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Abstract

This paper generalizes the concept of best response to coalitions of
players and offers epistemic definitions of coalitional rationalizability in
normal form games. The best response of a coalition is defined to be
a correspondence from sets of conjectures to sets of strategies. From
every best response correspondence it is possible to obtain a definition
of the event that a coalition is rational. It requires that if it is common
certainty among players in the coalition that play is in some subset of
the strategy space then they confine their play to the best response set to
those conjectures. A strategy is epistemic coalitionally rationalizable if it
is consistent with rationality and common certainty that every coalition
is rational. A characterization of this set of strategies is provided for best
response correspondences that satisfy two consistency properties and a
weak requirement along the line of Pareto dominance for members of the
coalition. Special attention is devoted to two correspondences from this
class. One leads to a solution concept that is generically equivalent to
the set of coalitionally rationalizable strategies as defined in Ambrus [04],
while the other one leads to a solution concept exactly equivalent to it.
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1 Introduction
Since Aumann’s paper nearly fifty years ago (Aumann [59]) there have been
numerous attempts to incorporate coalitional reasoning into the theory of non-
cooperative games, but the issue is still unresolved. Part of the problem seems
to be that the concept of coalitional reasoning itself is not formally defined. At
an intuitive level it means that players with similar interest (a coalition) coor-
dinate their play to achieve a common gain (to increase every player’s payoff
in the coalition). This intuitive definition can be formalized in a straightfor-
ward way if there is a focal strategy profile that all players expect to be played.
With respect to this profile, a profitable coalitional deviation is a joint deviation
by players in a coalition that makes all of them better off, supposing that all
other players keep their play unchanged. This definition is a generalization of
a profitable unilateral deviation, therefore concepts that require stability with
respect to coalitional deviations are refinements of Nash equilibrium. The two
most well-known equilibrium concepts along this line are strong Nash equilib-
rium (Aumann [59]) and coalition-proof Nash equilibrium (Bernheim et al [87]).
However, as opposed to Nash equilibrium, these solution concepts cannot guar-
antee existence in a natural class of games. This casts doubt on whether these
theories give a satisfactory prediction even in games in which the given equilibria
do exist.

Outside the equilibrium framework Ambrus [04] proposes the concept of
coalitional rationalizability, using an iterative procedure. The construction is
similar to the original definition of rationalizability, provided by Bernheim [84]
and Pearce [84]. The new aspect is that not only never best-response strategies
of individual players are deleted by the procedure, but strategies of groups of
players simultaneously too, if it is in their mutual interest to confine their play
to the remaining set of strategies. These are called supported restrictions by
different coalitions. The set of coalitionally rationalizable strategies is the set
of strategies that survive the iterative procedure of supported restrictions. The
paper also provides a direct characterization of this set. But even this characteri-
zation (stability with respect to supported restrictions given any superset) is not
based on primitive assumptions about players’ beliefs and behavior. Since such
characterizations were provided for rationalizability by Tan and Werlang [88]
and Brandenburger and Dekel [93], using the framework of interactive episte-
mology, the question arises whether similar epistemic foundations can be worked
out for coalitional rationalizability as well.

This paper investigates a range of possible definitions of coalitional rational-
izability in an epistemic framework. These theories differ in how the event that
a coalition is rational is defined. We only consider definitions that are general-
izations of the standard definition of individual rationality, namely that players
are subjective expected utility maximizers: every player forms a conjecture on
other players’ choices and plays a best response to it.1 We define the best re-

1This is the starting point for rationalizability as well, although Epstein [97] considers
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sponse of a coalition to be a correspondence that allocates a set of strategies
to certain sets of conjectures. The assumption that the correspondence is de-
fined on sets of conjectures corresponds to the idea that in a non-equilibrium
framework players in a coalition might not have the same conjecture, but it
can be common certainty among them that play is within a certain subset of
the strategy space. Intuitively then the best response of the coalition to this
set of conjectures is a set of strategies that players in the coalition would agree
upon confining their play to, given the above set of possible conjectures. Since
players’ interests usually do not coincide perfectly, there are various ways to
formalize this intuition. Because of this we consider a wide range of coalitional
best response correspondences.

Each best response correspondence can be used to obtain a definition of
coalitional rationality the following way. A coalition is rational if (i) every
player in the coalition is rational, and (ii) whenever it is common certainty
among coalition members that play is within a certain set of strategies, then
members of the coalition play within the best response set of the coalition to the
set of conjectures concentrated on that set of strategies. Once the event that a
coalition is rational is well-defined, the events that every coalition is rational,
that a player is certain that every coalition is rational, and that it is common
certainty among players that every coalition is rational can be defined the usual
manner. Then a definition of coalitional rationalizability can be provided as the
set of strategies that are consistent with the assumptions that every player is
rational and that it is common certainty that every coalition is rational. We refer
to coalitional rationalizability corresponding to best response correspondence γ
as coalitional γ-rationalizability.

We then investigate the class of best response correspondences that satisfy
three properties. The first is a consistency requirement imposing that the best
response to a set that is closed under rational behavior is itself closed under
rational behavior. The second one imposes a form of monotonicity on the cor-
respondence that reflects the idea that if restricting play in a certain way is
mutually advantageous for members of a coalition for a set of possible beliefs,
then the same restriction should still be advantageous for a smaller set of pos-
sible beliefs. The third property requires that the best response of a coalition
retains the strategies of players in the coalition that can be best responses to
their most optimistic conjectures. This is a very weak requirement along the
lines of Pareto optimality of the best response correspondence for coalition mem-
bers, but turns out to be enough to establish our results. We call the above
best response correspondences sensible. We show that there is a smallest and a
largest sensible best response correspondence.

It is shown that for every sensible best response correspondence γ the re-
sulting set of coalitionally γ-rationalizable strategies is nonempty and coherent,

building the concept on alternative definitions of rationality.
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and it can be characterized by an iterative procedure that is defined from the
corresponding best response correspondence. In generic games this procedure is
fairly simple. Starting from the set of all strategies, in each step it involves tak-
ing the intersection of best responses of all coalitions, given the set of strategies
that survive the previous step. In a nongeneric class of games the procedure
involves checking best responses of coalitions given certain subsets (not only
the entire set) of the set of strategies reached in the previous round, and it
characterizes a subset of the set of strategies reached by the simpler iterative
procedure.

The best response correspondence that we pay special attention to uses the
concept of supported restriction as defined in Ambrus [04]. It specifies the best
response of a coalition to the set of conjectures concentrated on some set of
strategies to be the smallest supported restriction by the coalition given that
set. The resulting definition of epistemic coalitional rationalizability requires
that whenever it is common certainty among members of a coalition that play
is in A, and B is a supported restriction by the coalition given A, then players
in the coalition choose strategies in B. Our results then imply that the set of
epistemic coalitionally rationalizable strategies defined this way is generically
equivalent to the iteratively defined set of coalitionally rationalizable strategies
of Ambrus [04]. In a nongeneric class of games the former can be a strict sub-
set of the latter, providing a (slightly) stronger refinement of rationalizability.
Furthermore, we show that there exists another sensible best response corre-
spondence that leads to a set of epistemic coalitionally rationalizable strategies
that is exactly equivalent to the iteratively defined set of coalitionally rational-
izable strategies.

