
Vector Autoregressions and Reduced Form
Representations of Dynamic Stochastic General

Equilibrium models

Federico Ravenna∗

5 December 2004

Abstract

Dynamic Stochastic General Equilibrium models are often tested against empir-
ical VARs or estimated by minimizing the distance with the VAR impulse response
functions. This papers examines under what conditions DSGE models map into VARs
representations. We show that DSGE models map into VARMA processes, therefore
the empirical impulse response functions from an estimated VAR cannot be generated
by the DSGE model except under strict conditions. Comparing inconsistent vector
moving average representation is not an appropriate test of the explanatory power of
the theoretical model. Using a monetary model with nominal rigidities, we illustrate
how the mis-specified VAR returns a largely incorrect estimate of the model’s driving
shocks. The result does not hinge on mis-identification or the estimator volatility. The
paper also proves under what conditions the Kalman-filtered shocks vector returns the
true vector of innovations that generated the observable data. This set of conditions
is a subset of the assumptions needed to estimate the vector of innovations from the
VAR representation of the model.
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1 Introduction

The explanatory power of dynamic stochastic general equilibrium (DSGE) models is of-
ten tested by comparing the model impulse response functions to those obtained from an
estimated Vector Autoregression (usually a structural VAR). Christiano, Eichenbaum and
Evans (2003), for example, evaluate the performance of a staggered price-setting model of
the business cycle by showing that it can account for the dynamic response induced by a
monetary policy shock as estimated in a 10-variables VAR. Some researchers estimate model
parameters by minimizing the distance between the model’s and the estimated VAR impulse
response functions (Woodford and Rotemberg, 1998).

These practices rest on the assumption that the DSGE and VAR models share the
same reduced form - or map into the same Vector Moving Average (VMA) representation.
We show that this hypothesis is valid only under a strict set of conditions, and outline
what are the implicit assumptions made when mapping a DSGE model into a VAR. The
solution (reduced form) of DSGE models does not generally map into a finite-order VAR
representation. This is a point that has been made with reference to particular models by
a number of authors. We offer a general proof, showing that unless all state variables are
included in the data sample the DSGE model will map into a Vector Autoregression-Moving
Average (VARMA) model1.

In the paper we illustrate the empirical relevance of the VAR mis-specification problem.
Using a DSGE model of a small open economy, we estimate the time-series of the monetary
policy innovations from the VAR approximation to the true VARMA representation of the
model, and compare it to the true shocks vector. Depending on the model parametrization,
the mis-specification can lead to extremely large errors. The result does not hinge on iden-
tification problems or estimator volatility: it is purely the outcome of neglecting the moving
average terms in the estimated system.

An alternative to VARs is estimation of the state-space representation via Maximum
Likelihood (as in Cho and Moreno, 2002, Ireland, 2001a, 2001b), Generalized Method of
Moments or Simulated Method of Moments (Ruge-Murcia, 2002) or Bayesian estimation (as
in Rabanal and Rubio-Ramirez, 2003). Once the state-space representation is estimated, the
Kalman Filter algorithm can be used to estimate the vector of shocks generating the data
sample. We show under what conditions the Kalman Filter returns the true shocks vector.
These conditions are a subset of the assumptions needed to estimate the shocks vector from
the VAR representation of the DSGE model.

The paper is organized as follows. Section 2 describes the DSGE model setup. Section 3

1See Cooley and Dwyer (1998) and Ingram et al. (1994). As DSGE models have became less stylyzed,
and thus more apt to describe the data comovements, a growing literature has focused on the impact of
inconsistencies between the VARs underlying assumptions and the DSGE models that are supposed to
describe the data-generating process (Chow and Kwan, 1998, Gali and Rabanal, 2004, Erceg, Guerrieri and
Gust, 2004). While this literature does not examine the mis-specification arising from neglect of the MA
terms, Wallis (1977) and Zellner and Palm (1974) already recognized that the general form of a DSGE model
is a VARMA process.
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discusses VAR representations of DSGE models. Section 4 proves that the representation of
the model solution when state variables are unobservable is a VARMAmodel, and establishes
the order of its AR and MA components. Section 5 shows under what conditions the Kalman
filter returns the true vector of innovations that generated the data. Section 6 illustrates the
consequences of VAR mis-specification. Section 7 concludes.

2 Linear rational expectations dynamic models

A linear rational expectation stochastic model can be written as a system of stochastic
difference equations:

0 = Axt +Bxt−1 + Cyt +Dzt
0 = Et[Fxt+1 +Gxt +Hxt−1 + Jyt+1 +Kyt + Lzt+1 +Mzt]

zt+1 = Nzt + εt+1

where xt is an n×1 vector of endogenous state variables, zt is anm×1 vector of exogenous
state variables, yt is an r × 1 vector of endogenous variables, εt is a vector white noise
stochastic process of dimension m× 1 with variance-covariance matrix Σ and unconditional
expectation E(εt) = 0. Capital letters denote matrices. It is assumed that the matrix N has
only stable eigenvalues. Whenever useful, I will indicate the size of a matrix with an index
in the upper-left corner.

The solution to the system is the recursive equilibrium law of motion:

ξt+1 = F ξt + vt+1 (1)

yt = H
0
ξt (2)

n+m×1ξt =

·
n×1ξ1t
m×1ξ2t

¸
=

·
xt
zt

¸
(3)

n+m×1vt =

·
n×10
m×1εt

¸
(4)

n+m×n+mF =

·
n×nF 11 n×mF 12
m×n0 m×mF 22

¸
(5)

r×n+mH 0 =
£
r×nH 01 r×mH 02 ¤ (6)

E(vtv
0
t) = n+m×n+mQ =

·
n×n0 n×m0
m×n0 m×mΣ

¸
(7)

E(vtv
0
τ ) = 0 for τ 6= t (8)

In the econometric literature eq. (1) is known as the state equation and eq. (2) as the
observation or measurement equation. The assumption in eq. (8) can be dropped and is
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made only for ease of exposition. The vector vt can be described by any stationary ARMA
process. Without loss of generality, we assume vt is a white noise stochastic process.

The state-space representation given by eqs. (1) and (2) is common in time series
analysis. A large number of models (including ARMA processes) can be written in state-
space form and estimated using the Kalman filter (Hamilton, 1994). In the DSGE literature,
the exogenous and endogenous state variables are usually defined in distinct vectors, so that
the exogenous innovations vector has no zero-element (Uhlig, 1997, Cooley and Dwyer, 1998):

yt = H 01xt +H 02zt (9)

xt = F 11xt−1 + F 12zt−1
zt = F 22zt−1 + εt

3 VAR Representations of DSGE models

To write model (9) as a VAR, re-label xt as xt−1 so that ξ1t = xt−1. Then:

Yt = ÃYt−1 + B̃zt (10)

zt = F 22zt−1 + εt

Yt =

·
xt
yt

¸
; Ã =

·
F 11 0
H 01 0

¸
; B̃ =

·
F 12

H 02

¸
where the vector Y 0t = [xt , yt] has dimension 1 × n + r. Assume the vector zt has

dimension m = n+ r. This implies that the number n+ r of observable variables is equal to
the number of shocks, and that the matrix B̃ is square. Since:

zt = B̃−1Yt − B̃−1ÃYt−1
= F 22[B̃−1Yt−1 − B̃−1ÃYt−2] + εt

we obtain a restricted VAR(2) representation for the system (10):

Yt = (Ã+ B̃F
22B̃−1)Yt−1 − (B̃F 22B̃−1Ã)Yt−2 + ηt (11)

where ηt = B̃εt. Let Σ = E(εtε
0
t) be a diagonal matrix, so that εt is the vector of

orthogonal innovations2. An alternative way to write model (10) is:

Λ0Yt = Λ1Yt−1 + Λ2Yt−2 + εt (12)

Λ0 = B̃−1

Λ1 = B̃−1Ã+ F 22B̃−1

Λ2 = −F 22B̃−1Ã
2This assumption is shared by most DSGE models (though not all, as in the case of a multi-sector model

where sectorial productivity shocks are correlated). It is anyway always possible to orthogonalize the vector
εt.
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A large class of structural models can be written in this form. The structural VAR
(SVAR) literature studied in detail the problem of recovering the matrices Λ0,Λ1,Λ2 from
estimation of the model (11) (Leeper et al., 1996, Uhlig, 2004). Restrictions need to be
imposed in the estimation of eq. (11) to identify the matrix B̃ and orthogonalize the shocks
vector ηt = B̃εt = Λ−10 εt. A vast number of papers proposes different SVAR identification
strategies, the most popular being the Sims (1980) orthogonalization where Λ0 is assumed
to be lower-diagonal.

