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Abstract

This paper studies optimal interest-rate policies when the central bank op-

erates a channel system of interest-rate control. We conduct our analysis in a

dynamic general equilibrium model with infinitely-lived agents who are subject

to idiosyncratic trading shocks which generate random liquidity needs. In re-

sponse to these shocks agents either borrow against collateral or deposit money

at the central bank at the specified rates. We show that it is optimal to have

a strictly positive interest-rate corridor if the opportunity cost of holding col-

lateral is strictly positive and that the optimal corridor is strictly decreasing in

the collateral’s real return.
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Bank and the University of Pennsylvania for research support. The views expressed herein are those
of the authors and not those of the European Central Bank or the Eurosystem.
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1 Introduction

In this paper we analyze monetary policy when the central bank operates a channel

system of interest-rate control. In a channel system a central bank offers two standing

facilities to commercial banks that clear transactions through the central bank. A

lending facility where it is ready to supply money overnight at a given lending rate

and a deposit facility where banks can deposit excess money overnight at a deposit

rate. The interest-rate corridor - defined by the difference between the lending and

the deposit rates - is chosen to keep the overnight interest rate in the money market

close to the target interest rate. Several central banks now operate channel systems.1

For example, the European Central Bank (ECB) offers a borrowing facility with a

lending rate that is 100 basis points higher than its policy interest rate and a deposit

facility with a deposit rate, which is 100 basis points below its policy rate.

EONIA - Euro OverNight Index Average
Source: ECB
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Figure 1 displays the interest-rate corridor operated by the ECB. The solid red

curve is the lending rate and the solid blue line the deposit rate. The black line is the

overnight interest rate that the ECB targets via its channel system. Central banks

1Channel systems of interest rate controls are operated by the Bank of Canada, the European
Central Bank, the Reserve Bank of Australia, or the Reserve Bank of New Zealand (see Woodford
2000 for more details).
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typically react to changing economic conditions by shifting the interest-rate corridor.

Figure 1 illustrates such shifts by the ECB. However, occasionally central banks also

change the size of their interest-rate corridor as can be seen from Figure 1 where

the ECB increased its corridor dramatically from 50 basis points to 200 basis points

around February 1999.

In a channel system there is no limit to the size of deposits on which interest is

paid. There is also no limit to the size of a loan that a commercial bank can obtain

provided that the loan is collateralized. Collateral are typically low-risk and low-yield

assets such as government securities. The rate of return of the collateral determines

the opportunity costs for commercial banks of accessing the lending facility of the

central bank where a high rate of return implies a small or zero opportunity cost.

We consider three questions in this paper. First, what is the optimal interest-rate

corridor in a channel system of interest-rate control? Second, how is the optimal

corridor affected by the opportunity cost of holding collateral? Third, how should a

central bank modify its corridor when it reacts to changing economic conditions?

To answer these questions we construct a dynamic general equilibrium model with

infinitely-lived agents and a central bank.2 The agents are subject to idiosyncratic

trading shocks which generate random liquidity needs. Due to these shocks there is

an ex-post inefficiency in that some agents are holding idle balances while others are

cash constrained. To reduce or eliminate this inefficiency the central bank operates a

standing facility where agents either borrow or deposit money at the specified rates.

The central bank cannot force agents to repay their loans and so in accordance with

central bank practice we assume that the central bank only provides collateralized

loans.

The following results emerge from the model. With respect to the first question

we show that it is optimal to have a strictly positive interest-rate corridor if the

2We abstract from modelling commercial banks explicitly. Rather, we assume that all agents
have direct access to the central bank’s lending and deposit facility. The trading shocks are an
approximation for the money market where banks receive liquidity shocks at the end of the day.
Since there is no trading of reserves feasible after this market, banks who need liquidity have no
choice but to use the standing facility offered by the central bank.
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opportunity cost of holding collateral is strictly positive. The optimal size of the

corridor depends on parameters of the model - such as the nature of the trading shocks,

preferences and production technology - and we show how the channel should be

adjusted to changes in these parameters. With respect to the second question we show

that the optimal corridor is strictly decreasing in the rate of return of the collateral

(which means that it is increasing in the opportunity cost of holding collateral).