2 The model

2.1 Basic notation.

Let G = (I, S, u) be a normal form game, where I is a finite set of players,
S = ×

i∈I
Si, is the set of strategies, and u = (ui)i∈I , ui : S → R, ∀ i ∈ I are the

payoff functions. We assume that Si is finite for every i ∈ I. Let S−i = ×
j∈I/{i}

Sj ,

∀ i ∈ I and let S−J = ×
j∈I/J

Sj , ∀ J ⊂ I. Let C = {J | J ⊂ I, J 6= ∅}. We will
refer to elements of C as coalitions.

Let ∆−i be the set of probability distributions over S−i, representing the set
of conjectures (including correlated ones) player i can have concerning other
players’ moves. For every J ∈ C, i ∈ J and f−i ∈ ∆−i let f−J−i be the
marginal distribution of f−i over S−J . For every f−i ∈ ∆−i and si ∈ Si let
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ui(si, f−i) =
P

t−i∈S−i
ui(si, t−i) · f−i(t−i) denote the expected payoff of player i

if he has conjecture f−i and plays pure strategy si. For every f−i ∈ ∆−i let
BRi(f−i) = {si | si ∈ Si, ui(si, f−i) ≥ ui(ti, f−i), ∀ ti ∈ Si}, the set of pure
strategy best responses player i has against conjecture f−i.

2.2 Type spaces

Definition: a type space T for G is a tuple T = (I, (Ti,Φi, gi)i∈I) where Ti is a
compact topological space, Φi is a compact subset of Si×Ti such that projSiΦi =
Si, and gi : Ti → 4(Φ−i) (where4(Φ−i) is the set of Borel probability measures
on Φ−i) is a continuous mapping (with respect to the topology on Ti and the
weak topology on 4(Φ−i)).

Ti represents the set of epistemic types of player i. Φ is the set of states of
the world. Every state of the world consists of a strategy profile (the external
state) and a profile of epistemic types. A player’s epistemic type determines her
probabilistic belief (conjecture) about other players’ strategies and epistemic
types. Player i’s belief as a function of her type is denoted by gi.2

For every i ∈ I and φi ∈ Φi let φi = (si(φi), ti(φi)).
Definition: i is certain of Ψ−i ⊂ Φ−i at φ ∈ Φ if gi(ti(φi))(Ψ−i) = 1.3

In the formulation we use a player does not have beliefs concerning her own
strategy. Nevertheless, for the construction below it is convenient to extend the
definition of certainty to particular events of the entire state space.

Definition: i is certain of Ψ = Ψi×Ψ−i ⊂ Φ at φ ∈ Φ if i is certain of Ψ−i
at φ.

Let Ψ = Ψi×Ψ−i and let Ci(Ψ−i) ≡ {φ ∈ Φ : gi(ti(φi))(Ψ−i) = 1}. Ci(Ψ) is
the event in the state space that i is certain of Ψ.

Let Ψ = ×
i∈I
Ψi where Ψi ⊂ Φi (a product event).

Definition: Mutual certainty of Ψ holds at φ ∈ Φ if φ ∈ ∩
i∈N

Ci(Ψ). Mutual
certainty of Ψ ⊂ Φ among J holds at φ ∈ Φ if φ ∈ ∩

i∈I
Ci(Ψ).

LetMCJ(Ψ) denote mutual certainty of Ψ among J .
Definition: LetMC1J(Ψ) ≡MCJ(Ψ). Let MCkJ(Ψ) =MCJ(MCk−1J (Ψ))

for k ≥ 2. Common certainty ofΨ among J holds at φ ∈ Φ if φ ∈ ∩
k=1,2,...

MCkJ(Ψ).

Let CCJ(Ψ) denote common certainty of Ψ among J .

2For more on type spaces see for example Battigalli and Bonanno[99].
3The terminology “i believes Ψ−i” is also common in the literature.
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3 Best response correspondences for coalitions
and definitions of coalitional rationalizability

In this section we define the event that a coalition is rational. We start out by
generalizing the concept of best response for coalitions. Since there is no one
clear way of doing this, we consider all possible best response correspondences
that satisfy certain desirable properties. Each of these correspondences can then
be used to define rationality of a coalition.

The set of best responses of player i to a conjecture f−i ∈ ∆−i consists of
the strategies of i that maximize her expected payoff given f−i. When trying
to generalize this definition to coalitions of multiple players, two conceptual
difficulties arise. One is that in a nonequilibrium framework different players in
the coalition might have different conjectures on other players’ strategy choices.
Second, even if they share the same conjecture, typically players’ interests do
not align perfectly - different strategy profiles maximize the payoffs of different
coalition members to the conjecture. However, these inconsistencies can be
resolved if the best response correspondence is defined such that it allocates a
set of strategies to a set of conjectures.

In particular, consider the case that it is common certainty among players in
the coalition that the conjecture of each of them is concentrated on a product
subset of strategies A ⊂ S.4 Then even if they are uncertain that exactly
what conjectures others in the coalition have from the above set of possible
conjectures, they might all implicitly agree to confine their play to a set B ⊂ A.
Therefore any theory that specifies what set of strategies a coalition would
implicitly agree upon confining its play to a given set of conjectures can be
interpreted as a best response correspondence. The problem is that there is no
one obvious definition of a restriction being of mutual interest of a coalition, since
evaluating a restriction involves a comparison of two sets of expected payoffs
(expected payoffs in case the restriction is made and in case the restriction is
not made) for every player. One formal definition can be obtained from the
concept of supported restriction of Ambrus [04].

Let X denote product subsets of the strategy space: X = {A | A = ×
i∈I

Ai st

Ai ⊂ Si ∀ i ∈ I}.

For any A ∈ X let ∆−i(A) = {f−i |suppf−i ⊂ A−i}.We will refer to ∆−i(A)
as the set of conjectures concentrated on A.

For any Bi ⊂ Si let ∆∗−i(Bi) = {f−i | f−i ∈ ∆−i, ∃ bi ∈ Bi such that
bi ∈ BRi(f−i)}. In words, ∆∗−i(Bi) is the set of conjectures to which player i
has a best response strategy in Bi.

4For a discussion on why we only consider product sets see Section 6.
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Let bui(f−i) = ui(bi, f−i) for any bi ∈ BRi(f−i). Then bui(f−i) is the expected
payoff of a player if he has conjecture f−i and plays a best response to his
conjecture.

Let A,B ∈ X and ∅ 6= B ⊂ A.

Definition: B is a supported restriction by J given A if
1) Bi = Ai, ∀ i /∈ J, and
2) ∀ j ∈ J, f−j ∈ ∆∗−j(Aj/Bj) ∩∆−j(A) it is the case thatbuj(f−j) < buj(g−j) ∀ g−j ∈ ∆−j(B) such that g−J−j = f−J−j .

Restricting play to B given that conjectures are concentrated on A is sup-
ported by J if for any fixed conjecture concerning players outside the coalition,
every player in the coalition expects a strictly higher expected payoff in case his
conjecture is concentrated on B than if his conjecture is such that she has a best
response strategy to it which is outside B. In short, for every fixed conjecture
concerning outsiders, every coalition member is always strictly better off if the
restriction is made than if the restriction is not made and she wants to play a
strategy outside the restriction.