In the following we abstract from the identification problem, and restrict our attention
to the specification problem. While knowledge of the matrix B̃ is irrelevant when estimating
eq. (11), whenever necessary we will assume B̃ is known, so the econometrician can always
recover the time series εt from a given series ηt.

If m > n+ r the matrix B̃ is not invertible and we cannot obtain a VAR representation
of the model. If instead m < n + r, we still have the option of making B̃ invertible by
eliminating some of the observable variables from the system. This case is explored in detail
in the following section.

3.1 Reduced Form VAR with Unobserved Variables

If the vector [xt , yt]
0 were observable, estimating the VAR(2) in eq. (11) or the state-

space representation would deliver the same result: both models would generate identical
impulse response functions - that is, they would have identical Vector Moving Average
(VMA) representation. Estimation of the model (11) requires that the number of unobserved

shocks m be equal to the number of observed variables, so that the matrix eB is invertible.
Estimation of the model (1), (2) requires that the number of unobserved shocks m be at
least equal to the number of observable variables - else, the variance-covariance matrix of
the model is singular (Ingram, Kocherlakota and Savin, 1994) make this point in the context
of an RBC model with one endogenous state variable)3.

Often the number of variables included in a VAR is substantially smaller than the size of
the vector of endogenous state and control variables of the DSGE model the VAR is supposed
to map into. There are valid reasons for this. First, econometric practice suggests the use
of parsimonious models - since estimated VARs can include many lags, additional variables
quickly reduce the available degrees of freedom. Second, some variables which are relevant
for the dynamic behaviour of the theoretical model, such as capital, are poorly measured in
the data, and therefore excluded from the data sample. Third, DSGE model have typically
a smaller number of exogenous states than of observable variables - they are singular, and if
they need to be estimated at all some observable variables must be dropped from the data
sample.

3For the model (1), (2) to be written as a VAR all that is needed is that the matrix H be invertible. But
note that invertibility of H does not guarantee a non-singular variance-covariance matrix. For the model
(1), (2) to be written as a non-singular VAR, it must be possible to rewrite it as in eq. (11).
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Is a VAR which excludes some of the variables included in the DSGE reference model
still able to summarize the dynamics of the theoretical model? In most cases, a VAR will
not be the reduced form representation of the time-series process describing the solution of
the DSGE model for only a portion of the vector [xt , yt]

0. In other words, the VAR will be
a mis-specified representation of the theoretical model reduced form.

Let’s maintain the assumption that the DSGE model (1), (2) is the true data-generating
process. Suppose that the number of shocks is smaller than the number of endogenous
variables (m < n+ r). We can estimate the VAR(2) in eq. (11) omitting portions of the yt
vector, either because the variables are unobservable or because we try to obtain an invertible
B̂ matrix (where B̂ is a partition of B̃) by reducing the size r of the yt vector. Provided
m equals the number of observable variables included in the VAR, omitting a portion of the
yt vector will not affect the reduced form dynamics of all the other variables. In fact eq. (10)
shows that yt is a function of its own lags only through its dependence on xt. The estimated
model would be:

Ŷt = (Â+ B̂F 22B̂−1)Ŷt−1 − (B̂F 22B̂−1Â)Ŷt−2 + B̂εt
= Γ1Ŷt−1 + Γ2Ŷt−2 + B̂εt (13)

where Â, B̂ are appropriate partitions of the matrices Ã, B̃ (the rows of the matrices
Ã, B̃ corresponding to the observable yt, and all the non-zero columns) and where Ŷ indicates
the observable portion of the Y vector4. Regardless of which portion of yt we use, the VAR
estimates of (Â+B̂F 22B̂−1) and (B̂F 22B̂−1Â) will be appropriate partitions of (Ã+B̃F 22B̃−1)
and (B̃F 22B̃−1Ã), and correctly describe the model dynamics. No information is lost, since
the omitted columns of the matrix eA are empty to start with. The omitted rows of the
matrix B̃ are linear combinations of the remaining m rows (the rank of eB is m). This
implies that changing one of the components of the yt vector will not change the estimated
impulse response functions of the other components as the VAR is re-estimated. Obviously,
if the theoretical model is not the true data-generating process, estimating the VAR using
different portions of yt would return different reduced form estimates.

If all the variables are state variables, the vector yt is empty, and we must assume that
the vector xt is observable and that m = n (therefore eA = F 11). This is, for example, the
case in many three-variables model used in the optimal monetary policy literature, describing
the joint evolution of output, inflation and the interest rate as a function of expected and
lagged values of the three variables (Rudebusch and Svensson, 1999)5.

4In this discussion we assume that the researcher will always estimate a VAR for at least m observable
variables. If the number of exogenous shocks in the VAR is smaller than in the DSGE model, we cannot
obtain impulse response functions for the innovation vector εt. Lutkepohl (1993) shows that when the true

model is described by eq. (13), the data generating process for the observable gx1 vector bY where g < m is
a VARMA(p,q) with p ≤ 2(n+ r), q ≤ 2(n+ r)− 2.

5In the case when all variables are endogenous states, Zellner and Palm (1974) illustrate how to further
solve the model in eq. (11) to obtain an ARMA representation for each individual component of Yt (the
final form equations).
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Suppose now that a portion of the xt vector is unobservable - for example, assume that
no variable in xt belongs to the available data sample. Then Â = [0] and if we tried to
estimate a VAR(2) using m observable variables the coefficient matrices in Γ1,Γ2 in eq. (13)
would not be partitions of (Ã + B̃F 22B̃−1) and (B̃F 22B̃−1Ã). Omitting only a portion of
the vector xt means that Â will include only some of the non-zero columns, and estimation
of eq. (13) will return a mis-specified VAR(2). This exercise would instead provide a finite-
order approximation of the matrix lag polynomial Φ(L), where Φ(L)Ŷt = εt is the VAR(∞)
representation of the model (13).

4 VARMA and VAR Representation of DSGE models

with Unobserved State Variables

Provided that: 1) the number of observable variables included in the estimated model is
equal to the number of exogenous shocks; 2) the endogenous state vector xt is observable,
a finite order VAR representation of the model (10) exists, regardless of which endogenous
control variables we include in the estimation. What form does the true data-generating
process take when a portion of the xt vector is unobservable?

We show that the model (9) has a finite order VARMA representation in terms of
the endogenous control variables yt. If it exists, the model also has an infinite order VAR
representation (see Cooley and Dwyer, 1998, for a similar result in the context of a simple
RBC model with one endogenous state variable).

Theorem 1 Let

eyt = eH 01xt + eH 02zt
xt = F 11xt−1 + F 12zt−1
zt = Z(L)εt

Σ = E(εtε
0
t) ; E(εt) = 0 ; E(εtε

0
τ ) = 0 for τ 6= t

describe the dynamics of the vectors zt, xt, eyt, where Σ is a diagonal matrix, Z(L) is a
matrix polynomial in the lag operator L defining a vector AR(p) stochastic process, eyt is a
vector of dimension r1× 1, xt is a vector of dimension n× 1 and zt is a vector of dimension
m× 1. Assume the vector xt is unobservable, the number of observable variables yt ∈ eyt is r,
where r ≤ r1, and m = r. Then the vector yt has a VARMA(mn+p,mn) representation.

Proof: See the Appendix.