When the rate of return of the collateral attains the point where the opportunity

cost of acquiring collateral is zero it is optimal to set deposit and lending rates equal.

Finally, with respect to the third question we show that a central bank that must

change its policy in response to a change in economic conditions has two options. It

can either shift the interest-rate corridor while keeping the size of the band constant

as illustrated in Figure 1, or, it can change the size of the interest-rate band. For

instance, it can keep the deposit rate constant and increase the borrowing rate.3

These results are intuitive. When the opportunity cost of holding collateral is

strictly positive, the optimal monetary policy trades-off the cost of holding collateral

and the consumption flow from borrowing at the facility. When collateral is costly

to hold, agents should optimally not hold too much collateral. This is achieved by

increasing the cost of transforming collateral into money, that is by increasing the

interest rate corridor. The larger the interest rate corridor, the more costly it will be

to transform collateral into money. By modifying the liquidity properties of collateral,

monetary policy affects the portfolio decision of agents and as a consequence the real

allocation.

An interesting aspect of our model is that money growth and hence inflation is

endogenous unlike in most theoretical analysis of monetary policy that character-

3Interestingly the US Federal Reserve System recently modified the operating procedures of its
discount window facility. Prior to 2003, the discount window rate was set below the target federal
fund rate, but banks faced penalties when accessing the discount window. As a result, the window
was rarely used. In 2003, in an effort to encourage the use of its discount window, the Federal
Reserve decided to set the discount window rate 100 basis point above the target federal fund rate
and eased access conditions to the discount window. The resulting framework shares some properties
with a channel system of interest-rate control, where the deposit rate is zero (which is equivalent of
not allowing to deposit) and the lending rate 100 basis point above the target rate.
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ize optimal policy in terms of a path for the money supply. In practice, however,

monetary policy involves rules for setting nominal interest rates and most central

banks specify operating targets for overnight interest rates. This paper therefore is

an attempt to break the apparent dichotomy (Goodhard, 1989) between theoretical

analysis and central bank practices.

1.1 Background4

To understand some of the features of our environment it is useful to have some

information on monetary policy procedures at central banks that operate a standing

facility. This section does not aim at being general and we will therefore concentrate

on the case of the ECB’s operating procedures. The ECB has two main instruments

for the conduct of its monetary policy.

First, it conducts weekly main refinancing operations that are collateralized loans

with a one week maturity. Main refinancing operations are implemented using a

liquidity auction where banks bid for liquidity. Bids consist of an amount of liquidity

and an interest rate. The total amount to be allocated is announced before the

auction. Following the auction, the ECB allocates liquidity according to the rates, in

a descending order. The minimum bid rate is the main policy rate used by the ECB

to implement monetary policy.

Second, it offers a standing facility with a lending rate that is 100 basis points

higher than its minimum bid rate and a deposit rate, which is 100 basis points below

its minimum bid rate. Loans are provided overnight at the standing facility and have

to be fully collateralized with eligible assets. Eligible banks can access the standing

facilities at any time of the day. They may also access the facilities after making

a request at the latest 30 minutes after the actual closing time of TARGET, the

large value payment system of the Eurosystem through which central bank operations

are settled.5 An overdraft position on a bank’s TARGET account is automatically

4See ECB (2004) for more details of the ECB’s implementation of monetary policy.
5On the last Eurosystem business day of a minimum reserve maintenance period, the deposit

facility can be accessed for 60 minutes after the actual closing of TARGET.
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transformed into an overnight loan via a recourse to the lending facility against eligible

assets.

