expression is taken over all possible future
histories of random matching shocks. The allocation has to be resource
feasible. This implies that consumption has to equal production in each
meeting, a constraint that is automatically satisfied in our setup. Finally,
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the allocation has to be incentive compatible, which means that, in each
period, each bank has to be (weakly) better off by reporting its true state
regarding meetings with banks outside its network. More formally, Define a
reporting strategy for a bank to be a function σ : Θ∞ → Θ∞, where σT is a θT -
measurable function, for all T ≥ 1. Let Σ denote the set of all such strategies.
Define a function W (·, I) : Σ → R by W (σ, I) =

P∞
t=0 β

t R
Θ∞ It(σ)dµ. The

function W gives the expected utility from reporting strategy σ given I. Letbσ ∈ Σ be the truth-telling strategy, i.e., bσ(θ∞) = θ∞, for all θ∞ ∈ Θ∞. An
allocation I is incentive compatible (IC) iff

W (bσ, I) ≥W (σ, I), ∀σ ∈ Σ. (22)

An optimal allocation is one that maximizes

∞X
t=0

βt
Z
Θ∞
It(σ)dµ, (23)

subject to IC as well and resource feasibility constraints. Next we discuss
some properties of the optimal arrangement for this economy. In what fol-
lows, unless we specify otherwise, we will assume that α, the probability of
interacting with banks within the network, is bounded away from 0 and 1,
so that the optimum will involve some transactions between networks.
First, note that an allocation in which all production meetings result

in trade is not IF. The reason is simple. In order to induce a bank to re-
port truthfully and produce for a bank belonging to a different network, the
bank’s future expected utility has to increase. But if it already receives the
maximum utility within its network, any such increase is impossible. Thus,
interestingly, the existence of incentive compatible transactions with “out-
siders” can only come at a cost of a reduction in the frequency of transactions
with “insiders.” We summarize this in the following.

Proposition 17 There is no IFA in which production occurs in all trade
meetings within a network as well as in at least some trade meetings between
networks.

Yet, the following Proposition suggests that transactions among banks
belonging to different networks are generally desirable even though this comes
at the cost of giving up some intra-network transactions.
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Proposition 18 If α = 0, the only IFA involves autarky. If α = 1, IFAs
involve no transactions between networks. If α is bounded way from 0 and 1,
and β is sufficiently high, the optimal allocation involves some transactions
between networks.

Let W
pi(ci)
T+1 (σ, I) denote the continuation expected utility of a bank be-

longing to network i, evaluated in period T , i.e.,

W
pi(ci)
T+1 = E

∞X
t=1

βt−1IT+t, (24)

where the superscript denotes whether the bank has a meeting in period T
as a producer (consumer) of q units of the good with a bank belonging to
the same network, i, and similarly for a meeting with a bank outside the
network, −i. Here, the function IT indicates, as before, an allocation for a
bank in period T . We will refer to a bank’s W as the state of the bank.
In what follows, we find it is convenient to write WT (the expected lifetime
utility evaluated in period T − 1) in the following form.

WT =
α

k
[EIT (θ

T , θT
0
) + βEW ci

T+1] +
α

k
[EIT (θ

T , θT
0
) + βEW pi

T+1]

+
(1− α)

k
[EIT (θ

T ) + βEW
c−i
T+1] +

(1− α)

k
[EIT (θ

T ) + βEW p−i
T+1]

+ α(1− 1
k
− 1
k
)[EIT (θ

T , θT
0
) + βEWni

T+1]

+ (1− α)(1− 1
k
− 1
k
)[EIT (θ

T ) + βEWn−i
T+1].

where EWT+1 =
R
(θT ,θ

0T )WT+1dµ.
The next proposition asserts when it is incentive compatible for banks

to improve their future expected utility by producing for banks belonging
to a different network. The rewards come from an increased frequency of
consumption within the network. If a bank’s promised utility falls too low,
it is declined consumption within its own network. This is the planner’s way
of supporting incentive compatible trade across banking networks.

Proposition 19 Fix a trade meeting in period T between two banks belong-
ing to the same network. In an optimal allocation, there exists a W T ≥ 0
such that IT > 0 if and only if WT > W T .
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We will denote by xWT
the fraction of banks in states W T . The state

space for a bank is Λ ⊆ [W T ,∞], for all T .
The next Proposition further describes properties of the optimal arrange-

ment in meetings between banks belonging to different networks. A bank is
not punished when it consumes in such a meeting, otherwise it will not report
truthfully. In order to report truthfully when a bank produces, it needs to
be compensated for the disutility of production.

Proposition 20 Fix a trade meeting in period T between two banks belong-
ing to different networks. Any IFA such that IT > 0 satisfies EW

c−i
T+1 ≥WT .