It is possible to prove that the order of the VARMA process for yt is considerably reduced
in the case n = m = r.
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Corollary 1: If n = 1 or if n = m = r, the vector yt has a VARMA(m+p,m) repre-
sentation.

Proof: see the Appendix.

4.0.1 Discussion

The DSGE model in eq. (9) has a finite order VAR representation in terms of the observable
variables Yt = [xt , yt]

0 when the full vector xt ∈ Yt. This representation id given by eq. ([?]).
The theorem shows that if only yt ∈ Yt (or some element of the vector xt is omitted from the
set of observable variables) the model has a VARMA representation of order (nm+1,nm).
In this case, eq. (13) is a mis-specified model of the system (9). Under certain regularity
conditions, an infinite order VAR representation will also exist. Corollary 1 applies to the
model analyzed in Cooley and Dwyer (1998), which has only one endogenous unobservable
state variable, and to a number of small monetary models used in the optimal monetary
policy literature, where all variables are also states and n = m = r (see Walsh, 2003).

If we believe the DSGE model is well-specified, estimation of a finite order VAR when a
portion of the xt vector is unobservable will fail to uncover the true data-generating process,
since the MA components are ignored - and therefore the true and estimated process for yt
will have different VMA representations. As a consequence, the impulse response functions
may change drastically. The estimated system could still be useful for prediction, but it
would be hard to give the impulse response functions a structural interpretation, since the
DSGE model solution would be inconsistent with the estimated VAR.

4.1 Implicit Assumptions in estimation of DSGE Models

4.1.1 VAR representation

When is estimation of the DSGE model data-generating process with a finite-order VAR
appropriate? The researcher is implicitly assuming that:

(a). The number of shocks is equal to the number of observable variables
included in the data sample.
(b). The vector xt belongs to the set of observable variables included in the

data sample.

If some variables are omitted from a VAR model estimation, it must be the case that
they are not state variables, else the model will be mis-specified. Omitting part of the yt
vector is instead inconsequential.

When assumptions (a), (b) do not hold, a finite order VAR may still be a very good
approximation to the true data generating process. This is an empirical issue that needs
to be addressed case by case. Section 6 explores this question in the context of a DSGE
monetary model of the business cycle.
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The discussion so far neglected the issue that has received the largest attention in
the literature - how to identify the structural innovations from reduced-form shocks ηt.
To explore the role of model mis-specification, in the simulation exercise we perform we
will maintain the assumption that identification is possible by imposing restrictions on the
estimated model. Section 6 discusses the identification and estimation issue.

4.1.2 State-space representation

An alternative to VAR estimation of DSGE models has been explored by a number of authors
(Ireland, 2001a, 2001b, Rabanal and Rubio-Ramirez, 2003, Smets and Wouters, 2002). The
state-space form of the model (1) (2) can be estimated - regardless of whether the vector
of endogenous state variables xt is observable - using Maximum Likelihood or Bayesian
methodologies (Hamilton, 1994). For the estimated state-space model to be the correct
representation of the DSGE data-generating process we must assume (beyond any necessary
identification assumption):

a’. The number of shocks is not smaller than the number of observable vari-
ables included in the data sample.
b’. The dimension of the vector xt is known.

For the state-space representation to be consistent with the DSGE model we need less
strict assumptions than for a VAR. The researcher need not be sure that she is including all
the state variables in the model. If a state variable is unobservable or measured with error,
the state-space system can still be estimated and will still be consistent with the underlying
DSGE model. As section 6 shows, a mis-specified, correctly identified VAR can instead lead
to very large errors in estimating the data-generating process.

5 Estimation of the shocks vector

The result in the previous section has two immediate implications. If a finite-order VAR is
not a correct specification of the DSGE model (even if identification is possible): 1) impulse
response functions from the DSGE model cannot be compared to those obtained from the
VAR, since the two models have inconsistent VMA representations; 2) the VAR cannot be
used to estimate the vector of structural innovations consistent with the DSGE model.

The first implication has been investigated in a number of papers with regard to specific
models (Cooley and Dwyer, 1998, Linde, 2003). In the following we examine the second
implication. The researcher may be interested in estimating the shocks vector for at least
two reasons. First, the series of shocks is of interest in its own right, for example for historical
decomposition of the shocks driving business cycle fluctuations, or to ascertain deviations of
monetary policy from its systematic, endogenous behaviour. Second, using a DSGE models
to build counterfactuals - paths of the economy under alternative assumptions or policy
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- forces the researcher to try and recover the series of shocks which generated the data
observed in the first place. While the first exercise can be conducted in the framework of
an atheoretical VAR, the second one necessarily requires the building of model-consistent
shocks: the shock vector that fed through the model would generate the data observed
(see Cole, Ohanian and Leung, 2003, King and Rebelo, 1998 and Smith and Zin, 1997, for
applications of the methodology in the context of real business cycle models, while Ravenna,
2002 extends the method to a multiple shock model of the monetary business cycle to build
model-consistent counterfactual histories under alternative monetary policies).

5.1 Using a VAR representation

Assume eq. (13) correctly models the true data-generating process. Provided identification
is possible, it is straightforward to obtain the vector εt from the VAR representation:

εt = B̂
−1(Ŷt − Γ1Ŷt−1 − Γ2Ŷt−2) (14)

To calculate εt, the following assumptions must be met:

Assumptions:

1. Var The initial values Ŷt−1, Ŷt−2 are known

2. Var There is no measurement error in the estimated model

3. Var The number of observable variables is equal to the number of exogenous shocks

4. Var The vector Ŷ includes all the state variables xt

Assumptions 3 and 4 were discussed earlier. Assumptions 1 states that we need two
initial observations of the vector Ŷ to start the recursion. Assumption 2 states that if we wish
εt to be the vector of unobservable structural innovations, there must be no measurement
error in the system. Else the recursion would report εt+wt where wt is a measurement error
vector.

5.2 Using a state-space representation

The state-space representation in eqs. (1), (2) can be inverted to obtain the vector ξt and
εt given the vector of observable variables yt

6.
As in the case of the VAR representation, this is possible only under certain conditions

imposed on the matrices F,H. The structure of the system defined by equations (1) and
(2) implies that once we have estimated the vector εt−1, or equivalently the vector ξ2t−1, the

6This specification does not preclude any or all the components of the vector xt to be observable. Simply
relabel the observable variables vector as eyt = [yt, xt]0.
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vector ξ1t can be computed using the matrices F11 and F12. Thus we can use the vector of
observable variables yt to compute the m× 1 vector ξ2t by solving the matrix equation:

yt = H
01ξ1t +H

02ξ2t (15)

The matrix H 02 has dimension r×m. Economic models will usually have a number r of
observable variables larger then the number m of exogenous forcing terms. In this situation
the matrix H 02 is non-invertible, and the problem of solving for the vector ξt is not well
defined7.

There are three ways to solve the non-invertibility problem.

I: increase the number m of exogenous state variables until m = r. This method
is problematic in most models unless the number of endogenous variables r is constrained to
a minimum. It is obviously undesirable to introduce in a model a large number of additional
driving forces without economic justification.

II: assume that the observations of the vector yt are affected by a measurement
error. Eq. (2) is then written as:

yt = H
0ξt + wt (16)

where wt is an r × 1 measurement error vector. It is assumed wt follows a vector
stochastic process with variance-covariance matrix given by:

E(wtw
0
t) = R (17)

E(wtw
0
τ ) = 0 for τ 6= t (18)

and that E(vtw
0
τ ) = 0 for any τ . Under these assumptions and given the sample [y1...yT ]

the vector ξt can be estimated from the system defined by equations (1) and (16) using the
Kalman filter algorithm. This method has the advantage of providing the best unbiased
estimate of the vector ξt using the full structure of the model and observations on all the
endogenous variables in the vector yt. The drawback of using the Kalman filter is that we
are forced to introduce a measurement error vector in the model representation. The state
vector estimate (as well as its variance) would then be a function of the matrix R. The
larger the variance of wt relative to the variance of εt, the closer to the initial value ξ0 (or
to E(ξ0) if the initial value is unknown) will the estimate of ξt be.