Let FJ(A) be the set of supported restrictions by J given A. It is possible to
establish (see Ambrus [04]) that ∩

B∈FJ (A)
B is either empty or itself a member of

FJ(A). This motivates a best response correspondence that allocates ∩
B∈FJ(A)

B

to be the best response of J to the set of conjectures concentrated on A.

Definition: Let γ∗ : X × C → X be such that for every J ∈ C γ∗(A,J) =
∩

B∈FJ(A)
B ∀ ∅ 6= A ∈ X and γ∗(∅, J) = ∅.

However, supported restriction is just one possible way of formalizing the
idea that a restriction is unambiguously in the interest of every player in the
coalition. There are other intuitively appealing definitions. A stronger require-
ment (leading to larger best response sets) is that restriction B is supported
by J given A iff s ∈ B, t ∈ A/B and s−J = t−J imply that uj(s) > uj(t) ∀
j ∈ J (fixing the strategies of players outside the coalition, the restriction payoff-
dominates all other outcomes). A weaker requirement (leading to smaller best
response sets) can be obtained from the following modification of supported re-
strictions. Note that if B ⊂ A then every f−i ∈ ∆−i(A) can be decomposed as
a convex combination of a conjecture in ∆−i(B) and a conjecture in ∆−i(A/B):
f−i = αf−ifB−i + (1 − αf−i)f

A/B
−i , where αf−i is uniquely determined. Thenbuj(f−j) < buj(g−j) in the definition of supported restriction above can be re-

quired to hold only if g−j = αf−ifB−i + (1 − αf−i)g0−j for some g
0
−j ∈ ∆−j(B).

Intuitively, this corresponds to assuming that when players compare expected
payoffs between the case the restriction is made and the case that it is not made,
they leave the part of the conjecture that is consistent with the restriction un-
changed.
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Instead of selecting a particular best response correspondence, we proceed
by considering a wide range of possible ones. The rest of this section defines
rationalizability based on any coalitional best response correspondence. The
next section considers best response correspondences that satisfy certain criteria
(a set of correspondences that include γ∗) and provides a characterization result
for the set of rationalizable strategies that are derived from them.

Definition: γ : X × C → X is a coalitional best response correspondence if
γ(A, J) ⊂ A and γ(A,J) 6= ∅ implies (γ(A, J))−J = A−J .

In words, coalitional best response correspondences are restrictions on the set
of strategies such that only strategies of players in the corresponding coalitions
are restricted. Let Γ be the set of coalitional best response correspondences.

Next we define the concept of rationality of a coalition. The definition refers
to subsets of the strategy space that are called closed under rational behavior
in the literature.

Definition: set A ∈ X/∅ is closed under rational behavior if BRi(f−i) ⊂
Ai, ∀ f−i ∈ ∆−i(A) , ∀ i ∈ I.

LetM denote the collection of sets closed under rational behavior
.

For any γ ∈ Γ we define a coalition to be γ-rational at some state of the
world if the strategy profile that is played at that state is within the γ-best
response of the coalition to any set which satisfies that it is common certainty
among the coalition members that play is within this set.

For any ∅ 6= A ⊂ S let ΨA = {φ ∈ Φ | s(φ) ∈ A}. Then CCJ(ΨA) is the
event that there is common certainty among J that play is in A.

Definition: coalition J is γ-rational at φ ∈ Φ if φ ∈ CCJ(ΨA) implies
si(φi) ∈ Ψγ(A,J)i ∀ i ∈ J, A ∈M.

In particular coalition J is γ∗-rational at φ ∈ Φ if φ ∈ CCJ(ΨA) and B ∈
FJ(A) together imply that si(φi) ∈ Bi ∀ i ∈ J and A ∈M.

Let Rγ
J denote the event that coalition J is γ-rational. Furthermore, let

CRγ = ∩
J∈C,J 6=∅

Rγ
J , the event that every coalition is γ-rational.

Let g−i(φi) denote the marginal distribution of gi(ti(φi)) over S−i. It is the
conjecture of type φi of player i regarding what strategies other players play.
Following standard terminology, we call player i to be individually rational at φ
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if si(φi) ∈ BRi(g−i(φi)). Let Ri denote the event that player i is rational and
let R = ∩

i∈N
Ri (the event that every player is rational).

A strategy profile is coalitionally γ-rationalizable if there exists a type space
and a state in which the above strategy profile is played and both rationality
and common certainty of coalitional γ-rationality hold.5

Definition: t ∈ S is coalitionally γ-rationalizable if ∃ type space T and
φ ∈ Φ such that φ ∈ R ∩ CCI(CRγ) and s(φ) = t.

In particular coalitional γ∗-rationalizability implies common certainty of the
event that whenever it is common certainty among players in a coalition that
play is in A ∈M and B is a supported restriction given A, then players in this
coalition play strategies in B.

4 Sensible best response correspondences

This section focuses on coalitional best response correspondences that satisfy
four basic requirements and investigates the resulting coalitional rationalizabil-
ity concepts.

Definition: γ ∈ Γ is a sensible coalitional best response correspondence if
it satisfies the following properties:
(i) if A ∈M then γ(A, J) ∈M ∀ J ∈ C
(ii) for every A ∈M, i ∈ N and ai ∈ Ai it holds that if −∃ f−i ∈ ∆−i(A)

such that ai ∈ BRi(f−i) then ai /∈ (γ(A, J))i for every J 3 i
(iii) if B ⊂ A and γ(A, J) ∩B 6= ∅ then γ(B, J) ⊂ γ(A, J) ∀ A,B ∈M
(iv) a ∈ argmax

s∈A
uj(s) implies aj ∈ (γ(A, J))j ∀ j ∈ J ∀ J ∈ C and A ∈M

Properties (i) and (ii) impose consistency of the coalitional best response
correspondence with individual best response correspondence. Property (i) re-
quires that the best response of any coalition to a set that is closed under rational
behavior is closed under rational behavior. This corresponds to the requirement
that a coalition member’s individual best response strategies to any conjecture
that is consistent with the coalition’s best response should be included in the
coalition’s best response. Property (ii) requires that strategies that are never
individual best responses for a player cannot be part of those coalitions’ best
responses that contain the player. Note that (i) and (ii) imply that the best

5Since Mertens and Zamir [85] and Brandenburger and Dekel [93] establish the existence of
a universal type space that contains every possible type, an alternative definition for a strategy
profile to be epistemic coalitionally rationalizable is that there is a state of the world in the
universal type space in which rationality and common certainty of coalitional rationality hold
and in which the given strategy profile is played.
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response of a single-player coalition to a set A ∈M is exactly the set of strate-
gies that can be best responses to a conjecture in ∆−i(A): (i) implies that all
these strategies have to be included in the best response and (ii) implies that
all other strategies are excluded from the best response.

Property (iii) is a monotonicity condition. Informally it corresponds to the
idea that outcomes in γ(A, J) in some sense (the exact meaning depends on
γ) should be preferred to outcomes in in A/γ(A,J) by players in J , which
then should imply that outcomes in B ∩ γ(A,J) are preferred to outcomes in
B ∩ (A/γ(A, J)). Another way to say the same motivating argument is that
if coalition J ’s best response involves not playing strategies in A/γ(A, J) for a
set of contingencies (namely when play is concentrated on A), then their best
response should also involve not playing the above strategies for a smaller set
of contingencies (when play is concentrated on B ⊂ A).

