The Product Cycle and Inequality

Boyan Jovanovic*

January 2, 2005

Abstract

This paper explains how the product cycle relates to inequality. In the
model, both phenomena arise because skilled people have a comparative ad-
vantage in making new, high-tech products. Product innovation thereby creates
differential incentives to accumulate skill. The model explains a 10:1 income
differential between people and a 7:1 differential between countries. Tariff poli-
cies and intellectual-property protection have a much larger effect here than in
some other models.

1 Introduction

The “Product Cycle” is the term Vernon (1968) used to describe the tendency for
new products to be made in rich countries, and old products to be made in poor
countries. He said this was because firms in rich places sell to the world’s richest and
most demanding consumer, and because in rich places labor is the most expensive
and capital-intensive technology is more profitable there.

I argue that the product cycle arises instead because technologies are product
specific. The world economy demands many products, so that many technologies
must coexist. New products are more high tech and demand more skills to make
them. The people using the best technologies will then want to raise their skills
relative to those of other people. Thus the product cycle and inequality both have
their origins in the complementarity between technology and skill. The main results
are:

1. The calibrated version implies a 10:1 per-capita income ratio of leader and
laggard. This contrasts to Lucas (1988), e.g., where any income distribution is
an equilibrium.

*I thank S. Braguinsky, W. Easterly, J. Eaton, B. Hobijn, S. Kortum and C. Syverson for com-
ments, A. Gavazza for help with the research and the NSF for support.



2. World inequality depends exclusively on the efficiency gap between successive
technologies. The technology frontier can grow in many little steps, or in a few
large ones. The latter case produces more inequality, because the technologies
in use will then be more dispersed.

3. Reducing world-wide patent protection from 18 to 6 years, e.g., impoverishes
the world by a factor of 2. A 20% tariff on the import of technology reduces a
country’s output by a factor of 5.

The effects are large partly because the model assumes away some important fric-
tions in the market for technology. It assumes away all costs of switching technologies
such as costs of learning a new technology and costs of reallocating technology-specific
assets, and it takes the protection of intellectual property to be perfect. In return,
results are derived by hand.

2 Model

A world market exists for final goods, for intermediate goods, for the research input,
and for research output, i.e., technologies.

Final-goods—Final goods producers are competitive. The production function is
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where z; is the i’th intermediate good. Let P; be the price of good ¢ in units of the
final good. The final-goods producers problem is

max {y—/ Pz-xidi}
(z4)g° 0

y Tt — P =0. (1)

(2

with the first-order condition

Demand is elastic and total revenue, Pjx; = y'~%x¢

¢, always rises with output.

Intermediate goods.—With his skill, s, an intermediate-goods producer can make
T = 25" (2)

units of good z. From now on we shall refer to a good by its efficiency, z. Let p(2)
be the period license fee for making good z. This yields a profit of

Pr—p(z) =y" 2" —p(2),



The objective of the intermediate-goods producers is to maximize this quantity by
selecting the technology, z, to license.

The supply of inventions—A product’s z is constant over its lifetime. New prod-
ucts, with higher 2’s are invented at a constant rate to be determined later. Each is
retired at age T which, for now, is also given. The age distribution of goods is then
uniform on the interval [0, 7). Assume that

Zmax (1) = €.

For now, g too is given. We need first the stationary distribution of product quality
conditional on g, and conditional on 7T". This distribution shifts over time but it always
has the same shape. We shall describe its state at ¢ = 0. Let 7 denote a technology’s
age at ¢ = 0. Then that technology’s quality is z; = e™9". Then the worst technology
in use is of quality e~97. Each agent makes a different good. Therefore, the number
of goods equals the number of agents which we normalize to 1. That is, since the
product’s quality, z, relates to its age 7, via In z = — g7, we have the following solution
for m (z) which is defined the date-zero distribution of z:

Lemma 1 If 7 is uniform on [0,T], then Inz is uniform on [—g¢T,0] with density
1/gT. The density of z is

m(z) = <giT> Lo fraele ). 3)

z

Then In 2; is uniform on [g (¢t — T), gt], and my(z) = (g%) % for z € [e9t=T) e,
This all hinges on an exogenous arrival of new products at a uniform rate and the
growth of frontier efficiency at the rate g, and on a given value of T'.