While the main refinancing operations aim at managing the liquidity conditions

in the market, the standing facilities is intended to satisfy bank’s temporary needs for

liquidity. We will concentrate the analysis on the second aspect, and we abstract from

modelling liquidity injections in an interbank market. Rather we take the view that

transactions on the interbank market have already taken place and we concentrate

on bank’s temporary needs for liquidity that are satisfied via the standing facilities.

1.2 Literature

There are very few theoretical studies of channel systems of interest-rate control. In

a series of papers Woodford (2000, 2001, 2003) discusses and analyses the channel

system of interest-rate control.6 His very careful analysis of the channel system is

complementary to ours. We depart from his approach by considering a general equi-

librium model where the demand for base money (settlement balances) is endogenous.

Moreover, we conduct a welfare analysis and derive the optimal interest-rate corri-

dor and we show how the interest-rate corridor affects the growth rate of settlement

balances which is endogenous is such a system.7

Some other aspects of our model appear in other papers. These papers however

consider issues that are not related with the analysis of a channel system of interest-

rate control. For example, Lagos and Rocheteau (2004) and Kiyotaki and Moore

6The starting point of his discussion is the possibility that in the future the demand for base
money could shrink considerably or even be eliminated due to innovations in the payment system.
This possibility has led many authors to speculate that central banks could loose their ability to
control aggregate spending via their monetary policy. Friedman (1999) argues along this line in his
paper "The Future of Monetary Policy: The Central Bank as an Army with only a Signal Corps." In
his 2000 paper Woodford argues that even when base base is "largely or even completely eliminated,
monetary policy should continue to be effective. Macroeconomic stabilization depends only upon
the ability of central banks to control a short-term nominal interest rate, and this would continue
to be possible, in particular through the use of a channel’ system for the implementation of policy,
like those currently used in Canada, Australia and New Zealand."

7It is endogenous in our model because we assume that there are no open market operations. In
practice the central bank can operate a channel system and engage in open market operations and
by doing so change the stock of settlement balances.
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(2003) study how illiquid capital interacts with the use of fiat money. The role of

collateral for monetary policy is for example investigated in Buiter and Sibert (2005)

and Braggion, Christiano and Roldos (2005).

The paper is structured as follows. Section 2 outlines the environment. The

equilibrium is characterized in Section 3 and the optimal monetary policy is derived

in Section 4. Section 6 concludes.

2 Environment

There is a [0,1] continuum of infinitively-lived agents. Time is discrete and in each

period two perfectly competitive markets open sequentially. The first market is a

settlement stage where all agents produce and consume a general good and settle

their claims from the previous period with the central bank. General goods are

produced solely from inputs of labor according to a constant return to scale production

technology where one unit of the consumption good is produced with one unit of labor

generating one unit of disutility. Thus, producing h units of the general good implies

disutility −h, while consuming h units gives utility h.8

In the second market agents produce or consume a perishable good. At the be-

ginning of this market, agents receive idiosyncratic preference and technology shocks

which determine whether they consume or produce in market 2. With probability

1−n an agent can consume and cannot produce. We refer to these agents as buyers.

With probability n, an agent can produce and cannot consume. These are sellers.

Agents get utility u(q) from q consumption in the second market, where u0(q) > 0,

u00(q) < 0, u0(0) = +∞ and u0(∞) = 0. Producers incur a utility cost c(q) = q from

producing q units of output. All trades are anonymous and agents’ trading histo-

ries are private information. Since sellers require immediate compensation for their

8The environment is similar to the one introduced by Berentsen, Camera and Waller (2004).
The linear preferences in market 1, first introduced by Lagos and Wright (2005) to get a degenerate
distribution of money holdings at the beginning of a period, allows us to interpret transactions that
are taking place in the first market as settlement transactions, as in Koeppl, Monnet and Temzelides
(2005).
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production effort money is essential for trade.9 The discount factor is β where for

technical reasons we assume that β > n.