Property (iv) is a weak requirement along the lines of Pareto optimality for
coalition members. It requires that for any coalition member the best response
of a coalition to set A should include the strategies that are (individual) best
responses to her most optimistic conjecture on A. Otherwise the best response
of a coalition would not include strategies that could yield the highest payoff
that the corresponding player could hope for, given that conjectures are concen-
trated on A. We consider this property as a minimal requirement for coalitional
rationality. The reason that we do not impose a stronger requirement is pri-
marily that even this weak requirement is enough to establish the main results
of the section.

All four properties are only required for best responses to sets that are closed
under rational behavior in the definition. They could be easily extended to all
product subsets of the strategy space, but this strengthening of the requirements
turns out to be immaterial, because best responses to sets that are not closed
under rational behavior do not play any role in the construction below.

Let Γ∗ denote the set of sensible coalitional best response correspondences.
One example of a sensible coalitional best response correspondence is γ∗, the
correspondence obtained from supported restrictions.

The proofs of all propositions are in the Appendix.

Proposition 1: γ∗ ∈ Γ∗.

That γ∗ satisfies (i)-(iv) follows from the definition of a supported restriction.
In particular if a maximizes uj on A ∈M then aj is a best response to the belief
that allocates probability 1 to a−j . Then the definition of supported restriction
implies aj ∈ B whenever B is a supported restriction given A, by any coalition
J that involves j. Note that this also holds for all coalitions not involving j,
since then Bj = Aj .
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We note that there are various ways of changing the definition of the sup-
ported restriction that lead to coalitional best response correspondences different
than γ∗, but also sensible. One is when conjectures concerning players outside
the coalition are not required to be fixed in expected payoff comparisons be-
tween conjectures consistent with a restriction and conjectures to which there is
a best response outside the restriction (when g−J−j = f−J−j is no longer required
in requirement (2) of the definition of supported restriction).

It is straightforward to establish that there exists a smallest and a largest
element of Γ∗. The largest is the one that only excludes (individual) never best-
response strategies for coalition members.6 The smallest one can be defined in
an iterative manner. It involves starting out from the correspondence that for
every A ∈M allocates the smallest set inM that is consistent with property
(iv) of a sensible best response correspondence and then iteratively enlarging
the values of the correspondence until it satisfies property (i).

Proposition 2: There exist γM ∈ Γ∗ and γm ∈ Γ∗ such that γM (A, J) ⊃
γ(A, J) ⊃ γm(A, J) ∀ γ ∈ Γ∗ and A ∈ X .

It turns out that to establish important properties of the set of coalitionally
γ-rationalizable strategies for a sensible coalitional best response correspondence
γ it is convenient to provide a characterization of it as the set of profiles obtained
by an iterative procedure.

Definition: Let A ∈M. B ∈ X is self-supporting for J with respect to A
if B ⊂ A and for every j ∈ J and bj ∈ Bj it holds that bj ∈ BRj(θ−j) and
θ−j ∈ ∆−j(A) imply θ−j ∈ ∆−j(B).

Let NJ(A) denote the collection of self-supporting sets for J with respect to
A.

Definition: Let A ∈ X and let J ∈ C. For every j ∈ J let A−j (J) = {sj ∈
Aj | ∃ B ∈ NJ(A), C ∈M ∪ {A} st B ⊂ C ⊂ A, sj ∈ Bj and sj /∈ (γ(C, J))j}.
The generalized γ-best response by J given A is Gγ(A,J) = ×

j∈J
(Aj/A

−
j ) ×

i∈I/J
Ai.

The generalized γ-best response of a coalition to A ∈ X is a restriction that
besides excluding strategies that are not in the best response of the coalition
to A also excludes certain strategies that are not in the best response of the
coalition to certain subsets of A. The latter are the sets that are closed under
rational behavior and contain a set that is self-supporting for the coalition.
To get an intuition why this concept is useful in characterizing γ-coalitionally
rationalizable strategies, in particular why self-supporting sets play a role in the
process, see the example of Figure 1 below. Note that the generalized γ-best

6For sets inM. For other sets it is equal to the identity correspondence, since the definition
of sensibility does not restrict.the correspondence in any way for the latter sets.
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response of a coalition to a set of strategies is by definition a subset of the γ-best
response of the coalition to the same set of strategies (since A ∈ NJ(A) ∀ A ∈ X
and J ∈ C). Moreover, Proposition 3 states that in a generic class of games the
two correspondences are equivalent, therefore in this class of games the above
complicated definition can be greatly simplified.

Proposition 3: Suppose that for every A ∈M it holds that there is no i ∈ I
and ai ∈ Ai for which it holds that ∃ f−i ∈ ∆−i(A) such that ai ∈ BRi(f−i)
but −∃ f 0−i ∈ ∆−i(A) such that ai ∈ BRi(f

0
−i) and f 0−i(s−i) > 0 ∀ s−i ∈ A−i.

Then Gγ(A, J) = γ(A, J) ∀ γ ∈ Γ∗, A ∈ X and J ∈ C.

The condition in the proposition, namely that no set that is closed under ra-
tional behavior has a strategy that is weakly but not strictly dominated within
that set, ensures that if B ∈ NJ(A) for some J ∈ C then either B = A or B con-
sists of only never best response strategies for some player. The latter strategies
cannot be in γ(A, J) by property (ii) of a sensible best response correspon-
dence, implying that Gγ(A, J) = γ(A, J). It is straightforward to establish that
the property in the proposition is generic.

Consider now the following procedure. Let E0(γ) = S. For every k ≥ 1 let
Ek(γ) = ∩

J∈C
Gγ(Ek−1(γ), J).

Definition: Let E∗(γ) = ∩
k=0,1,2,...

Ek(γ).

Note that, by Proposition 3, in a generic class of games E∗(γ) can be ob-
tained simply by taking the intersection of γ-best responses of all possible coali-
tions in an iterative manner, starting from the set of all strategies. Furthermore,
it is straightforward to show that the latter set contains E∗(γ) in every game if
γ ∈ Γ∗, using properties (i) and (iii) of a sensible best response correspondence.
In particular the above imply that E∗(γ∗) is always included in and generi-
cally equivalent to the set of coalitionally rationalizable strategies as defined in
Ambrus [04].

The next proposition establishes nonemptyness and other basic properties
of E∗(γ) for sensible coalitional best response correspondences.

Proposition 4: For every γ ∈ Γ∗ E∗(γ) is nonempty, ∃ K < ∞ such that
Ek(γ) = E∗(γ) whenever k ≥ K, E∗(γ) ∈ M and Gγ(E∗(γ), J) = E∗(γ) ∀
J ∈ C.

The outline of the proof is the following. Condition (iii) in the definition
of a sensible best response correspondence implies that Ek(γ) is nonempty for
every k, and condition (i) in the definition implies that Ek(γ) is closed under
rational behavior for every k. By construction Ek(γ) is decreasing in k, which
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together with the finiteness of S implies that Ek(γ) = E∗(γ) for large enough
k. The rest of the claim follows straightforwardly from these results.