2.1 The market for licenses

In contrast to Krugman (1979) all agents can make any product, and in contrast
to Eaton and Kortum (1999) technology diffusion is endogenous. It is determined
in the market for licenses. To make product z at a given date, a firm must pay its
per-period license fee p (z). Let us assume only one producer per product, derive the
prices at which all markets clear, and then verify that no one has the incentive to
enter a market as a second producer.

We start, then, with a one-to-one assignment with side payments — the “transferable-
utility” case. Taking the distributions of z and s as given, let us find the market-
clearing license-fee function p; (z). For now, we shall continue to take g and T as
given.

The technology-adoption decision: We shall assume that!

1

o= —-:.
1+

!This assumption gets extensive scrutiny in Section 5.

(4)
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Taking his skill-level s as given, a monopolist then solves?
m(s) = max{y' "z —p(2)}.

Thus (4) induces constant returns in (z,s). Revenue increases with output and the
firm always produces at full capacity. The first-order condition reads

o (%)1_(1 —p'(2) =0.

Evidently, then, for any # > 0 which, for now, is given, the assignment

z=10s (5)
is an equilibrium if
p(2) =7 (2 — zmin) , (6)
where
= a‘ga—lyl—a7

and if the appropriate market-clearing conditions, and “corner” conditions hold. The
corner condition concerns the worst product, z,;,: Since old products are dropped,
p(z) =0 for z < zyi,. By continuity, p (zmi) = 0.

Technology-market clearing—Let n (s) be the date-zero density of s. License-
market clearing at t = 0 requires that for all z € [e‘gT, 1},

/Z 1m(v)dv - / :;en(s)ds. (7)

Proposition 1 For any positive (g,T,0), (6) and (5) constitute an assignment equi-
librium when the distributions z and s are given by (3) and (9), in which market
clearing (7) also holds.

Note some properties of this equilibrium. First, 7 (s) is linear in s:
m(s) = y' 0" (aSmin + [1 — ] 8) . (8)

Second, output, y'~*0s, and license fees, p (0s) = 70 (s — Smin) = A0y~ (s — Smin)
are linear in s. Figure 1 illustrates the situation. The cross-section return to skill is
(1 — a) 6%y'~, the slope of the blue line.

Now, according to (5), it must be that for all z € [—%, O] ,Ins =1Inz—1In6, which
implies the following solution for the date-zero distribution of z:

28kill, s, is evidently a general skill, usable in the production of any good.



Licensing

— cost

Net revenue

n(s)

v

0 Smin Smax

Figure 1: THE BREAKDOWN OF INCOME INTO LICENSING FEES AND PROFITS

Proposition 2 If 7 is uniformly distributed on [0,T], Ins is uniformly distributed
on [—gT — In 6, —In 0] with density 1/gT.

Taking 0,9 and T as given, Figure 2A (the top panel of Figure 2) illustrates
the relation between the two distributions and their movement over time. We have
assumed that zpp, (0) = e797 and that zp.. (0) = 1. The date-zero distribution
of z must then be on the the interval [e‘gT, 1} which is marked by the heavy line
segment on the vertical axis. Since z = s, this means that sy, (0) = %e‘gT and that
Smax (0) = 3. The date-zero distribution of s must then be on the interval [§e79T, 3],
and this is marked by the heavy line segment on the horizontal axis. We then shift

to date ¢, when both distributions have been scaled up by a factor of e4".

The product cycle—The product cycle arises because of the different modes with
which the distributions of s and z shift. As we shall shortly see, each agent’s s grows
at the same rate g and the distribution of s therefore exhibits no rank reversals. On
the other hand, the distribution of z shifts entirely through replacement, and each
good has a z that is fixed over time. Put differently, the product cycle arises because
s grows on the intensive margin while z grows on the extensive margin. Thus the
assignment z = 0s can hold at each t only if products move down the skill distribution.
Figure 2B describes the mode by which the distribution of z grows. At any date t, the
support of the distribution of Inz is [¢g (t — T'), gt]. The upper and lower bounds of
In z are drawn on Figure 2B. Now consider the product that is introduced at date .
Its efficiency is In zyax (fo) = gto, where it remains for the duration of the product’s
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Figure 2A: Assignment at two distinct dates
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Figure 2B: The Product Cycle
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Figure 3: THE MOVEMENT OF n; (s) OVER TIME