7Ingram et al. (1994) discuss the consequences of the non-invertibility for the estimates of total factor
productivity shocks, and observe that most business cycle models’ representation is in fact singular.
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III: use only a portion of the observable variables vector yt to recover the vector
ξ2t . We can assume, as we did when deriving the VAR representation in section 2, that only
m out of the r variables in yt can be measured. Eq. (15) becomes:

m×1yt =m×n H 01ξ1t +
m×m H 02ξ2t

which can be solved for ξ2t provided the matrix H
02 is non-singular, as will generally be

the case8. Given an initial value for the state vector ξ0, the solution for the vector ξ1 is:

ξ11 = F 11ξ10 + F
12ξ20 (19)

ξ21 = (H 02)−1[y1 −H 01ξ11] (20)

In general, the unknown state vector ξ at time t is given by the recursion:

ξ1t|T = F 11ξ1t−1|T + F
12ξ2t−1|T = F

11ξ1t−1 + F
12ξ2t−1 = ξ1t (21)

ξ2t|T = (H 02)−1[yt −H 01ξ1t|T ] = (H
02)−1[yt −H 01ξ1t ] = ξ2t (22)

where ξt|T indicates the estimate of ξt (in this case an exact solution) conditional on the
observation sample [y1...yT ]. While this solution method does not make efficient use of all
the structure of the model, it is in fact the most commonly used. For example, Ingram et al.
(1994) note that whenever the econometrician selects the production function equation of a
Real Business Cycle model to estimate the technology shock, she is neglecting all the other
first order conditions in the model which are as well functions of the observable variables
and the technology shock and could be used for estimation. As showed earlier, also a VAR
representation of a DSGE reduced form implicitly assumes that the theoretical model is the
true data-generating process - therefore omission of a portion of the yt vector does not lead
to mis-specification of the observable variables dynamics.

5.3 The Kalman filter algorithm and invertible state space repre-
sentations

The Kalman Filter algorithm was devised to estimate the unobservable state vector ξ in sys-
tems that have a state-space representation. In the following we prove that under assump-
tions 1, 2, 3 established for the VAR representation the Kalman filter smoothed estimate of
the vector ξt is equal to eqs. (21) and (22) - the solution of the system in eqs. (1) and (2)
obtained by using only a portion of the observable variables vector yt to recover the vector
ξ2t . Once we know the vector ξt it is straightforward to use eq. (1) to obtain the vector of
i.i.d. innovations εt.

Assume the vector yt is observed from time 1 to T . For the system:

8Note that if only m variables of the vector yt are observable, the (m − r) variables which are not
observable do not need to enter the vector ξt since their dynamics does not contribute to the dynamics of
the other variables in the state vector ξt.
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ξt+1 = F ξt + vt+1

yt = H
0
ξt + wt

and given the assumptions in equations (3) to (8), (17), (18) the Kalman filtered estimate
of the vector ξt is defined by the recursion (Hamilton, 1994):

ξt|t = ξt|t−1 + Pt|t−1H(H
0Pt|t−1H +R)−1(yt −H 0ξt|t−1)

ξt+1|t = F ξt|t
Pt|t = Pt|t−1 − Pt|t−1H(H 0Pt|t−1H +R)−1H 0Pt|t−1

Pt+1|t = FPt|tF 0 +Q

where ξt+1|t denotes the linear projection of ξt+1 on the sample [y1...yt] and a constant:

ξt+1|t ≡ Ê(ξt|y1...yt)
and Pt+1|t is the mean squared error (MSE) matrix associated with the forecast ξt+1|t:

Pt+1|t ≡ E[(ξt+1 − ξt+1|t)(ξt+1 − ξt+1|t)
0)]

The Kalman smoothed estimate ξt|T ≡ Ê(ξt|y1...yT ) of the vector ξt is based on the full
sample of observable variables contained in the vector yt. It is defined by the recursion:

ξt|T = ξt|t + Jt(ξt+1|T − ξt+1|t)

Jt = Pt|tF 0P−1t+1|t
Pt|T = Pt|t + Jt(Pt+1|T − Pt+1|t)J 0t

5.3.1 Assumptions

1. Kalman The initial value ξ0 of the vector ξt is known:

ξ0|0 = ξ0

2. Kalman The measurement error vector is zero at all dates:

wt =
−→
0 ∀ t

3. Kalman The number of observable variables is equal to the number of non-zero
elements of the vector vt:

r = m
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Assumption 1 states that the first n elements of the vector ξ1 are known with certainty,
therefore the upper-left n × n sub-matrix of P1|0 is the zero matrix. It is easy to see that
this assumption is the same as assumption 1 Var. Assumption 1 could in fact be replaced by
ξ11|0 = ξ11, since the vector ξ

2
0 is needed to prove the theorem only because knowledge of ξ

1
0 and

ξ20 implies knowledge of ξ
1
1 with certainty

9. The VAR model already assumes that ξ11 belongs

to the set of observable variables bYt. Assumption 2 states that the only exogenous variable
driving the evolution of the vector yt is the vector of unobserved states ξt - as assumption 2
Var. Assumption 3 makes sure that the system in eqs. (1) and (2) is non-singular so that
under assumptions 1 and 2 there exist a solution to the Kalman filter recursion, and is equal
to assumption 3 Var.

5.3.2 Theorem

Theorem 2 Let eqs. (1), (2) and eqs. (3) to (8), (17), (18) describe the dynamics of the
vectors yt and ξt. Under assumptions 1, 2, 3 the Kalman smoothed estimate of the vector ξt
is given by eqs. (21) and (22):

ξ1t|T = F
11ξ1t−1|T + F

12ξ2t−1|T = ξ1t

ξ2t|T = (H
02)−1[yt −H 01ξ1t|T ] = ξ2t

Proof: see the Appendix.

5.3.3 Discussion

The central result of the theorem is intuitive: if the vector of state variables which solves the
system in eq. (1) and (2) is unique, the linear projection of the state vector is unique too
and is equal to the system’s solution. The theorem makes explicit the assumptions that are
needed for the system in eqs. (1) and (2) to have a unique solution.

First, the measurement error vector wt must be the zero vector at all dates. Without
this assumption, the variance-covariance matrix R of the vector wt would be non-empty.
Neither equation (45) or (49) in the Appendix would hold. Since then the solution ξt would
not be unique, the variance of the estimate ξt|T would be positive.

Second, if wt = 0 ∀ t, the number of observable variables must be no larger than the
dimension of the white noise innovations vector vt. Otherwise the Kalman filtered estimate
is not defined. In fact, if r > m it is still true that:

r×n+m ¡H 0P1|0
¢
=
£
r×n0 r×m(H 02)(P 221|0)

¤
But is easy to check that the matrix:

r×r(H 0P1|0H +R) =
¡
H 0P1|0H

¢
= [H 02P 221|0H

2]

9Note that knowing only ξ21 is not sufficient to start the recursion as shown in the theorem, unless the
matrix H 01is m×m, in which case the equation y1 = H 01ξ11 +H 02ξ21 can be solved for ξ

1
1.
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will have two proportional rows and will thus be non-invertible. Note that this would
not be true if wt 6= 0 or if there is uncertainty about the initial vector ξ0. Therefore, even in
the case of a singular system, it is still possible to derive an estimate of ξt provided we allow
for uncertainty in the initial value. Of course in this instance the vector ξt is not unique
anymore.

If r < m, the solution ξt is not unique. The system in eqs. (1) and (2) has then
an infinite number of solutions. The Kalman filter will provide the best linear unbiased
estimate of the unknown vector given the information on the unconditional distribution of
the stochastic vector vt.

Third, if ξ11 is unknown the vector P
11
1|0 is a non-zero diagonal matrix. Then P1|1 6= 0,

P2|1 6= P1|0 and Pt|t will be non-zero for all subsequent periods. In this case the variance of
the estimate ξt|T would be positive.

6 Can VARs estimate model-consistent monetary pol-

icy shocks?