Standing facility Since our agents are subject to trading shocks there is an ex-

post inefficiency in that sellers are holding idle balances while buyers are cash con-

strained.10 To reduce or eliminate this inefficiency the central bank operates a stand-

ing facility. It offers nominal loans c at an interest rate i and promises to pay interest

idd on nominal deposits d with i ≥ id.11 Since we focus on standing facilities, we

restrict financial contracts to overnight contracts. An agent who borrows c units of

money from the central bank in market 2, repays (1 + i) c units of money in market 1

of the following period. Also, an agent who deposits d units of money at the central

bank in market 2 of period t receives (1 + id) d units of money in market 1 of the

following period.

Accordingly, in the absence of open market operations, the money stock evolves

endogenously as follows

M+1 =M − (1− n)ic+ nidd, (1)

where M denotes the per capita stock of money at the beginning of period t. In

the first market total loans (1− n)c are repaid. Since interest rate payments by the

agents are (1− n)ic, the stock of money shrinks by this amount. Interest payments

by the central bank on total deposits are nidd. The central bank simply prints addi-

tional money to make these interest payments so the stock of money increases by this

amount. The central bank operates the standing facility at zero cost. Consequently,

the central bank cannot make profits or losses.

9By essential we mean that the use of money expands the set of allocations (Kocherlakota 1998
and Wallace 2001).

10Models with this property include Bewley (1980), Levine (1991), Green and Zhou (2005), and
Berentsen, Camera and Waller (2004).

11This restriction eliminates the possibility for arbitrage where agents borrow and subsequently
make a deposit at interest id > i, thus increasing their money holdings at no cost.
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Default In any model of credit, default is a serious issue. Since production is

costly, those agents who borrow in market 2 have an incentive to default in market 1

of the following period. To prevent default the central bank requires general goods as

collateral for each loan. We assume that general goods that are produced in market

1 can be stored at the central bank with a constant return to scale technology that

yields R ≥ 1 units of general goods in market 1 of the following period. We also

impose βR ≤ 1 since when βR > 1 agents would store infinite amounts of goods

which is inconsistent with equilibrium. General goods can only be stored at the

central bank. Consequently, general goods cannot be used to issue collateralized

IOU’s among private agents.

First-best allocation The expected lifetime utility of the representative agent for

a stationary allocation (q, b) at the beginning of a period is given by

(1− β)W = (1− n) [u(q)− q] + (βR− 1) b (2)

The first term on the right-hand side is the expected utility from consuming and

producing the market 2 good. The second term is the utility of producing collateral

and receiving the return in the following period.

It is obvious that the first-best allocation (q∗, b∗) satisfies q = q∗ where q∗ is the

value of q that solves u0(q) = 1. Moreover, b∗ = 0 if βR < 1 and b∗ is indeterminate

if βR = 1. Thus, a social planner would never choose a positive amount of collateral

when collateral is costly.

3 Symmetric stationary equilibrium

In period t, let φ ≡ 1/P be the real price of money in market 1. We focus on symmetric

and stationary equilibria where all agents follow identical strategies and where real

allocations are constant over time. In a stationary equilibrium beginning-of-period

9



real money balances are time invariant

φM = φ+1M+1. (3)

This implies that φ+1/φ = P+1/P =M/M+1 = γ. Moreover, we restrict our attention

to stationary equilibria where γ is time invariant.

We let V (m, b) denote the expected value from entering market 2 with m units of

money and b collateral. W (m, b, c, d) denotes the expected value of entering the first

market with m units of money, b collateral, c loans, and d deposits. For notational

simplicity we suppress the dependence of the value function on the time index t.

In what follows we look at a representative period t.