Definition: set A is coherent if it is closed under rational behavior and
satisfies:

∪
f−i∈∆−i(A)

BRi(f−i) = Ai, ∀ i ∈ I (1)

Note that for any γ ∈ Γ∗ the result that γ(E∗(γ), J) = E∗(γ) (which follows
from Gγ(E∗(γ), J) = E∗(γ)) ∀ J ∈ C implies that for every i ∈ I and si ∈ E∗i (γ)
there exists f−i ∈ ∆−i(E∗(γ)) such that si ∈ BRi(f−i). This and E∗(γ) ∈M
together imply that E∗(γ) is a coherent set for γ ∈ Γ∗. Next we establish the
equivalence of E∗(γ) and the set of coalitionally γ-rationalizable strategies.

Proposition 5: For every, γ ∈ Γ∗, type space T and state φ ∈ Φ it holds
that φ ∈ R ∩ CCI(CRγ) implies s(φ) ∈ E∗(γ). Conversely, for every s ∈ E∗(γ)
∃ type space T and φ ∈ Φ such that s(φ) = s, and φ ∈ R ∩ CCI(CRγ).

The first part of the proposition can be established the following way. It is
common certainty among players of any coalition that play is in S. Therefore
the assumption that every coalition is γ-rational implies that players of any
coalition play inside the γ-best response of the coalition to S. Moreover, if a
strategy of a player is included in a self-enforcing set (implying that the given
strategy can only be played if it is common certainty that play is in this set),
and the γ-best response of some coalition does not include this strategy, then
γ-rationality of this coalition implies that the above strategy cannot be played.7

This establishes that play has to be within any coalition’s generalized γ-best
response to S, therefore it has to be included in E1(γ). Common certainty
of coalitional γ-rationalizability then implies that it is common certainty that
play is in E1(γ). Applying the same arguments iteratively then establishes that
common certainty of every coalition being coalitionally γ-rational implies that it
is common certainty that play is in E∗(γ). Then rationality of players, together
with the result that E∗(γ) is closed under rational behavior implies that play is
included in E∗(γ). The other part of the statement can be shown by creating a
particular type space. In this type space every player has a type belonging to
every coalitionally γ-rationalizable strategy in the sense that he plays the given
strategy and has a conjecture to which this strategy is a best response and which
conjecture is concentrated on E∗(γ). Such a conjecture exists because E∗(γ)
is coherent. Furthermore, there exists a conjecture like that with a maximal
support. Then property (ii) of a sensible best response correspondence can be
used to show that both rationality of every player and common certainty of every
coalition being rational are satisfied in every state of the world of this model.
Since by construction every coalitionally γ-rationalizable strategy is played in
some state of the world, this establishes the claim.

7The example of Figure 1 in the next section provides more intuition on this point.
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Propositions 3 and 4 imply that the set of coalitionally γ-rationalizable
strategies is a nonempty and coherent set for every sensible coalitional best
response correspondence γ.

5 Coalitional rationalizability and epistemic coali-
tional rationalizability

Ambrus [04] introduces the concept of coalitionally rationalizable strategies
as follows. Let A0 = S and define Ak k ≥ 1 iteratively such that Ak =

∩
B∈FJ(Ak−1)

B. The set of coalitionally rationalizable strategies, A∗, is defined

to be ∩
k≥0

Ak (equivalently, the limit of Ak as k → 0). The propositions in the

previous section imply that the set of coalitionally γ∗-rationalizable strategies
is a subset of A∗ and in a generic class of games the two solution concepts are
equivalent.

Furthermore, in every game both solution concepts yield a nonempty, coher-
ent set of strategies. This also implies that there is always at least one Nash
equilibrium of every finite game that is fully contained in the set of coalitionally
γ∗-rationalizable strategies. There are two further results on the set of coali-
tionally rationalizable strategies that can be extended to the epistemic solution
concept. The first is that it is possible to provide a direct characterization of
the solution set. It is the unique set A which satisfies that (i) Gγ∗(A, J) = A
∀ J ∈ C, and (ii) A ⊂ Gγ∗(B, J) ⊂ B ∀ B ⊃ A, J ∈ C. The second is that
every strong Nash equilibrium (see Aumann [59]) is fully included in the set of
coalitionally γ∗-rationalizable strategies. The proofs of these claims are similar
to the corresponding claims in Ambrus [04] and therefore omitted.8

Figure 1 below provides an example that the set of coalitionally γ∗- ra-
tionalizable strategies can be a strict subset of the set the set of coalitionally
rationalizable strategies.

B1 B2 B3

A1
A2
A3

1,1 -1,1 -1,-1
1,-1 2,2 0,0
-1,-1 0,0 4,1

Figure 1

In the above example there is no nontrivial supported restriction given S. In
particular A1 and B1 are coalitionally rationalizable strategies. However, note

8See Propositions 6 and 7 in the cited paper.
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that P1 only plays A1 if she is certain that P2 plays B1. Similarly P2 only
plays B1 if she is certain that P1 plays A1. This implies that A1 or B1 are only
played if P1 or P2 is certain that the other player is certain that it is common
certainty that (A1, B1) is played. But then P1 or P2 is also certain that it is
common certainty that play is inside {A1, A2}×{B1, B2} ∈M. And note that
{A2}×{B2} is a supported restriction by {P1,P2} given {A1, A2}×{B1, B2}.
This concludes that A1 and B1 are not coalitionally γ∗-rationalizable. The set
of coalitionally γ∗-rationalizable strategies is {A2, A3} × {B2, B3}.

The example shows that (in non-generic games) there can be strict subsets
of the strategy space that have the property that if rationality and common
certainty of rationality hold, then it has to be common certainty that play
is within the set whenever a given strategy is played. These are exactly the
self-supporting sets. Since the definition of coalitional γ∗-rationalizability (and
γ-rationalizability in general) refers to sets for which it is common certainty
that play is within the set, supported restrictions given self-supporting sets
might play a role in determining whether some strategies are coalitionally γ∗-
rationalizable or not.

We conclude this section by showing that there exists a sensible best re-
sponse correspondence γ0 such that the resulting coalitionally γ0-rationalizable
strategies is exactly equivalent to the set of coalitionally rationalizable strategies
defined in Ambrus [04]. Denote the latter set of strategies by A∗.

For any J ∈ C and A ∈ X let B be a cautious supported restriction by J
given A if it is a supported restriction by J given A and Bi ⊃ Ai ∩ A∗i ∀ i ∈ I.
Let F 0J(A) denote the set of cautious supported restrictions by J given A. Then
define γ0 such that γ0(A, J) = ∩

B∈F 0
J(A)

B.

Implicit in γ0 is the assumption that coalitions only look for supported re-
strictions outside A∗, but not within. The definition of γ0 is less appealing than
that of γ∗, since it directly refers to the set A∗.9 Nevertheless, as the next
proposition states, γ0 is a sensible best response correspondence and the set of
coalitionally rationalizable strategies resulting from it is exactly equivalent to
A∗.

Proposition 6: γ0 ∈ Γ∗ and the set of γ0-rationalizable strategies is A∗.