lifetime which ends at date tq+71'. The products efficiency rank declines continuously
over this period. As its rank declines, so does the relative quality of its match. The
absolute quality of its match remains unchanged at syay (to) which, at date to, is the
highest skill around but which, by date ¢y 4+ 7", is the lowest skill. This movement of
a given z down the skill distribution is what we shall understand to be the product
cycle. We may also refer to it as “technology transfer” from high-s agents to low-s
agents, as Krugman (1979) does.

The date-zero distribution of s itself is

S

n(s) = (giT) L oforse [%eﬂ,é]. ()

as illustrated in Figure 3. Thus sp.x (0) = % and s, (0) = %e‘gT. The functional
form of the density is the same for all ¢, only the domain changes; at date t, the
domain is [$e9¢~7) 1e'] as shown in Figure 3.

The no-switching condition.—We assumed monopoly in each product. No firm
should want to enter as a second firm in someone else’s market. Under Bertrand
competition, production will have to be at full capacity of all the firms in that market.?

Suppose firm sy invades firm s’s market. It can do so only if it pays the license fee
p(0s). Industry output would then be 2z (8’6 + 3€> =0s (35 + Sg) , and from (1). Its

31 assume that all of the firms involved must stick to their equilibrium values of u; and ug. If this
is relaxed, the analysis acquires many of the intricacies of incumbent-challenger analyses of natural
monopoly.



payoff from doing so must be less than its payoff in its own market:

a—1
yte <6’s [Sﬂ + sg]) zsh —p(s) < m(so). (10)
The Appendix shows that y and 6 drop out of this condition and that
Proposition 3 (10) holds for all (s, so) between 391 and e

This establishes that the one-to-one assignment is indeed an equilibrium. So far,
all is conditional on 6, g, and T" which will be determined later.

2.2 Accumulation of skill

Intermediate-goods manufacturers own their human capital and decide how to ac-
cumulate it over time. Each has a unit of time that he divides between production
(up), research (ug), and human-capital investment (uy):

up +ug +uy = 1. (11)

An agent’s skill supply is
s = uph.

Human capital investment uses only time, as in Lucas (1988):

h = nuzh. (12)

Wealth mazimization: We shall now solve the accumulation problem of someone
who is forced to set ur; = 0 for all ¢. The solution will be the same as for people
who can set ug; > 0 because the research wage per unit of of h will be the same as
the return of h in production. Let u; = upt + ugs. The expression in (8) pertains
to period zero, but sy, grow at the rate g. An agent that at date ¢ supplies skill
s¢ = uthy will receive an income

mi(ushy) =y~ *0% (Ozegtsmin +(1—a) utht) .

He maximizes fooo e "y (ughy ) dt, but he cannot influence the term ytl_aeo‘aegtsmin. As

y grows at the rate g/, he picks u; to maximize (1 — a) §%y5 ™ [ e*(r*(o‘ﬂ*l)g)tuthtdt,
which is equivalent to the problem

max / e_(r_(afl_l)g)tuthtdt, s.t. hy = (1 — uy)hy,
0

(wt,ht)§°

with Ay given. The Hamiltonian is
H=c (07" 1)typ, 4 an(1 — u)h,
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Let p = e_(r_(afl_l)g)tﬁ be the current value multiplier so that the current-value
Hamiltonian is just wh + un(1 — u)h. We shall only analyze constant-growth paths.
Evaluated at a point at which i = 0, the FOC’s are

L —pun =0,

and
pn(L—u)+u=(r—(1-a)g)p

Since h drops out from these two conditions, the solution for v will not depend on h.
Eliminating p we have
r=n+(at-1)g. (13)

This is an arbitrage condition equating the rate of interest to the rate of return to
investing in h.