3.1 Market 1: settlement

In the first market, the problem of a representative agent is:

W (m, b,c, d) = max
h,m2,b2

−h+ V (m2, b2)

s.t. φm2 + b2 = h+ φm+Rb+ φ(1 + id)d− φ(1 + i)c.

where h is hours worked in market 1. Using the budget constraint to eliminate h in

the objective function, one obtains the first-order conditions12

Vm = φ (4)

Vb ≤ 1 ( = if b > 0 ) (5)

Vm ≡ ∂V (m2,b2)
∂m2

is the marginal value of taking an additional unit of money into the

second market in period t. Since the marginal disutility of working is one, −φ is the

utility cost of acquiring one unit of money in the first market of period t. Vb ≡ ∂V (m2,b2)
∂b2

is the marginal value of taking additional collateral into the second market in period

12We focus on monetary equilibria where (4) holds with equality. In contrast, there are monetary
equilibria where agents do not use the standing facility implying b = 0 because Vb < 1.
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t. Since the marginal disutility of working is 1, −1 is the utility cost of acquiring one

unit of collateral in the first market of period t. The implication of (4) and (5) is

that all agents enter the following period with the same amount of money and the

same quantity of collateral (which can be zero). This is the reason why, as in Koeppl,

Monnet and Temzelides (2005), we interpret this market as a settlement stage. By

itself, this market does not increase social welfare. Rather, it involves a mere transfer

of an asset between participants in order to settle claims from the previous period.

The envelope conditions are

Wm = φ;Wb = R;Wc = −φ (1 + i) ;Wd = φ (1 + id) (6)

where Wj is the partial derivative of W (m, b,c, d) with respect to j = m, b,c, d.

3.2 Market 2: liquidity shocks

At the beginning of market 2, agents receive idiosyncratic shocks which determine

whether they are consumers or producers. With probability 1− n an agent becomes

a consumer and with probability n a producer. Let q and qs respectively denote the

quantities consumed by a buyer and produced by a seller in market 2. Let cb (cs)

and db (ds) respectively denote the loan obtained and the amount of money deposited

by a buyer (seller) in market 2. An agent who has m money and b collateral at the

opening of market 2 has expected lifetime utility

V (m, b) = (1− n)[u(q) + βW (m− pq − db + cb, b, cb, db)]

+n[−qs + βW (m+ pqs − ds + cs, b, cs, ds)]

where q, qs, cs, cb, ds and db are chosen optimally as follows.

It is obvious that buyers will never deposit funds in the central bank and sellers

will never take out loans and therefore db = 0 and cs = 0. It is also straightforward

to show that sellers will deposit as much money as they can if id > 0 and therefore

11



ds = m + pqs. If id = 0, they are indifferent and we simply assume ds = m + pqs.

Accordingly, we get

V (m, b) = (1− n)[u(q) + βW (m− pq + c, b, c, 0)]

+n [−qs + βW (0, b, 0,m+ pqs)]

where qs and q solve the following optimization problems.

A seller’s problem is maxqs [−qs + βW (0, b, 0,m+ pqs)]. Using (6), the first-order

condition reduces to

βpφ+1 (1 + id) = 1. (7)

If an agent is a buyer, he solves the following maximization problem:

max
q,c

u(q) + βW (m− pq + c, b, c, 0)

s.t. pq ≤ m+ c and c ≤ c̄

where

c̄ = Rb/
£
φ+1 (1 + i)

¤
(8)

is the maximal amount that a buyer can borrow from the central bank since b units

of collateral transform into Rb units of real goods at the beginning of the following

period. These goods can be sold for Rb/φ+1 units of money. Finally, the collateral

must also cover the interest payment.

Using (6) the buyer’s first-order conditions can be written as

u0(q) = pβφ+1(1 + λq) (9)

λq = λc + i (10)

where βφ+1λq is the multiplier of the buyer’s budget constraint and βφ+1λc the one

12



of the borrowing constraint. Using (7) and combining (9) and (10) yields

u0(q) =
1 + i+ λc
1 + id

(11)

If the borrowing constraint is not binding and the central bank sets i = id, trades are

efficient. If the borrowing constraint is binding, then u0(q) > 1 which means trades

are inefficient even when i = id.