Macroeconomists estimating structural models have devoted increasing attention to assum-
ing VAR identifying restrictions consistent with the DSGE reference model (Pagan, 2003,
Linde’, 2003). For example, Christiano et. al. (2003) estimate a DSGE model by minimizing
the distance between the impulse response function to a policy shock in the model, and to
an identified policy shock in an estimated VAR. The VAR identification strategy adopted
relies on the same informational lags built into the model. The authors fail though to use
a reduced-form representation consistent with the theoretical model. The estimated VAR
does not include all the model’s state variables. The previous sections showed that in this
case the correct data-generating process has a VARMA representation.

Whether a mis-specified VAR is a good enough approximation to the true data generat-
ing process is an empirical issue: including enough lags in the estimation may approximate
the VAR(∞) representation of the system10.

In this section we show that this assumption is misleading. Using a DSGE model of
a small open economy, we estimate the vector εt from the VAR representation (14) of the
model, and compare it to the one estimated from the state-space model (21), (22).

To allow a fair comparison, we make a number of simplifying assumptions. First, we
assume the matrices B̂ and F are known. Therefore identification of the orthogonal shocks
vector is possible. While this assumption lets us identify all shocks, we focus on the mon-
etary policy shock, which is the one for which informational lags allow the most popular
identification procedure in the VAR literature, Cholesky decomposition. Second, we use
data simulated by the DSGE model. Using real data makes the results sensitive to which

10Lutkepohl (1993) discuss in detail the implications of reducing the dimension of the estimated system (i.e.
estimation of a g−dimensional VARMA process when the true data generating process is m−dimensional,
m > g) and fitting finite order VAR models to infinite order processes.
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observable variable is included in the vector yt. Only if the theoretical model is the correct
data generating process the solution ξ2t will be independent of the r −m variables chosen
to be excluded from the vector yt. Third, we estimate the VAR over a sample of 10,000,000
data points. Such a long time series assures that we are looking at asymptotic results, and
that any error in the estimate of εt is not due to variance in the estimator.

Under assumptions VAR 1, 2, 3 and 4, specified in section 5, the estimated VAR(2)
recovers the correct vector εt. As a consequence, adding further lags to the VAR does not
improve the accuracy of the estimate. Similarly, the estimate of the state-space model
converges to the true model (1), (2). Therefore the recursion (21), (22) recovers the true
shocks εt. This will be true regardless of the observable variables included (neglecting any
estimation issues). The same is not true for the VAR representation.

6.1 A DSGE small open economy model

Below we report the loglinearized equations describing a micro-founded small open econ-
omy general equilibrium model with nominal rigidities. The model is akin to many recent
staggered-price adjustment open economy models (see Devereux, 2001, Gali and Monacelli,
2002, Natalucci and Ravenna, 2002, Walsh, 2003). Complete derivation of the model and
parametrization on the Canadian economy can be found in Ravenna (2003).

The model lends itself to our purposes since it features seven exogenous stochastic
shocks and five state variables. It is easy to envision situations in which the econometrician
estimating a seven-variables VAR omits one or more of the state variables. Monetary policy
is described by a Taylor rule, an assumption often used in empirical VARs to identify the
policy shock.

Household sector:

ct = (1− γ)cH,t + γcF,t (23)

muct = κ1dt − κ2Etdt+1 − κ3ct + κ4ct−1 + κ5Etct+1 (24)

cH,t − cF,t = ρst (25)

mrst = ηnt −muct = ζt (26)

muct = rt + Etmuct+1 (27)

it = i∗t + Et∆et+1 (28)

rt = it − Etπt+1 (29)

Production sector:

yt = at + nt (30)

ζt = ζt−1 + ξt − πt (31)

mct = ζt + nt − yt + πt − πH,t + γst−1 + ut (32)

πH,t = λ1mct + βEtπH,t+1 (33)
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Foreign sector:

c∗H,t = ρst + c
∗
t (34)

st − st−1 = ∆et + p
∗
F,t − p∗F,t−1 − πH,t (35)

πt = πH,t + γ(st − st−1) (36)

Market clearing:

yt =
CH
Y
cH,t +

C∗H
Y
c∗H,t (37)

bt = µ1bt−1 + µ2c
∗
H,t − µ3(st + cF,t) (38)

Capitale letters denote steady state values. All variables are measured in percent devia-
tion from the zero net foreign asset position steady state. Eq. (23) defines the consumption
index c aggregating home (cH) and foreign (cF ) produced good consumption baskets. Eq.
(24) defines the marginal utility of consumptionmuc with habit-persistent preferences, where
dt is a preference shock. Setting b = 0 returns log-linear preferences over the consumption
basket. κ1,κ2,κ3,κ4,κ5 are functions of the model’s parameters and steady state values. Eq.
(25) gives the intratemporal choice between home and foreign goods, as a function of the
terms of trade s. Eq. (26) equates the marginal rate of substitution (mrs) between labor
hours (n) and consumption to the real wage ζ. Eqs. (27), (28), (29) are obtained from the
household’s first order conditions over the real, nominal and foreign-currency denominated
assets, where rt is the consumption-based real interest rate, it is the nominal interest rate,
i∗t is the foreign nominal interest rate, ∆et is the nominal exchange rate depreciation, and
πt is the CPI inflation rate.

In the production sector, eq. (30) is the production function for domestic output y,
where a is a productivity shock. Eq. (31) is the definition of the real wage ζt, where ξ is
wage inflation. Eq. (32) defines the real marginal cost mc, where πH is domestic-produced
good inflation, st is the terms of trade and ut is a cost-push shock. Eq. (33) describes
the domestic inflation process and is derived from the firms’ staggered price adjustment
optimality condition.

Eq. (34) gives the foreign demand for home goods c∗H , as a function of the exogenously
given total foreign consumption c∗. Eq. (35) defines the terms of trade depreciation, where
p∗F,t is the exogenously given price of foreign goods in terms of foreign currency. Eq. (36)
is the relationship between domestic (πH) and CPI (π) inflation. Eq. (37) is the economy-
wide resource constraint, and eq. (38) gives the foreign asset accumulation equation for the
foreign issued bonds bt, where µ1, µ2, µ3 are functions of the model’s parameters and steady
state values.

The monetary policy rule for the baseline specification is:

it = ωpEtπt+1 + ωyyt + ωe∆et + vt

where we set ωp = 2, ωy = 1.5, ωe = 0.5. The rule includes an autocorrelated, unexpected
policy shock vt. The exogenous stochastic processes for the preference shifter, the technology
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shock, the cost-push shock, the world interest rate, the imports’ price and the aggregate
foreign consumption demand follow an AR(1) specification:

dt = ρddt−1 + εd,t

at = ρaat−1 + εa,t

ut = ρuut−1 + εu,t

vt = ρvvt−1 + εv,t

i∗t = ρi∗ + εi∗,t

p∗F,t = ρpp
∗
F,t−1 + εp,t

c∗t = ρcc
∗
t−1 + εc,t

where ρa = ρv = ρi∗ = 0.9, ρd = ρu = ρp = ρc = 0.8 and the components of the vector ε
are i.i.d. stochastic processes. The innovation vector ε volatility is set to σa = 0.8, σd = 2.4,
σu = 0.15, σv = 0.3, σp = 0.8, σc = 0.8, σi∗ = 0.3. These are values in line with calibrated
and estimated staggered price adjustment models (Natalucci and Ravenna, 2002, Rabanal
and Rubio-Ramirez, 2003).

6.2 Finite order VAR approximation to the DSGE model with
unobserved state variables

The estimated VAR(2) includes the observable variables ιt, yt, πt, c
∗
t ,∆et,mct, πH,t. These are

variables commonly included in open-economy VARs (see Favero, 2001). The VAR does not
include any of the model’s state variables: ζt, st, bt, p

∗
F,t, ct.

Table 1 shows the root mean square distance (RMSE) between the true innovation time
series for the policy shock εv (equal to the series estimated with a state-space model) and
the series estimated with the VAR(2).