Saving.—Utility is homothetic, and we need only the world per capita consump-
tion Given his wealth, the agent maximizes his lifetime utility:

[ee) 1—0
/ e_ptct—dt.
0 l1-0

If ¢ is to grow at the rate g, we must have:

/’” —
o
Together with (13) this implies that
n—nr
(- (a1 —1) (14)

Thus ¢ is pinned down by the savings and the human-capital investment decisions
alone.

2.3 Research

Number vs. qualities of products—The invention of a good in the model is at
once horizontal and vertical. It is horizontal in that the good is new, but vertical in
that the good can be produced more efficiently than old goods. Because inventions
are two dimensional, we shall need two parameters to describe it: A, which will relate
to their number, and A, which will relate to the change in their efficiency.

Number of new products—Let H, = up : “f""Eg ) hmy (h) dh be total human capital

devoted to research. The flow of new products is



The presence of 2., in the denominator implies a “fishing out” external effect in the
discovery of new products; the discovery of the first product takes fewer resources
than the discovery of the second, and so on.? Since h = s/up, since zyax (0) = 1, and

since s = 2/0, Hy = fo (;;R ) eI7dr, i.e.;

= (i) (=),

Research wage—The supply of human capital to research is infinitely elastic be-
cause its opportunity cost is the same for all agents; by (8) it is equal to

=(1—a)0y, (15)

Thus a worker of quality hreceives income w,ugrh from research, and w,uph from
production.

Free-entry condition—The value of an invention is the discounted flow of license

fees. The period-t license fee of a quality-1 technology is, using (6) in which zy, (t) =
e_g(T_t) s

pt(l) =, (1 — e’g(T’t)) , fortel0,T],

where v, = af* 'y} . This function is plotted in Figure 4 The date—zero lifetime

value of the rlght to hcense a frontier technology is V(1 fo 1)dt. The
free-entry condition, stated at date zero, then is

o () v

T B . 1
V(l) = Y [/ 67(7"*(04 71>9>tdt _ me/ 6—(7"—0f g)tdt:|
0 0

1—e T 1 e =9T
= % ( - Zmin) )

Ui n—9
because r — (' —1)g = 1. Since 7, = afd* 'yy™* and since zpy, = e 97, the
free-entry condition reduces to
1— 1—e ™ 1 e 9T
=)y, ( c - C egT) . (16)
o n n—9g

4To make the fishing out effect more obvious, observe from (17) that zpax (t) = exp (A [tN]) so

— A
that Nt = |:exp(Aft Nsds):l Ht.
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Quality of ideas—Let A be the “step size” in efficiency that a new invention
offers. It is the growth in frontier quality per new idea so that the growth in 2z, per
period is®

1 dzpax

- ANt

Zmax At

Since zmax (0) = 1, since Ny = N, and since z must grow at the same rate as h, we
have zyay (t) = €9, where

g=AN, (17)
and where ( T)
Afug) (1 —e
e

Turnover of products—Products turn over in exactly 7" periods. Since population
size is 1, the number of technologies invented over T" periods must also add up to 1:

TN =1. (19)

Stationary equilibrium.—It consists of 6 real numbers g, T', 0, up, ugr, and uy, that
solve (11), (12), (14), (16), (17), and (19).

3 Properties of the model

Output.—Let us refer to a good by its efficiency z. Then using (4), the output of
good z is
T = 9—521+,8 _ 9—(1—0[)/0[21/04'

Thus if @ is a constant, the output, x, of each good z is constant over its lifetime. We
then have

Proposition 4 The world output of final goods is

Y = Aeﬁgt, (20)

where A = ( — (1— egT)>1/a.

elfoch

SPerhaps A relates to the elasticity of substitution in production, ﬁ The higher is this
elasticity, the more similar are new goods to goods. It ought to be easier to invent efficient versions
of old goods than more efficient versions of truly new goods. In other words, A may be positively
related to . The parameter A also measure patent width, as discussed at the end of Section 5.
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Proof. Each x is constant; only the window [t — T, ¢] advances. The density of