Using the envelope theorem and (9), the marginal value of money in market 2 is

Vm = (1− n)u0(q)/p+ nβφ+1(1 + id) (12)

The marginal value of money has a straightforward interpretation. An agent with an

additional unit of money becomes a buyer with probability 1 − n in which case he

acquires 1/p units of goods yielding additional utility u0(q)/p. With probability n he

becomes a seller in which case he deposits overnight his money yielding the nominal

return 1 + id. Note that the standing facility increases the marginal value of money

because agents can earn interest on idle cash.

Since in equilibrium there is no default the real return of collateral is βR. The real

return is smaller than the marginal value Vb if λc > 0. To see this, use the envelope

theorem to derive the marginal value of collateral in the second market

Vb = (1− n)βφ+1λc
∂c

∂b
+ βR (13)

Thus, the difference between the real return and the marginal value is (1− n)βφ+1λc
∂c
∂b

which is positive if collateral relaxes the borrowing constraints of the buyers. It is

critical for the working of the model that Vb > βR. The reason is that, since βR−1 is

negative, agents are only willing to hold collateral if the liquidity value as expressed

by the shadow price λc is positive.

13



Use (7) and (8) to write (13) as follows:

Vb = (1− n)u0(q)βR/∆+ nβR. (14)

where ∆ ≡ (1 + i)/(1 + id) and ∆/βR is the price of collateral in terms of goods in

market 2. A buyer can use the collateral to borrow R
φ+1(1+i)

units of money which

allows him to acquire R
pφ+1(1+i)

= βR(1+id)
1+i

= βR/∆ units of goods.

Monetary policy affects the allocation and welfare by its choice of ∆. An increase

in ∆ increases the cost of acquiring money and hence market 2 goods with collateral.

3.3 Symmetric stationary equilibrium

To define a symmetric stationary equilibrium use the first-order condition (5) and

(14) to get
1−Rβ

Rβ
≥ (1− n) [u0(q)/∆− 1] ( = if b > 0 ). (15)

Then (4), (7), (12), and taking into account that in a stationary equilibriumM+1/M =

φ/φ+1 = γ, yield
γ − β (1 + id)

β (1 + id)
= (1− n) [u0(q)− 1] . (16)

Also from (1) we get

γ = 1 + id − (1− n)(i− id)
zc
zm

, (17)

where zm = m/p and zc = c/p. To derive this equation we use d = m + pqs, market

clearing nqs = (1−n)q and we we take into account that in symmetric equilibrium all

agents hold identical amounts of money when they enter the second market. Then,

from the budget constraint of the buyer we have

q = zm + zc. (18)

14



Finally, since βR < 1 in any equilibrium where agents hold collateral it must be the

case that the borrowing constraint is binding and so from (7) and (8)13

zc = βRb/∆. (19)

We can use these five equations to define a symmetric stationary equilibrium. They

determine the endogenous variables (γ, q, zc, zm, b). Note that all other endogenous

variables can be derived from these equilibrium values.

Definition 1 A symmetric stationary equilibrium is a list (γ, q, zc, zm, b) satisfying

(15)-(19) with zc ≥ 0 and zm ≥ 0.

Let

∆̃ =
1− nβ

1/R− nβ
. (20)

Then we have the following

Proposition 1 For any (i, id) with i ≥ id ≥ 0 there exists a unique symmetric

stationary equilibrium such that

zc > 0 and zm = 0 if and only if ∆ = 1

zc > 0 and zm > 0 if and only if 1 < ∆ < ∆̃

zc = 0 and zm > 0 if and only if ∆ ≥ ∆̃.

Several points are worth mentioning. First, the critical element to verify in the

proof is under which condition agents acquire collateral. They are willing to borrow

at the standing facility if the borrowing rate is not too high, i.e. ∆ < ∆̃. Second,

the critical value ∆̃ is increasing in R. Moreover, b is increasing in R too. Agents

increase their collateral holdings and hence finance a larger share of their consumption

13If the borrowing constraint is non-binding (λc = 0), equation (13) reduces to Vb = βR implying
from (5) that b = 0 since we have βR < 1. Consequently, in any equilibrium where agents hold
collateral it must be the case that the constraint is binding (λc > 0) and so c = c̄ = Rb/

£
φ+1 (1 + i)

¤
implying ∂c

∂b = R/
£
φ+1 (1 + i)

¤
.
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by borrowing if R is increasing. Third, if ∆ = 1 agents are not willing to hold money

across periods. They just use collateral to borrowmoney to finance their consumption.