Table 1
Relative Root Mean Square Error - Baseline model

Innovation Relative RMSE

policy 696%
productivity 722%
demand 76%
cost-push 6200%
export demand 227%
import price 301%
foreign interest rate 92%
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Note: Root mean square distance between the VAR(2)-estimated vector ε
and the true vector calculated over 250,000 40-quarters simulated time series.
Data are generated by the DSGE model. The RMSE is scaled by the standard
deviation of the corresponding shock.

The performance of the VAR is lacking: the root mean square error for εv is about 7
times larger than the standard deviation of the shock itself. Figure 1 plots a 10-year sample
path to show the impact of VAR mis-specification.

While usually the econometrician does not have available enough restrictions to be able
to identify all shocks, we assume that the matrix B̂ is known, and therefore we can examine
the impact of the mis-specification on all innovation estimates. Table 1 shows that the foreign
interest rate and the demand shock are estimated with higher precision than the other shocks.
Figure 2 shows a 10 year sample path for six shocks. Clearly the VAR estimated innovation
shocks εd and εi∗, while not completely accurate, follow remarkably closely the true shocks.
This result can be readily explained by examining the list of variables included in the VAR.
The variables it, i

∗
t , Et∆et+1 are linked by the uncovered interest parity equations. Both the

domestic and foreign interest rate are highly autocorrelated. Therefore εi∗ can be tightly
estimated once the three variables are included in the model. Intuitively, the VAR performs
better when we include variables which are linked by an equilibrium relationship and at the
same time are highly correlated with the state variables.

6.3 Are all models equal?

The data-generating process has a large impact on how well a finite order VAR approximates
the true process. The policy rule in the baseline model assumed autocorrelated εv shocks, as
in Rudebusch (2002). A more general policy rule includes explicit interest rate smoothing.
Let policy be described by:

it = (1− χ)[ωpEtπt+1 + ωyyt + ωe∆et] + χit−1 + vt
vt = ρvvt−1 + εv,t

Table 2 reports RMSE values under different policy regimes. Policy 1 includes an interest
rate smoothing objective: the central bank adjusts the policy instruments only slowly towards
the target. As a consequence it becomes a state variable and the estimate of the policy
shocks is more accurate. A large smoothing coefficient χ implies that following any shock,
the interest rate it is very persistent. Then a large part of the variance of it is explained by
it−1, so it comes as no surprise that this model fares much better than the baseline. Simply
doubling the variance of the policy shock in the baseline model (policy 2) lowers the RMSE
by nearly half. Including a contemporaneous inflation target (policy 4) rather than a target
in terms of expected inflation allows a very large improvement in the estimate’s precision.
But this is not a sufficient condition for accurate estimates: changing the target from π to
domestic inflation πH , in policy 5, yields a RMSE nearly as large as in the baseline model.
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Table 2
Relative Root Mean Square Error of εi - comparison across policy rules

Policy Rule Relative RMSE

baseline: χ = 0, ωp = 2, ωy = 1.5, ωe = 0.5, ρv = 0.9 696%
1: χ = 0.9, ωp = 2, ωy = 1.5, ωe = 0.5, ρv = 0 225%
2: χ = 0, ωp = 2, ωy = 1.5, ωe = 0.5, ρv = 0.9; σv = 0.6 353%
4: contemporaneous inflation target 141%
5: contemporaneous domestic inflation target 667%

Note: Root mean square distance between the VAR(2)-estimated series εv
and the true series calculated over 250,000 40-quarters simulated time series.
Data are generated by the DSGE model. The RMSE is scaled by the standard
deviation of εv

The baseline model labor market can be modified to include staggered wage adjust-
ment, as in Erceg et al. (1999). Then the labor supply equilibrium condition mrst = ζt is
substituted by the forward-looking wage adjustment equation:

ξt = λ2[mrst − ζt] + βEtξt+1

This modification makes ζt very persistent. The real wage now carries much more
additional information in the VAR, since in the baseline flexible wage model the correlation
of ζt with a variable already included in the system, yt, is very high. Table 3 reports the
resulting large improvement in accuracy. Adding an interest rate smoothing policy makes
the VAR estimate of εv nearly 100% accurate, as is clear from Figures 3 and 4.

Table 3
Relative Root Mean Square Error of εi - comparison across models

Model Relative RMSE

baseline 696%
sticky wages 121%
sticky wages and interest rate smoothing 12%

Note: Root mean square distance between the VAR(2)-estimated series εv
and the true series calculated over 250,000 40-quarters simulated time series.
Data are generated by the DSGE model. The RMSE is scaled by the standard
deviation of εv
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6.4 The choice of observable variables

The choice of observable variables to include in the VAR plays an important role, and will
depend on the question the researcher is investigating. Table 4 shows the consequences
of excluding it from the set of observable variables, replacing it with labor hours nt. The
econometrician interested in the policy innovation series would hardly make this choice. The
RMSE of εv increases by a factor of 2.5 compared to Table 1. But once both nt and yt are
included in the VAR, the production function implies that the shock εa can be recovered
with nearly complete accuracy (Fig. 5 and 6)

Table 4
Relative Root Mean Square Error - Baseline model - it not included among observables

Innovation Relative RMSE

policy 1746%
productivity 0.65%
demand 785%
cost-push 17200%
export demand 227%
import price 301%
foreign interest rate 1095%

Note: Root mean square distance between the VAR(2)-estimated vector ε and
the true vector calculated over 250,000 40-quarters simulated time series. Data
are generated by the DSGE model. The RMSE is scaled by the standard devia-
tion of the respective shock. VAR(2) data includes nt, yt, πt, c

∗
t ,∆et,mct, πH,t

6.5 VAR lags and accuracy of approximation

Does increasing the number of lags lead to a rapidly increasing accuracy of the estimated
shock vector? In the case of the baseline model, Table 5 shows that moving from a VAR(2)
to a VAR(6) only marginally reduces the root mean square distance between the estimated
and true εv.

Table 5
Relative Root Mean Square Error of εv - VAR(n)

Lags included in VAR Relative RMSE

2 696%
6 695%
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Note: Root mean square distance between the VAR(2) and VAR(6)-estimated
series εv and the true series calculated over 250,000 40-quarters simulated time
series. Data are generated by the DSGE model. The RMSE is scaled by the
standard deviation of εv. VAR(2) data includes it, yt, πt, c

∗
t ,∆et,mct, πH,t

6.6 Identification, mis-specification, and system estimation

The poor performance of the VAR approximation to the DSGE model derives entirely from
the estimated model’s mis-specification. Identification issues play no role in the result. In fact
we endow the econometrician with knowledge of the matrix eB to disentangle the structural
innovations εt from the reduced form shocks ηt.

The mis-specification problem has been recognized in the literature - for example,
Canova (2004) notes that the VAR(n) representation of a DSGE model is transformed into
a VARMA whenever a variable is omitted (see also Cooley and Dwyer, 1998). Nevertheless,
its empirical relevance has been neglected. The vast majority of researchers implicitly as-
sumes that either all the state variables from the reference DSGE model have been included
in the estimated VAR (and therefore the model has a VAR(n) representation, or a VAR(1)
representation if the shocks zt are i.i.d.), or that enough lags are included in the VAR so
that any remaining MA component is negligible.

The literature on VARmodeling focused instead on the alternative identification schemes.
Researchers base their identifying assumptions on different theories, and therefore will reach
different conclusions on what portion of the observable variables’ volatilities can be attributed
to each of the identified shocks (see Canova, 1995, and Uhlig, 2004). The so called ’price
puzzle’ - the result that in estimated VARs on postwar US data a contractionary monetary
policy shock leads to a persistent price increase - is often labeled as a ’failure to identify cor-
rectly the policy shock’. The price puzzle is truly a mis-specification problem. Sims (1992)
discusses how it could be due to a missing element in the policy rule included in the VAR,
and suggests adding commodity prices to the system. The fact that adding commodity prices
solves the price puzzle in estimated VARs implies that commodity prices are a model’s state
variable. Were this not the case, Theorem 1 shows that the VAR would not be mis-specified.