) 18 e 1/a 1/a
product ages is 1/T. Then gy, = (fttT (egt [%] ) %dt) = (ﬁ f;T egtdt) ,

because o (14 3) = 1. Then y; = (
(1 —a)/a, (20) follows. m

Growth and factor shares—By (20), y grows at the rate g/a with g given in
(14) as do the combined incomes from production of the z;’s. By (15), w grows at
(1 — o) g/, and research incomes grow at g + (1 — ) g/a = g/a. The (date-zero)

income share of research is (since 7(s) = y'7*0% (Symin + [1 — @] s) and since the
1—e"97
09T

1/a
oaﬁlgTegt [1- e‘gTD . Using (4) whence § =

date-zero mean of s is 5§ = the world share of income going to R&D is

wupH UR UR

[r(s)m(s)ds — up (1+ 252y (14 ez

1—a1—e—97

Creative destruction.—Products are phased out as in Stokey (1991) and the prod-
uct window marches to the right. Combining (17) with (19) gives a reduced-form
relation between two endogenous variables g and T,

== 21

g T ? ( )

which emphasizes the creative-destruction aspect of the model: Higher growth de-
mands faster replacement of products.

Pattern of trade—If we assume that the final good is produced in both rich and
poor countries, then the rich export new (intermediate) products and import old
(intermediate) products as in Krugman (1979). The poor import new products and
export old ones.

Inequality—By (1), income differentials between the richest and poorest agent

are (1+8)
Ymax (Px)max _ (Smax> hmax _ GgT.

(22)

Ymin (P.Z)

hmin
Moreover, the log of relative incomes should be uniformly distributed on [—¢T', 0]
with density 1/¢7. Thus the world distribution of logged per-capita income should
be uniform and should march forward at the rate g. From (21) we have this paper’s
main result:

min Smin

Proposition 5 Inequality depends only on A;

Ymax _ A
Ymin

12
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Figure 4: OBSOLESCENCE OF PATENTS — p; (1)

That A alone should determine inequality is because A alone governs the dispersion
in technological quality among the measure 1 of latest vintage technologies in use at

each date.

Output and TFP—In (2) if the payments to technology are not counted and if
we interpret s as broad capital, TFP, as usually measured is Inx — Ins = Inz —
(1-p)Ins =1nf + Blns. Since 6 is the same for all, TFP is positively related to

the level of income, which is what the cross-country data show.’

The technology-skill ratio—The parameter A\ governs only the turnover of tech-
nologies and it has no bearing on inequality. Nor does it affect ¢ in (14). It has a
level effect on output, however: Since A and 6 enter (16) and (18) as a ratio, and

since they are absent from the other equations,

Proposition 6 0 is proportional to \.

Markups—The markup over marginal cost is

and at the baseline values of the parameters (see Table 1) it ranges from 0.19 for the

[w+q (s)] s 5

W(S) :1_a+3min

highest-skilled producer to 1.09 for the lowest skilled — rather high.

S Eeckhout and Jovanovic (2002) assume there are no markets for technology, only direct spillovers
of productivity. They derive inequality out of the free-riding motive, but in their model TFP relates
negatively to output which is at odds with evidence at the country level — p. 1299, esp. note 4.
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Figure 5: AVERAGE DIFFUSION RATES AND THE CALCULATION OF THE t;

Obsolescence of patents—The flow value to a patent is p; () in (6). For a patent is-
sued at date zero, z = 1 and 2y, = e 97, and p; (1) = a@aflyé_”e(o‘flfl)gt (1 —eot=17).
Setting af* 'yi~* = 1, Figure 4 plots p; (1) at the benchmark parameter values as ¢
ranges from zero to T' = 154.5. This is the top line in the figure. Obsolescence is far
slower than is normally assumed in the analysis of patent values.

Imperfect patent protection.—If a patent were to expire, this would allow entry
without the payment of the license fee. Condition (10) would then no longer rule out
multiple firms in some of the markets. Let us use the following shortcut: Let § be
the random rate at which the original owner of a patent right loses it permanently.
Assume that, instead, someone else — a random person — inherits it so that license
fees must still be paid for the right to use z. Then the demand-side is unaffected, and
only the inventor suffers a loss. The bottom line in Figure 4 corresponds to a patent
value that has a constant probability o = .056 of expiring and that therefore has an
expected lifetime of 18 years, currently the maximum patent life in the U.S. For an
arbitrary 4, the value of the patent right to the frontier z is

T
V(1) = / e~ by, (1) dt
0

1—e T 1 _ o=(+é=9)T
= % - Zmin | -
n+0 n+d—g

The rise in 0 has only a level effect by reducing 6. Without transitional dynamics it
cannot be given precisely, but we may conjecture that h would not grow any faster
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Figure 6: PLOT OF (23) AND THE DATA

in the transition. If so, the level effect is the effect on Azyax/hmax = 0A which, in
turn, is just the change in 6>~/ We shall evaluate this policy change below.