Since the underlying best response correspondence can be defined in a more
natural way, the set of γ∗-rationalizable strategies is an epistemically more well-
founded concept than A∗. On the other hand, A∗ can be defined by a simple
iterative procedure and hence more easily computable in applications. Fur-
thermore, in all games it contains all γ∗-rationalizable strategies, therefore any

9Note that the set A∗ is defined independently of the epistemic part, by the iterative
definition, therefore the definition of γ0 is not self-referential.
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statement that holds in a game (or in any class of games) for every strategy in
A∗ also holds for every γ∗-rationalizable strategy. The only drawback of using
A∗ as opposed to γ∗-rationalizable strategies is that one uses a slightly weaker
solution concept than what could be justified. Finally, as shown above, the two
concepts are generically equivalent.

6 A remark on the product structure of restric-
tions

The construction only considers restrictions that are product subsets of the
strategy space. This has a natural interpretation if players’ conjectures are
required to be independent. If correlated conjectures are allowed then focusing
on product subsets might seem to result in loss of generality. However, this is
not the case: extending the construction to non-product sets leads to the same
(product) subset of the strategy space.

The set of conjectures concentrated on a set, ∆−i(A), can be extended to
non-product sets. Then the definition of sensible coalitional best response can
be applied to non-product sets, too. Closedness under rational behavior can be
similarly extended. The event that a coalition is rational then can be defined as
before, a requirement that if it is common certainty among players in the coali-
tion that play is inside a set that is closed under rational behavior (but now not
necessarily product), then they play within the best response to the set. Coali-
tional γ-rationalizability can then be defined as before. It is possible to show
that the strategy profiles that are consistent with coalitional γ-rationalizability
in this context are exactly the same as in the original construction, for the pro-
jection of γ to product sets. The intuition is similar to the reason that the set
of rationalizable strategies is a product set even if one allows for correlated con-
jectures, namely that the non-equilibrium context imposes a product structure
on solution sets. Different players can have completely different conjectures and
therefore strategies they play can have completely different justifications.

7 Conclusion

There is a wide variety of solution concepts in noncooperative game theory that
make an implicit assumption that groups of players can coordinate their play
if it is in their common interest. Strong Nash equilibrium and coalition-proof
Nash equilibrium - both of which are defined both in static and in certain dy-
namic games - are examples of concepts that allow this type of coordination for
subgroups of players. Different versions of renegotiation-proof Nash equilibrium
are concepts which assume that only the coalition of all players can coordinate
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their play at different stages of a dynamic game.10 A common feature of these
concepts is that assumptions concerning when coordination is feasible or credible
are made either on intuitive grounds or referring to an unmodeled negotiation
procedure. There is also a line of literature that explicitly models (pre-play or
during the game) negotiations among players.11 One problem associated with
these models is that their predictions are sensitive to the exact specification of
the negotiations, and typically there is no obvious way to specify the rules of
negotiations. Second, typically further assumptions are required to ensure that
players can send meaningful and credible messages to each other. And these
assumptions are once again made on intuitive grounds, referring to unmodeled
features of the interaction, which brings up similar concerns as in the case when
negotiations are not explicitly modeled.

This paper is the first attempt to impose assumptions on players’ beliefs
in an epistemic context to obtain formal foundations for assuming that players
with similar interest recognize their common interest and play in a way that is
mutually advantageous for them. It is far from clear how to formalize the latter
intuitive assumption in noncooperative games, which lead to the emergence of
competing solution concepts (for example renegotiation-proof Nash equilibrium
has various definitions in the context of infinitely repeated games). Therefore
continuing this line of work and making explicit the underlying assumptions
that these concepts impose on the knowledge, beliefs and behavior of players
seems to be of highlighted importance.

8 Appendix
Proof of Proposition 1: By construction γ∗ ∈ Γ.

A ∈M implies that if a ∈ argmax
s∈A

uj(s) then uj(a) = max
f−j∈∆−j(A)

buj(f−j) and
aj is a best response strategy to the conjecture that puts probability 1 on other
players playing a−j . Then the definition of supported restriction implies that
aj ∈ Bj ∀ B ∈ FJ(A), J ∈ C and j ∈ J . Then aj ∈ ( ∩

B∈FJ(A)
B)j = (γ

∗(A, J))j

which establishes that γ∗ satisfies property (iv) in the definition of a sensible
supported restriction.
Suppose now that B,B0 ∈ FJ(A) for some A ∈M and J ∈ C. This means

that ∀ j ∈ J, f−j ∈ ∆∗−j(Aj/Bj)∩∆−j(A) it is the case that buj(f−j) < buj(g−j)
∀ g−j ∈ ∆−j(B) such that g−J−j = f−J−j , and that ∀ j ∈ J, f−j ∈ ∆∗−j(Aj/B

0
j) ∩

∆−j(A) it is the case that buj(f−j) < buj(g−j) ∀ g−j ∈ ∆−j(B0) such that
g−J−j = f−J−j . These imply that ∀ j ∈ J, f−j ∈ ∆∗−j(Aj/(Bj ∪ B0

j) ∩ ∆−j(A) it
is the case that buj(f−j) < buj(g−j) ∀ g−j ∈ ∆−j(B0 ∩B) such that g−J−j = f−J−j .
Furthermore, as shown above, B ∩ B0 is nonempty. By construction it is also
10See for example Farrell and Maskin [89], Bernheim and Ray [89], Abreu et al [93] and

Benoit and Krishna [93].
11Without completeness some papers along this line are: Farrell [88], Myerson [89], Rabin

[90] and [94], Ray and Vohra [97] and [99], Mariotti [97].
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a product set which satisfies that (B ∩ B0)−J = A−J . This concludes that
B ∩ B0 ∈ FJ(A). Finiteness of A then implies γ∗(A, J) ∈ FJ(A). It follows
from the definition of a supported restriction that A ∈ M implies B ∈ M ∀
B ∈ FJ(A). Therefore γ∗(A,J) ∈M, establishing that γ∗ satisfies property (i)
in the definition of a sensible supported restriction.
Let ai ∈ Ai be such that there is no f−i ∈ ∆−i(A) such that ai ∈ BRi(f−i).

Note that A ∈ M implies that Ai/{ai} 6= ∅. Then the definition of sup-
ported restriction implies that (Ai/{ai})×A−i ∈ FJ(A) and hence γ∗(A, J) ⊂
(Ai/{ai}) × A−i ∀ J 3 i. This establishes that γ∗ satisfies property (ii) in the
definition of a sensible supported restriction.
Assume again that A ∈ M and let J ∈ C. Consider C ⊂ A such that

γ∗(A, J) ∩ C 6= ∅ and C ∈ M. Let B ∈ FJ(A). Note that γ∗(A,J) ∩ C 6= ∅
implies B ∩ C 6= ∅. Furthermore, B ∈ FJ(A) implies that ∀ j ∈ J, f−j ∈
∆∗−j(Aj/Bj) ∩ ∆−j(A) it is the case that buj(f−j) < buj(g−j) ∀ g−j ∈ ∆−j(B)
such that g−J−j = f−J−j , from which it follows that ∀ j ∈ J, f−j ∈ ∆∗−j(Cj/Bj) ∩
∆−j(C) it is the case that buj(f−j) < buj(g−j) ∀ g−j ∈ ∆−j(B ∩C), establishing
that B ∩ C ∈ FJ(A). Since B ∈ FJ(A) was arbitrary, γ∗(C, J) ⊂ γ∗(A, J).
This establishes that γ∗ satisfies property (iii) in the definition of a sensible
supported restriction. This concludes the claim. QED