Any IFA such that IT < 0 satisfies EW
p−i
T+1 − e/β ≥ EW n−i

T+1, and EW
c−i
T+1 =

EWn−i
T+1.

Proof. Suppose that EW c−i
T+1 < EW

n−i
T+1 =WT . Then, all banks would report

a no coincidence meeting in situations where they actually consume. On the
other hand, if EW c−i

T+1 > EWn−i
T+1 = WT , banks in no coincidence meetings

would falsely report that they consumed.
The future expected utility for banks in state W T , as well as the law of

motion of banks across x, can be described as in the previous section. Next,
we turn to the question of implementation of optimal allocations through a
payment system.

3.2 Implementation

The candidate mechanism for implementing an optimal allocation can be
interpreted as follows. In each period, a bank’s position is summarized by
d ∈ R. Each LCH imposes a cap of C(d) ∈ R on the borrowing of banks. In
addition, each bank receives an entry of R(d, q)(K(d, q))∈ R every time it
trades with a bank outside (inside) the network. If a bank does not produce
for a bank within its network, it is punished to permanent autarky, as before,
unless the potential consumer has a balance of C(d). In that case, the bank
is instructed by the LCH to not produce. We are now ready to formally
define a payment system.

Definition 21 A Payment System is defined to be an array of three functions
{C(d), R(d, q),K(d, q)}. A payment system is optimal if the array is chosen
so as to implement an optimal allocation.12

12Notice that in the spirit of mechanism design, unlike the existing literature, we do

22



The value function of a bank with reserves d ∈ (−C,∞) is given by

vd =
α

k
(q + βvd+R(d,q)) +

(1− α)

k
(q + βvd+K(d,q))

+
α

k
(1− x−C)(−q + βvd+R(d,q)) +

(1− α)

k
(−q + βvd+K(d,q))

+[1− α

k
− (1− α)

k
− α

k
(1− x−C)]βvd, (25)

while, if d = −C, it is given by

v−C =
(1− α)

k
(q + βv−C)

+
α

k
(1− x−C)(−q + βv−C+R(−C,q)) +

(1− α)

k
(−q + βv−C+K(−C,q))

+[1− (1− α)

k
− α

k
(1− x−C)− (1− α)

k
]βv−C . (26)

The Incentive Compatibility conditions require

−q + βvd+R(d,q) > 0, and

−q + βvd+K(d,q) > βvd. (27)

To define the law of motion of x, we need to first introduce some notation.
Let

JR(j) = {d : d+R(d, q) = j},
JK(j) = {d : d+K(d, q) = j}.

The law of motion of x is given by

not impose any properties on the payment system (such as whether it operates under
gross or net settlement rules). However, our specification is general enough so that pay-
ment systems exhibiting gross, net, or other settlement rules, are implicitly considered as
candidates for the optimum.
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x0−C = x−C [1−
(1− α)

k
]

+
Z
j∈JR(−C)

α

k
xR(d,q)−Cdµ+

Z
j∈JK(−C)

(1− α)

k
xK(d,q)−Cdµ, (28)

while, for all i ∈ (−C,∞), we have

x0i =
Z
j∈JK(i)

(1− α)

k
xi−K(d,q)dµ+ xi[1− α

k
− (1− α)

k
]

+
Z
j∈JR(i)

α

k
xi+R(d,q)dµ+ +

Z
j∈JR(i)

α

k
xi−R(d,q)dµ

+
Z
j∈JK(i)

(1− α)

k
xi+K(d,q)dµ. (29)

If banks trade with other banks in their network with probability 1, then
it is optimal to impose no caps on these transactions. If, on the other hand,
banks need to transact with banks outside their network with probability 1,
the only IFA implies autarky. We, thus, have the following.

Proposition 22 If α = 1 then {C(d) = −∞, R(d, q) ∈ R,K(d, q) ∈ R},
∀d, constitutes an optimal payment system under the threat of exclusion if
a bank does not produce within its network. If α = 0, the optimal payment
system implies autarky.

If α is bounded away from 0 and 1, the optimal payment system will
feature bank specific caps that will depend on individual banks’ histories of
transactions as summarized by their current reserve holdings. In addition,
banks are penalized for using liquidity and are rewarded for creating liquidity
when they produce. Further characterization of the optimal payment system
is work in progress.

4 Conclusion

The main insight that comes out of our analysis so far is that an optimal
payment system needs to explore intertemporal incentives. In order to ac-
complish this, certain transactions that are desirable under complete infor-
mation are no longer feasible. Thus, there is a trade-off between efficiency
and truthful revelation of banks’ histories.