4 Comparison to data

This section reports results from data on technological adoption; the data are de-
scribed in Comin and Hobijn (2004). They cover 20 advanced countries and eleven
technologies over the past two hundred years.” The variable t; was defined to be the
average of the dates that the eleven technologies spread to ten percent of country
1’s population. Figure 5 illustrates how the ¢; were calculated. Ten percent is low
enough that nine of eleven technologies have reached it in all countries covered.®

[19)]

In (22), replacing “max” by “USA” and “min” by “”, we have Y[)IZA = ¢~ 9(ti—tusa)
from which we have ‘

1
ti - tUSA = —— (ln YUS —1In Y;) . (23)
9

A plot of the two sides of (23) is in Figure 6. The slope is negative and significant. The
regression line should pass through the point (0, 0) which it does almost exactly — the
constant does not differ significantly from zero. If countries were homogeneous in h,
the regression’s slope would, in theory, be ’?1 which, with ¢ = .015, would be —67. But

"See the "Historical Cross-Country Technological Adoption: Dataset" at www.nber.org/data/
8The eleven technologies are private cars, radios, phones, television, personal computers, aviation
passengers, telegraph, newspapers, mail, mobile phones, rail, and the telegraph.
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Figure 4a. Evolution of the World Distribution of Income
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Figure 7: Sala-i-Martin’s Figure 4A

countries are not homogeneous: Table 5 of Sala-i-Martin (forthcoming) shows within-
country inequality to be between 28% and 38% of inequality worldwide. Therefore
the slope should have been — (%) 67 = —45, and it does not differ significantly from
that value.

World inequality far exceeds inequality in the C&H sample, as does T'. Figure 7
reproduces’s Figure 4A of Sala-i-Martin (2002). The model suggests that we should
extrapolate the regression line as follows: Since Yyga — In Y% 2 In 30 = 3.4 while
In Yyga — In YO8 — 0.8,

min

. dr In Yiyga — ln Y world 3.4
T — min — 52 = 154. 24
<d1nY> In Yyga — In Y,CuH (36.:52) g = 1545 (24)

This may seem large, but there are plenty of examples of old technologies still in
use. Many people in the world still have no access to electricity, a technology that
was being commercially applied 120 years ago, and many still use animal power for
plowing even though the tractor was commercialized by 1910.

The extent of inequality explained.—At the baseline values, the ratio in (22) of
richest to poorest is 10.2. But when we apply this to countries, we must adjust for
within-country inequality. Table 5 of Sala-i-Martin (2002) states that within-country
inequality is roughly a third of world inequality, so the model can explain per-capita-
income ratios of about 7:1.

The model succeeds only up to a point in explaining inequality — it gets perhaps
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1/4 of it. It does not explain why incomes are stratified by country. And with its
prediction that log incomes are uniformly distributed, it misses the skewness evident
in Figure 7. Nor does it explain who should lead and who should be the laggard — the
steady state simply describes an asymmetric equilibrium in which the distribution is
determined, but not anyone’s position in it. Then there is the all-important parameter
A on which it seems hard to get independent information. A stab at estimating went
as follows: Combining (17) and (20) we end up with 52—? = 2N,. Let NP denote
U.S. patents issued at ¢, and let N; be the HP-filtered version of N/. De-trending
is needed because patents increase over time whereas growth of y does not. Form a
patent "stock" N by the perpetual inventory method: N, = % Z;:() W Ny. The
regression In y,,1 —Iny, = alN; yields an estimate for a of 63.6 with a s.e. of 15.0. This
estimate is way larger than one could ever reconcile with reasonable values of g and
T via (21). But the regression is mis-specified in that the estimated relation should
hold across steady states and not in the time series; y is U.S. output and not world
output, and N is U.S. patents, not patents world wide, so that the units are wrong.
Moreover, patents have risen sharply in the ‘90s and surely are not proportional to
N — if they were, g would have exploded at least in the short run.