A number of papers discusses the consequences of imposing VAR identifying restrictions
inconsistent with the reference DSGE model, assumed to be the true data-generating process.
Canova and Pina (1999) compare the theoretical VAR representation of a DSGE model with
a 4-variables VAR estimated under a variety of (model-inconsistent) identifying assumptions.
Since they include in the VAR all state variables, the distance between the true and estimated
VMA representation can only be ascribed to mis-identification (see also Cochrane, 1998).

Researchers are increasingly aware of the risks from mis-identification when comparing
DSGE and VAR models. Christiano et al. (2003) take great care of using identifying
restrictions for the estimated VAR consistent with the theoretical model. But they fail to
include capital (a state variable) in the estimated VAR.Whether this mis-specification leads
to a severe bias in their results is difficult to assess.
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Is then Maximum Likelihood estimation of the state space model a sure way to avoid
mis-specifications? Clearly, the state-space representation allows much more flexibility - it
is even possible to add extra unobserved state variables, which (asymptotically) will not
affect the model’s estimate. But all along we have avoided the problems which can arise
in estimation over limited samples. As VARs, also state-space model need a number of
restrictions to be identified, and in practice the identification requirements of the state-space
representation may be more taxing than in a VAR (see Hamilton, 1994, and Canova, 1992,
for an overview of the problems connected to the state-space estimation approach). One
recognized advantage of the Cholesky identification scheme in SVARs is that it allows the
econometrician to estimate the impact to an orthogonalized policy shock, without having to
take a stand on all the other shocks. Essentially, the VAR result on the policy shock impulse
response function depends on correct identification of only a column of the matrix eB.
7 Conclusions

Increasingly the explanatory power of DSGE models is tested by comparing the model im-
pulse response functions to those obtained from an estimated VAR. Some researchers esti-
mate model parameters by minimizing the distance between the model’s and the estimated
VAR impulse response functions.

This paper showed that testing or estimating DSGE models using the VAR representa-
tion is only appropriate when a number of conditions is met. We provided a general proof
of the reduced form representation in which DSGE model map, and showed that unless all
state variables are included in the system the model takes a VARMA representation. We
showed that neglecting the MA terms can have serious implications for estimating the vector
of structural innovation, regardless of identification or estimation problems.

The state-space representation can accommodate the DSGE model dynamics under a
less strict set of conditions than a VAR. The paper proves under what conditions the Kalman-
filtered shocks vector will return the true vector of innovations that generated the observable
data sample. The state-space model advantage lies in the fact that we do not need to assume
all the model’s state variables are observable to have a correctly specified model.

Structural VAR are not necessarily inappropriate models for the data.Atheoretical VARs
have much to tell: they summarize the dynamics of the data with as few restrictions as pos-
sible. Assuming though that the dynamics they describe can always be obtained from the
structural model we are interested in testing is misleading. If we wish to take DSGE models
seriously - that is, expect that they can account for the correlations in the data - then we
should compare them to consistent representations of the data. The empirical relevance of
the critique of VAR models we provide has to be tested case by case. Once small sample
estimation problems are taken into considerations, VARs may still provide a more accurate
representation of the data-generating process.
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8 Appendix

Proof of Theorem 1: Let yt = H
01xt +H 02zt where H 01, H 02 include all and

only the rows of eH 01, eH 02 corresponding to the observable variables in eyt. Assume for
the time being that m ≥ r (if the number of observable variables r is larger than the
number of exogenous shocks m the variance-covariance matrix of yt will be singular,
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preventing model estimation). To eliminate xt from the model, rewrite the endogenous
state equation as:

[I − F 11L]xt = F 12Lzt

xt = [I − F 11L]−1F 12Lzt
Substituting xt in the control variables equation:

yt = H 02zt +H 01[I − F 11L]−1F 12Lzt (39)

= H 02zt +H 01G(L)−1F 12Lzt

where G(L)−1 is an infinite-order lag polynomial. Assume that zt is white noise.
Then eq. (39) gives the VMA(∞) representation of the process. We can express the
inverse of G(L) in terms of its determinant |G(L)|, of order n in the lag operator L,
and the cofactor matrix DG(L) of order (n − 1) in L: G(L)−1 = DG(L)/|G(L)|.
Therefore:

|G(L)|yt = |G(L)|H 02zt +H 01DG(L)F 12Lzt = G∗(L)zt (40)

Eq. (40) is a VARMA(n,n). The system (40) is written in final equations form:

each component of the vector yt depends only on its own lags.
We will assume in the following that m = r. If G∗(L) is invertible, a VAR

representation of infinite order for yt is given by:

|G(L)|G∗(L)−1yt = zt
Assume now that zt is a vector AR(p) process: zt = Z(L)εt. Eq. (40) then gives:

|G(L)|yt = G∗(L)Z(L)−1εt
= |G∗(L)|DG∗(L)−1Z(L)−1εt

where G∗(L)−1 = DG∗(L)/|G∗(L)|, |G∗(L)| is of order nm in L, DG∗(L) is of
order n(m− 1) in L. Therefore yt is described by:

|G(L)|Z(L)DG∗(L)yt = |G∗(L)|εt (41)

which is a VARMA(mn+p,mn) process. A VAR(∞) representation is given by:
|G(L)|
|G∗(L)|Z(L)DG∗(L)yt = εt

¥
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Proof of Corollary 1: Starting from eq. (39), compute the inverse of H 01[I −
F 11L]−1F 12. First, we need to assume that the number of observable variables r is
equal to the number m of exogenous state variables. Otherwise, the matrix H 01[I −
F 11L]−1F 12 will not be square. Then note that:

H 01[I − F 11L]−1F 12 =

= lim
i→∞

H 01[A(L)]F 12

= lim
i→∞

H 01[I + F 11L+ F 11
2

L2 + ...+ F 11
i

Li]F 12 (42)

= lim
i→∞

[H 01IF 12 +H 01F 11F 12L+H 01F 11
2

F 12L2 + ..+H 01F 11
i

F 12Li]

Since H 01IF 12 is a square matrix of size r ×m = r × r, we can write:

(H 01IF 12)−1 lim
i→∞

[H 01IF 12 +H 01F 11F 12L+H 01F 11
2

F 12L2 + ..+H 01F 11
i

F 12Li] =

lim
i→∞

[I + (H 01IF 12)−1H 01F 11F 12L+ (H 01IF 12)−1H 01F 11
2

F 12L2 + ..+ (H 01IF 12)−1H 01F 11
i

F 12Li] =

if (H 01IF 12)−1 exists. Note that if n < r,m then rank(H 01IF 12) < r and the
matrix H 01IF 12 is not invertible. Then the lag polynomial H 01[A(L)]F 12 cannot be
mapped into its inverse B(L). Suppose that n ≥ r,m. If a B(L) of order one in
L exists, then it must be true that:

[(H 01IF 12)−1H 01F 11F 12]i = (H 01IF 12)−1H 01F 11
i

F 12

If n = r, we have that:

[(H 01IF 12)−1H 01F 11F 12]
i

= [(F 12)−1(H 01)−1H 01F 11F 12]i

= [(F 12)−1F 11F 12][(F 12)−1F 11F 12][(F 12)−1F 11F 12].....