24



Other issues that we want to consider as part of this proposal include:
- The possibility of default by either a single bank or an entire network

of banks. Indeed, the existence of local banking networks implies that the
resulting allocation has to be robust not only to deviations by individual
banks, but also to coalitional deviations. In the presence of aggregate risk, an
entire local network might find it profitable to exit the system if its position
within the system becomes sufficiently unfavorable. This, in turn, could
create certain contagion effects. Avoiding this problem will require the study
of stronger forms of implementation, say in coalition proof perfect equilibria.
- To the extent that payment system provision has certain characteristics

of a public good, it is interesting to study efficient pricing of this service
given dynamic incentive constraints. This is particularly relevant as there is
an ongoing policy debate on whether public payment systems that coexist
with private ones should be subsidized.
- Given that we deal with dynamic incentives, we need to study imperfect

commitment and the issue of time consistency of various clearinghouse poli-
cies, a problem that the current analysis abstracts from. This, once again,
relates to the debate of public versus private provision of payment system
services since, typically, optimal dynamic schemes require a high degree of
commitment. Related issues will arise immediately in our model once we en-
dogenize the interactions between LCHs, which we currently model as passive
tools of a central planner.

25



References

[1] Abreu, D., Pearce, D., and E. Stacchetti (1986) “Optimal Cartel Equi-
libria with Imperfect Monitoring,” Journal of Economic Theory 39, p.
251-269

[2] Abreu, D., Pearce, D., and E. Stacchetti (1990) “Toward a Theory of
Discounted Repeated Games with Imperfect Monitoring,” Econometrica
58 (5), p. 1041-1063

[3] Atkeson (2004) “Discussion of Liquidity, Money Creation and Destruc-
tion, and the Returns to Banking,” Manuscript for the Models of Mone-
tary Economics II, the Next Generation, International Economic Review
volume

[4] Bank of International Settlements (2003), “The Role of Central Bank
Money in Payment Systems,” Committee on Payment and Settlement
Systems

[5] Cavalcanti R., Erosa A., and T. Temzelides (2004) “Liquidity, Money
Creation and Destruction, and the Returns to Banking,” Manuscript
for the Models of Monetary Economics II, the Next Generation, Inter-
national Economic Review volume

[6] Duffie D., Garleanu N., and L.H. Pedersen (2004) “Over-the-Counter
Markets. Stanford university Working Paper

[7] Fujiki H., Green E.J., and A Yamazaki (1999) “Sharing the Risk of Set-
tlement Failure,” Federal Reserve Bank of Minneapolis Working Paper
594D

[8] Green E.J., and P. Lin (2000) “Diamond and Dybvig’s Classic Theory
of Financial Intermediation: What’s Missing?” Federal Reserve Bank of
Minneapolis Quarterly Review 24(1), p. 3-13

[9] Green, E.J., and R.H. Porter (1984) “Non-Cooperative Collusion Under
Imperfect Price Information,” Econometrica 52 (1), p. 87-100

[10] Green E.J., and R.M. Todd (2201) “Thoughts on the Fed’s Role in the
Payment Systems,” Quarterly Review, Federal Reserve Bank of Min-
neapolis 25 (1), Winter 2001, p. 12-37

26



[11] Kahn C.M., and W. Roberds (1998) “Payment System Settlement and
Bank Incentives,” The Review of Financial Studies 11(4), p. 845-870

[12] Kiyotaki N., and R. Wright (1989) “On Money as a Medium of Ex-
change,” Journal of Political Economy 97, p. 927-954

[13] Kiyotaki N., and R. Wright (1993) “A Search-Theoretic Approach to
Monetary Economics,” American Economic Review 83, p. 63-77

[14] Kocherlakota N. (1998) “Money is Memory,” Journal of Economic The-
ory 81(2), p. 232-251

[15] Kocherlakota N. (2004) “The New Dynamic Public Finance,” SED Ple-
nary Session

[16] Kocherlakota N., and N. Wallace (1998) “Incomplete Record-Keeping
and Optimal Payment Arrangements,” Journal of Economic Theory
81(2), p. 272-289

[17] Mills D.C. (2003) “Alternative Central Bank Credit Policies for Liq-
uidity Provision in a Model of Payments,” Federal Reserve Board of
Governors Working Paper

[18] Mirrlees J. (1971) “An Exploration in the Theory of Optimal Income
Taxation,” Review of Economic Studies 38, p. 175-208

[19] Myerson R.B. (1991) Game Theory: Analysis of Conflict, Cambridge,
Mass. Harvard University Press

[20] Temzelides T. and S. Williamson (2001) “Payments Systems Design in
Deterministic and Private Information Environments,” Journal of Eco-
nomic Theory 99, p. 297-326

27