5 Policy experiments

To evaluate a couple of policies we need as realistic a benchmark version of the model
as possible. The six endogenous variables are g, T, 0, up, ug, and u;.”?

The restriction in (4) implies that the production function in (2) has increasing
returns to scale of 1 + 3 = 1/a. The elasticity of demand is —1/(1 — «). Thus (4)
restricts these two magnitudes. Evidence in Klette and Griliches (1996, p. 344) is
consistent with this restriction. Assume z and s are inputs that the econometrician
measures. In terms of our notation, they estimate

1.06<1+/5<11 and 6< ] 1a§12.

If we maintain (4), the first set of inequalities holds for 0.909 < « < 0.943, whereas
the second holds for 0.833 < o < 0.917. The midpoint of the region of overlap is
a = 0.913, and I shall use this value in the calibration. Returns to scale are hard to
estimate, however, and many have estimated decreasing and not increasing returns.
Such estimates are incompatible with (4) unless we assume that the econometrician

9The experiments will both entail level effects on output that work through the z/s ratio 6. In
this, I shall assume that s is invariant to the policy, and that it is z that responds. This seems
reasonable in that g = h /h depends on these policies only through the interest rate. The expression
for A in (20) is misleading because it takes zp.x = 1 as given, in which case a rise in 6 implies a
lowering of h. The experiments we are about to perform assume the opposite; for fixed s, a rise in
0 implies a higher z and higher output.
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Figure 8: LEVEL EFFECTS OF T

does not observe z. But when a firm faces a downward-sloping demand curve, its
output price falls as its output grows. Since firm-specific prices are usually unavail-
able, the firm’s output growth (which must then be measured by its revenue growth)
is understated, and its returns-to-scale estimates are biased down.

Table 1 reports the baseline values of all the parameters, the endogenous variables,
and comments on why they were picked.

Parameter | Reason for value chosen Endog. varbl. | Reason for value chosen
p = 0.0295 T =154.5 extrapolated via (24)
a=0913 1=1095 Gril.&Klette
o = .6550 g = 0.015 growth of output per head
A=1 only ratio 6/ matters up = 0.5905
n = 0.038 ur = 0.0147 | 0.007 = R&D/Income
A =231 Yimax/ Ymin = 10 (c.f. Prop. 5) | uy = 0.3948
r=0.04
TABLE 1

Taxes and Tariffs—Taxes on a measure-zero subset of agents do not affect p (z),
or the rewards to research, so that g, T, and the values of the other endogenous vari-
ables remain the same. But income taxes are neutral whereas tariffs reduce the income
of the taxed agents. (i) A proportional income taz, T, on incomes of intermediate-
goods producers change profits to m(s) = (1 —7)max,{y'"“2%s™* — p(2)}, and
they do not affect the decision about z. But because costs of human-capital invest-
ment are all in the form of foregone earnings, h is unaffected as well, just as in
Lucas (1988). (ii) Tariffs on the production of the final good imply no losses be-

cause profits there are zero. A proportional tax on technology, however, imply that
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Figure 9: EFFECT OF PATENT PROTECTION ON WORLD OUTPUT

7(s) = max,{y' "*2%s'"® — (1 + 7) p(2)}. The first-order condition for z now reads
g (%)l_a — 7' (2) =0, so that

B Os

B (1+ 7)1/(1704) '

These are only level effects, however; h /h stays the same. The level effects of 7 plotted
in Figure 8 are large, owing mainly to the high baseline value of a.