Proof of Proposition 2: Define γM ∈ Γ such that γM (A, J) = ×
j∈J
{ai ∈

Ai | ∃ f−i ∈ ∆−i(A) st ai ∈ BRi(f−i)} if A ∈ M and γM (A, J) = A if
A ∈ X/M, ∀ J ∈ C. There cannot be a larger valued coalitional best response
correspondence satisfying (ii), and it trivially satisfies all the other properties
in the definition of sensibility.
Correspondence γm can be constructed iteratively as follows:
For any A ∈M and J ∈ C let T J,0(A) denote the smallest set inM for which

(T J,0(A))−J = A−J and which contains {a ∈ A | ∃ j ∈ J st uj(a) ≥ uj(s) ∀ s ∈
A}. There exists a set like that since A,A0 ∈M imply A∩A0 ∈M. Moreover,
T J,0(A) ⊂ A since A ∈M and {a ∈ A | ∃ j ∈ J st uj(a) ≥ uj(s)∀s ∈ A} ⊂ A.
Note that if ai is such that there is no f−i ∈ ∆−i(A) such that ai ∈ BRi(f−i)
then by construction ai /∈ T J,0(A) (otherwise T J,0(A) was not the smallest
set satisfying the above conditions). Properties (i) and (iv) of a sensible best
response correspondence imply that T J,0(A) ⊂ γ(A, J) for any γ ∈ Γ∗. Suppose
now that for some k ≥ 0 we defined T J,k(A) for every A ∈ M and J ∈ C.
Assume that T J,k(A) ∈M and that T J,k(A) is such that if for ai ∈ Ai there is
no f−i ∈ ∆−i(A) such that ai ∈ BRi(f−i) then by construction ai /∈ T J,k(A).
Furthermore, assume we established that T J,k(A) ⊂ γ(A, J) for any γ ∈ Γ∗.
Define bT J,k(A) = ∪

B∈M: TJ,k(A)∩B 6=∅,B⊂A
γ(B, J). Note that T J,k(A) ⊂ bT J,k(A)

since T J,k(A) ∈M and T J,k(A) ∩ T J,k(A) 6= ∅. Let T J,k+1(A) be the smallest
set inM for which (T J,0(A))−J = A−J and which contains bT J,k(A). Then the
starting assumption that T J,k(A) ⊂ γ(A, J) for any γ ∈ Γ∗, and properties (i)
and (iii) of a sensible best response correspondence imply that T J,k(A) ⊂ γ(A,J)
for any γ ∈ Γ∗. Also note that by construction it holds that if for ai ∈ Ai there is
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no f−i ∈ ∆−i(A) such that ai ∈ BRi(f−i) then ai /∈ T J,k+1(A). This establishes
that T J,0(A), T J,1(A), ... is an increasing sequence of sets such that T J,k(A) ∈M
and T J,k(A) ⊂ A ∀ k = 1, 2, ... Since S is finite, there has to be K ≥ 0 such
that T J,k(A) = T J,K(A) ∀ k ≥ K. Let γm(A, J) = T J,K(A) ∀ A ∈ M and
J ∈ C. The above arguments imply that γm(A, J) ⊂ γ(A, J) ∀ γ ∈ Γ∗ and that
properties (i) and (ii) of a sensible best response correspondence hold for γm.
T J,0(A) ⊂ γm(A, J) implies that γm satisfies property (i) as well. Furthermore,
T J,K+1(A) = T J,K+1(A) implies that γm satisfies property (iv), establishing
that it is the smallest sensible best response correspondence. QED

Proof of Proposition 3: Suppose A ∈ M. Let A0 ∈ X be such that
A0i = {si ∈ Ai | ∃ f−i ∈ ∆−i(A) st si ∈ BRi(f−i)}. A ∈ M implies A0 6= ∅.
The starting assumption implies that if B ∈ NJ(A) for some J ∈ C then either
B = A or Bj ∩ A0j = ∅ ∀ j ∈ J . By property (ii) of a sensible best response
correspondence sj ∈ Aj/A

0
j for j ∈ J implies that sj /∈ γ(A, J). Therefore

A−j (J) = Aj/(γ(A, J))j ∀ j ∈ J , which implies that Gγ(A, J) = γ(A, J). QED

Lemma 1: Let A ∈M and γ ∈ Γ∗. Then ∩
J∈C

Gγ(A, J) 6= ∅.
Proof: let a be such that uj(a) = max

s∈A
uj(s). Let A0 ∈ N (A) be such that

aj ∈ A0j and let A
00 ∈ M such that A0 ⊂ A00 ⊂ A. The assumptions uj(a) =

max
s∈A

uj(s) and A0 ∈ N (A) together imply that a ∈ A0. Then uj(a) = max
s∈A00

uj(s).

But then property (iii) of a sensible best response implies that aj ∈ (γ(A00, J))j
∀ J ∈ C. Therefore aj ∈ Gγ

j (A, J) ∀ J ∈ C. This establishes the claim since j
was arbitrary and ∩

J∈C
Gγ(A, J) is a product set. QED

Lemma 2: Let A ∈M and γ ∈ Γ∗. Then Gγ(A, J) ∈M.
Proof: Suppose not. Then:
(*) ∃ i ∈ I, f−i ∈ ∆−i(Gγ(A, J)) such that ai ∈ BRi(f−i), and
(**) ∃ J ∈ C, B ∈ N (A) and C ∈M such that B ⊂ C ⊂ A, ai ∈ Bi and

ai /∈ (γ(C, J))i.
From (*) and the assumptions that B ∈ N (A) and ai ∈ Bi it follows that

suppf−i ⊂ B−i and therefore suppf−i ⊂ C−i. Then f−i ∈ ∆−i(Gγ(A, J))
implies suppf−i ⊂ (γ(C, J))−i. But then γ(C, J) ∈ M (which follows from
γ ∈ Γ∗) implies that ai ∈ (γ(C, J))i, contradicting (**). QED

Proof of Proposition 4: since S is finite and Ek−1(γ) ⊃ Ek(γ), ∀ k ≥ 1,
the existence of K ≥ 0 in the claim is immediate.
Next, note that E0(γ) = S ∈ M. Assume Ek(γ) ∈ M for some k ≥ 0.