= [(F 12)−1F 11
i

F 12]

It is straightforward to show that if n > r this result will not obtain. Assume then
n = r. The above result implies we can write:

(H 01IF 12)−1 lim
i→∞

[H 01IF 12 +H 01F 11F 12L+H 01F 11
2

F 12L2 + ..+H 01F 11
i

F 12Li]

= lim
i→∞

[I + PL+ P 2L2 + ..+ P iLi]

P = (H 01IF 12)−1H 01F 11F 12 = (F 12)−1F 11F 12
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and

H 01[I − F 11L]−1F 12
= lim

i→∞
[H 01IF 12 +H 01F 11F 12L+H 01F 11

2

F 12L2 + ..+H 01F 11
i

F 12Li]

= (H 01IF 12)(H 01IF 12)−1 lim
i→∞

[H 01IF 12 +H 01F 11F 12L+H 01F 11
2

F 12L2 + ..+H 01F 11
i

F 12Li]

= (H 01IF 12) lim
i→∞

[I + PL+ P 2L2 + ..+ P iLi]

= (H 01IF 12)[I − PL]−1

where P = (H 01IF 12)−1H 01F 11F 12. The VMA(∞) representation for yt can then
be mapped into:

[I − PL](H 01IF 12)−1yt = [I − PL](H 01IF 12)−1H 02zt + Lzt (43)

yt = H 01F 11H 01−1yt−1 +H 02zt + (H 01F 12 −H 01F 11H 01−1H 02)zt−1

which is a VARMA(1,1) if zt is white noise11. If zt is a vector AR(p) process we
have:

[I − PL](H 01IF 12)−1yt = [I − PL](H 01IF 12)−1H 02zt + Lzt
= C(L)zt = C(L)Z(L)

−1εt

where zt = Z(L)
−1εt and Z(L) is a lag polynomial of order p. Express the inverse

of C(L) in terms of its determinant |C(L)|, of order m in L, and the cofactor matrix
DC(L) of order m− 1 in L: C(L)−1 = DC(L)/|C(L)|. Then:

[I − PL](H 01IF 12)−1yt = |C(L)|DC(L)−1Z(L)−1εt
Z(L)DC(L)[I − PL](H 01IF 12)−1yt = |C(L)|εt

which is the VARMA (m+p,m) representation of yt. A VARMA (m+p,m) repre-
sentation also exists if n = 1. In this case, [I − F 11L]−1 in eq. (39) is a scalar. Each
component of yt will depend on its own lags only and eq. (43) becomes:

(1− F 11L)yt = H 02zt + (H 01F 12 − F 11H 02)zt−1
yt = F 11yt−1 +H 02zt + (H 01F 12 − F 11H 02)zt−1

¥

11Note that if n = m = r the matrix H 01is square, and by simply inverting H 01[I − F 11L] in eq.
(39) we obtain eq.(43).
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Proof of Theorem 2: Start the Kalman filter recursion by computing the
estimate of ξ1:

ξ1|1 = ξ1|0 + P1|0H(H
0P1|0H +R)−1(y1 −H 0ξ1|0) (44)

Because of assumption 1:

ξ1|0 = E(ξ1) =

·
E(ξ1)
E(ξ2)

¸
=

·
F 11ξ10|0 + F

12ξ20|0
E(ξ21)

¸
=

·
F 11ξ10 + F

12ξ20
F 22ξ20 + E(v1)

¸
P1|0 = E

µ·
0
v1

¸ £
0 v1

¤¶
=

· n×nP 111|0
n×mP 121|0

m×nP 211|0
m×mP 221|0

¸
=

·
0 0
0 P 221|0

¸

m×mP 221|0 =


σ2ε1 0 ... 0
0 σ2ε2 ... 0
.... ... ... ...
0 0 ... σ2εm


Using the above equations:

m×n+m ¡H 0P1|0
¢
=

£
H 01 H 02 ¤P1|0

=
£
0 H 02P 221|0

¤
Assumption 2 implies:

m×m(H 0P1|0H +R) =
¡
H 0P1|0H

¢
= [H 02P 221|0H

2]

Because of assumption 3 the matrices H 02 and H2 are invertible. Since P 221|0 is
diagonal:

(H 0P1|0H +R)
−1= (H2)−1(P 221|0)

−1(H 02)−1 (45)

Since:

n+m×m(P1|0H) =
·

0
P 221|0H

2

¸
the following holds:

P1|0H(H 0P1|0H +R)−1 =

·
0

P 221|0H
2(H2)−1(P 221|0)

−1(H 02)−1

¸
=

·
n×m0

m×m(H 02)−1

¸
Therefore:

P1|0H(H 0P1|0H +R)−1(y1 −H 0ξ1|0) =
·

n×10
(H 02)−1(y1 −H 0ξ1|0)

¸
(46)
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Equation (46) together with eq. (44) implies:

ξ11|1 = ξ11|0 + [0] = F
11ξ10 + F

12ξ20 (47)

which is equal to the result obtained in eq. (19). Equations (46) and (44) also

imply:

ξ21|1 = F 22ξ20 + (H
02)−1y1 − (H 02)−1H 0ξ1|0

= F 22ξ20 + (H
02)−1y1 −

£
(H 02)−1H 01 I

¤
ξ1|0

= F 22ξ20 + (H
02)−1y1 − (H 02)−1H 01ξ11|0 − ξ21|0

= F 22ξ20 + (H
02)−1y1 − (H 02)−1H 01ξ11 − F 22ξ20

= (H 02)−1
£
y1 −H 01ξ11

¤
(48)

which is equal to the result obtained in eq. (20).

The MSE of the forecast in eqs. (47) and (48) is:

P1|1 = P1|0 − P1|0H(H 0P1|0H +R)−1H 0P1|0

Using assumption 2:

P1|1 = P1|0 −
·

0
(H 02)−1

¸ £
0 H 02P 221|0

¤
= P1|0 −

·
0 0
0 (H 02)−1H 02P 221|0

¸
= P1|0 − P1|0
= 0 (49)

Equation (49) together with eqs. (47) and (48) implies:

ξ11|1 = ξ11

ξ21|1 = ξ21

The period 2 recursion is identical to the period 1 recursion since ξ1 is known with
certainty:

ξ2|1 = Fξ1|1 = F ξ1 =
·
F 11ξ11 + F

12ξ21
F 22ξ21

¸
and

P2|1 = FP1|1F 0 +Q = Q = P1|0

In all subsequent periods, ξt|t−1 = F ξt, Pt|t−1 = P1|0 and Pt|t = 0 . Therefore the
results in eqs. (47) and (48) hold in any period t:
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ξ1t|t−1 = F 11ξ1t−1|t−2 + F
12ξ2t−1|t−2 = ξ1t

ξ2t|t−1 = (H 02)−1[yt −H 01ξ1t|t−1] = ξ2t

It is straightforward to show that the Kalman smoothed estimate is still equal to

the above equations. In fact, given the Kalman filtered estimates have zero variance,

there is no reason to expect that conditioning the estimate on the whole sample will

provide a reduction in the estimates’ variance. Equation (49) implies:

J1 = P1|1F 0P−12|1 = 0

Since Pt|t = 0 ∀ t:

Jt= 0 ∀ t
The Kalman smoothed estimate is:

ξt|T = ξt|t + Jt(ξt+1|T − ξt+1|t) = ξt|t = ξt

Therefore:

ξ1t|T = F 11ξ1t−1|T + F
12ξ2t−1|T = ξ1t

ξ2t|T = (H 02)−1[yt −H 01ξ1t|T ] = ξ2t

¥
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ε

Figure 1: 10 year sample path of VAR(2)-estimated series of policy shocks εv and true series.
VAR(2) is estimated over 250,000 40-quarters simulated series. Scaling is in percentage
points.
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Figure 2: 10 year sample path of VAR(2)-estimated series of the shock vector ε. VAR(2) is
estimated over 250,000 40-quarters simulated series. Scaling is in percentage points.
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ε

Figure 3: 10 year sample path of VAR(2)-estimated series of the policy shock εv. VAR(2) is
estimated over 250,000 40-quarters simulated series. Scaling is in percentage points. Policy
is as in the baseline model.

ε

Figure 4: 10 year sample path of VAR(2)-estimated series of the policy shock εv. Policy
parameters: χ = 0.9, ρv = 0
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ε

Figure 5: VAR(2)-estimated series of the shock εv. VAR(2) is estimated over 250,000 40-
quarters simulated series. Scaling is in percentage points. VAR(2) data series includes
nt, yt,πt, c

∗
t ,∆et,mct,πH,t
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Figure 6: VAR(2)-estimated series of the shock vector ε. VAR(2) is estimated over 250,000
40-quarters simulated series. Scaling is in percentage points. VAR(2) data series includes
nt, yt,πt, c

∗
t ,∆et,mct,πH,t
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