Intellectual property rights—In the model, patents are infinitely lived, but in fact
markets for technology are imperfect. Two measures of how well these markets work
are (i) Licensing revenues: Firms recover only a fraction of R&D costs by selling
or licensing their technology. As a percentage of R&D costs, royalty receipts (from
abroad) in 2001 for patents, licenses, and copyrights were 64 (U.K.), 36 (Italy), 31
(Germany), 15 (U.S.), 11 (France) and 8 (Japan) (OECD 2004, tables 69-71); (i7)
International patenting: Eaton and Kortum (Table 1) document that the U.S., the
U.K., France, Germany and Japan patent abroad only about one fifth of the patents
that they take out domestically, although it is probably those patents with the highest
value that get patented abroad, and the distribution of patent values is known to be
highly skewed. It is hard to say how these numbers all translate into 6. But as ¢
rises and patent lifetime falls, Figure 9 shows that world output can fall dramatically.
Reducing lifetime from 18 years (the current U.S. length, but perhaps a lot larger
than effective worldwide protection) to 6 reduces output by a factor of 2.

Policy may also be able to raise A. In the model A is the step size in z space,
determined technologically. But one can imagine that patent policy would require

19



gains to be larger than this before they could be patentable. In a discrete setting
Green and Scotchmer (1995 p. 23), e.g., would define 2., (1 + A) as the level of z
that the next product must exceed in order to earn a patent. Policy, then, can raise
A above its technological minimum. Such a policy would be a bad one, says the
model because it would reduce invention and raise inequality. Patent width should
therefore be at its minimum, but what that minimum precisely is would be hard to
know in practice. Attempting to set A below its technological minimum would result
in the granting of several patents for what is essentially the same good. At any rate,
how patent width affects innovation is better analyzed via a final-goods production
function that depends not on intermediate-good names but on their characteristics.

6 Conclusion

Inequality arises in this model because at any time there are high-tech and low tech
products, and because high-tech products are complements with human capital. Pro-
ducers of high-tech products then invest more in human capital, and this produces
inequality. As a result, world inequality depends on the rate at which products im-
prove. The faster is this rate or, more precisely, the larger is the step size between
successive products, the larger is the technological asymmetry among products and
the more inequality there will be.

The product cycle is a symptom of comparative advantage at work: Taking as
a constraint the fact that a monopolist restricts output, a well-functioning market
for intellectual property maximizes world output given the available supply of tech-
nologies and skills. In a world with no license fees and patents, the model also says
that inequality would not exist, but that average income would be far lower than it
is today. The model suggests that stronger enforcement of patents would raise world
output substantially.
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7 Appendix: Proof of Proposition 2

Let us ignore the term y'~® which is common to all payoffs. Then (10) reads

<6’s [sﬂ + 55] )al (05) sg — ad” (5 — Smin) < 0% (QSmin + [1 — a] 50) ,

ie., <95 [55 + s@])a 1 (0s) 58 < ab®s+ 6% (1 — a) s, i.e., s° <55 + s@)a 1 sh < as+
(1 — ) so. Recalling (4), we find that both sides of the above inequality are homo-
geneous of degree 1 in (s, sg). This means that is if the inequality holds at date 0
for s and s in the interval [Suin, Smax], it Will hold for all s and sy in the interval
(€9 Sinin, €9 Smax|, and the latter is how the boundaries grow in steady state. Dividing
by s we have

a—1

s
st <sﬁ+s€> s;i < 1—a)2+a,
s

)T s :
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Value when a = .913

Figure 10: TWO PLOTS OF THE LEFT-HAND SIDE OF (25)

Because 8+ (1 + ) (o — 1) = 0. Moreover, this must hold for all (s, sg) between
Smin and Spmax. Therefore it is equivalent to

(1+wﬁ)a_1wﬁ <a+(l—-a)w
for w € [e797,e9T]. But 8 = (1 — @) /a, therefore the condition is a + (1 — o) w —
a—1
(1 4 wi-a/a)* yi-al/a > 0 i a4+ (1—a)w - (ngii;”) >0, ie., a+
l-a)w— (w4 w_l/"‘“l_"‘)/o‘)a*l >0, ie.,

at+(1—a)w— (w*+ w_l)a_l > 0. (25)

Now (25) holds for all &« € (0,1): At w = 1 the function reads 1 — (%)1—04 > 0. As
a — 0 or as o — 1, the function converges to zero from above. This is all illustrated
in Figure 10 for o € (0,1) and w € (0, 10).
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