By Lemma 1, Ek+1(γ) 6= ∅. By Lemma 2 Gγ(Ek(γ), J) ∈ M ∀ J ∈ C which
implies Ek+1(γ) ∈M since the intersection of sets that are closed under rational
behavior is also closed under rational behavior. By induction Ek(γ) ∈M and
Ek(γ) 6= ∅ ∀ k ≥ 0. Since E∗(γ) = Ek(γ) whenever k ≥ K, this implies
E∗(γ) 6= ∅ and E∗(γ) ∈M.
Now suppose Gγ(E∗(γ), J) 6= E∗(γ). Since E∗(γ) = EK(γ), this implies

that EK+1(γ) 6= EK(γ), contradicting that E∗(γ) = Ek(γ) ∀ k ≥ K. QED
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Lemma 3: Let γ ∈ Γ∗. Let C ∈ M, J ∈ C and B ∈ NJ(E
∗) such that

B ⊂ A. Then γ(C, J) ⊃ B.
Proof: Suppose not.
Consider first γ(C, J)∩E∗ 6= ∅. Note that E∗ ∩C ∈M since both E∗ ∈M

and C ∈M. Therefore property (iii) of a sensible best response correspondence
implies that γ(E∗ ∩C, J) ⊂ γ(C, J). But note that B ∈ NJ(E

∗) and γ(C, J) +
B, and therefore γ(E∗∩C, J) + B. This implies Gγ(E∗, J) + E∗, contradicting
Proposition 4.
Consider next γ(C, J) ∩ E∗ = ∅. Let k be such that Ek ∩ γ(C, J) 6= ∅

but Ek+1 ∩ γ(C, J) = ∅. Note that Ek ∩ C 6= ∅. Furthermore, C ∈ M and
Ek ∈M imply Ek∩C ∈M. Property (iii) of the best response correspondence,
together with the assumption that E∗∩C 6= ∅ and hence Ek+1∩C 6= ∅, implies
that γ(Ek ∩ C, J 0) ⊂ γ(Ek, J 0) ∀ J 0 ∈ C. This establishes that ∩

J0∈C
γ(Ek ∩

C, J 0) ⊂ Ek+1. But note that (Ek ∩C)∩ γ(C, J) = Ek ∩ γ(C, J) 6= ∅, therefore
property (iii) of the best response correspondence implies γ(Ek∩C, J) ⊂ γ(C, J).
Combining the above yields ∩

J0∈C
γ(Ek ∩ C, J 0) ⊂ Ek+1 ∩ γ(C, J). But this

contradicts Lemma 1 since Ek+1 ∩ C 6= ∅. QED

Proof of Proposition 5: Suppose first that φ ∈ R∩ CCI(CRγ). Note that
E0(γ) = S implies φ ∈ CCI(ΨE0(γ)). Assume now that for some k ≥ 0 it holds
that φ ∈ CCI(ΨEk(γ)). Let now J ∈ C and let B ∈ NJ(E

k(γ)) be such that
s(φ) ∈ B. Then φ ∈ CCI(ΨEk(γ)) and φ ∈ R together imply that φ ∈ CCJ(ΨB).
Therefore φ ∈ CCI(CRγ) implies φ ∈ CCI({s(φ) ∈ B → s(φ) ∈ B ∩ γ(C, J)}).
This in turn implies φ ∈ CCI(Ψγ(Ek(γ),J)). Since J ∈ C was arbitrary, this in
turn implies φ ∈ CCI(ΨEk+1(γ)). By induction then φ ∈ CCI(ΨE∗(γ)). Then
E∗(γ) ∈M and φ ∈ R imply that s(φ) ∈ E∗(γ).
Let now s∗ ∈ E∗(γ). Construct the following type space. For every i ∈ N let

Φi be such that for every si ∈ Si there exists exactly one φi ∈ Φi st si(φi) = si.
Denote it by φsii . For every si ∈ E∗i (γ) let f

si
−i ∈ ∆−i(E∗(γ)) be such that si ∈

BRi(f
si
−i) and suppf

si
−i ⊃suppf−i ∀ f−i ∈ ∆−i(E∗(γ)) such that si ∈ BRi(f−i).

There exists such fsi−i since E
∗(γ) is coherent and because f−i, f 0−i ∈ ∆∗−i({si})

implies αf−i+(1−α)f 0−i ∈ ∆∗−i({si}) ∀ α ∈ (0, 1), implying that there exists an
element of ∆−i(E∗(γ)) ∩∆∗−i({si}) with maximal support. Now let ti(φsii ) be
such that ti(φ

si
i )([φ

sj
j ]j∈N/i) = fsi−i(s−i) ∀ s−i ∈ S−i. Consider φ∗ ∈ Φ such that

φ∗i = φ
s∗i
i . Then by construction s(φ∗) = s∗ and φ∗ ∈ R. Also by construction

φ∗ ∈ CCI(ΨE∗(γ)). Consider now any φ ∈ Φ and any J ∈ C and A ∈M such
that φ ∈ CCJ(ΨA). By the construction of Φ there is B ∈ NJ(E

∗(γ)) such
that B ⊂ A and s(φ) ∈ B. By Lemma 3 then γ(A,J) ⊃ B and therefore
sj(φ) ∈ (γ(A, J))j ∀ j ∈ J . This implies that φ ∈ Rγ

J ∀ φ ∈ Φ and J ∈ C.
Therefore φ ∈ CCI(CRγ) ∀ φ ∈ Φ. In particular φ∗ ∈ CCI(CRγ). QED

Proof of Proposition 6: By construction γ0 ∈ Γ. Also by construction
γ0(A, J) ⊃ γ∗(A, J), therefore the fact that γ∗ satisfies (iii) in the definition of a
sensible best response correspondence, which follows from Proposition 1, implies
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that γ0 satisfies the same property. Also established in the proof of Proposition
1 is that A ∈ M implies B ∈ M ∀ B ∈ FJ(A), J ∈ C. Then F 0J(A) ⊂
FJ(A) implies B ∈M ∀ B ∈ F 0J(A). SinceM is closed with respect to taking
intersections, this establishes that γ0 satisfies (i) in the definition of a sensible
best response correspondence. Suppose now that B is a supported restriction
by J given A ∈M and Bi ⊃ Ai ∩A∗i ∀ i ∈ I. Let A0 ∈M be such that A0 ⊂ A
and B ∩ A0 6= ∅. Then the definition of a supported restriction implies that
B ∩ A0 is a supported restriction by J given A0. Furthermore, by construction
(B ∩A0)i ∩A∗i = A0i ∩A∗i ∀ i ∈ I, so B ∩A0 is a cautious supported restriction
by J given A0. Since B was an arbitrary cautious supported restriction by J
given A, this implies γ0(A,J) ⊃ γ0(A0, J) ∀ A,A0 ∈M such that A ⊃ A0 and
γ0(A, J) ∩ A0 6= ∅. Therefore γ0 satisfies (ii) in the definition of a sensible best
response correspondence, which concludes that γ0 ∈ Γ∗.
Then by Proposition 5 the set of γ0-rationalizable strategies is E∗(γ0). By

construction Ek(γ0) ⊃ A∗ ∀ k ≥ 0, therefore E∗(γ0) ⊃ A∗. Next note that
for every J ∈ C and every B ∈ FJ(A) it holds that B ∈ F 0J(A). Therefore
E1(γ0) ⊂ A1. Then by Lemma 2 of Ambrus [04] for every J ∈ C and for every
B ∈ FJ(A1) it holds that B ∩ E1(γ0) ∈ FJ(E1(γ0)) (note that for any such
B it holds that B ⊃ A∗ therefore B ∩ E1(γ0) 6= ∅ and so the conditions for
the above lemma hold). Since for any such B it holds that B ∩ E1(γ0) ⊃ A∗,
it also holds that B ∩ E1(γ0) ∈ F 0J(E1(γ0)). This implies that E2(γ0) ⊂ A2.
Iterative application of the previous argument implies Ek(γ0) ⊂ Ak, which in
turn implies E∗(γ0) ⊂ A∗. Combining the above findings yields E∗(γ0) = A∗.
QED
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