This however does not mean that money is not used since it still plays the role of a

medium of exchange in market 2. It only means that agents do not want to hold it

across periods.

Given a real allocation (q (∆) , b (∆)) any pair (i, id) satisfying ∆ = 1+i
1+id

is consis-

tent with this allocation. Thus, there are many ways to implement a given policy ∆.

The allocations only differ in the rate of inflation. This can be seen from (17) which

can be written as follows

γ

1 + id
= 1− (1− n)(∆− 1) zc

zm

Since the right-hand side is a constant for a given∆ the inflation rate γ−1 is increasing

in id.

In the introduction we have seen that the Reserve Bank of New Zealand (see

Figure 1) reacts to changing economic condition by shifting the interest rate corridor

δ = i− id. An upwards shift of δ increases ∆ and so reduces aggregate output q and

borrowing zc. Another way to tighten monetary policy is by increasing the size of the

band δ since increasing δ also reduces both q and b.

For the rest of the paper we focus on the real allocation (q, b) since only con-

sumption q and collateral b affect the expected lifetime utility (2). In the proof of

Proposition 1 we show that when 1 ≤ ∆ < ∆̃, b and q solve

1

Rβ
= (1− n)u0(q)/∆+ n (21)

q = βRbF (∆) (22)

where

F (∆) =
1

∆

∙
1 +

(1− n)(∆− 1)
1 + βn(∆− 1)−∆/R

¸
.
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These two equations have an intuitive interpretation. (21) defines the liquidity

premium on the collateral. While collateral costs -1 to produce, it returns βR ≤ 1.

Hence, if βR < 1, agents need an incentive to hold collateral. This is provided

by making collateral liquid. The liquidity premium from holding collateral is (1 −

n)βR(u0(q)/∆− 1). As the return on collateral increases, its liquidity premium will

increase. Hence in equilibrium agents will be given less incentives to hold it. This

means that the marginal benefit from an additional unit of collateral u0(q)/∆ will

drop as R increases. When interest rates are fixed, q must increase. Alternatively, an

increase in ∆ affects negatively the liquidity premium, since it is now more difficult to

transform collateral into goods. To establish the liquidity premium to its equilibrium

level, the marginal benefit of an additional unit of good must rise and therefore

q decreases. In this way monetary policy affects the quantities that are traded in

equilibrium.

Given the liquidity premium, (22) gives us the amount of collateral an agent

holds, which in turn determines the composition of an agent’s portfolio. Indeed,

we know that q = zc + zm = βRbF (∆) and zc = βRb/∆ from (19). Therefore,

zm = βRbF (∆)− βRb/∆ = βRb
∆

(1−n)(∆−1)
1+βn(∆−1)−∆/R

. Given an amount of collateral b and

its return R, a tightening of monetary policy - an increase in ∆ - will decrease the

liquidity of collateral, so that agents will have more incentives to increase their money

holdings zm.

4 Optimal policy

We now derive the optimal policy. The central bank’s objective is to maximize the

expected lifetime utility of the representative agent. It does so by choosing consump-

tion q and collateral holding b to maximize (2) subject to constraint that its choice

is consistent with the allocation given by (15)-(18). The policy is implemented by

choosing ∆.

Assume first that it is optimal to set ∆ ≥ ∆̃. In this case no agent is borrowing

17



at the standing facility which implies that b = 0. Moreover, from (16) and (17) q

satisfies

q̃ = u0−1
µ
1/β − n

1− n

¶
.

Thus, any ∆ ≥ ∆̃ implements the same real allocation (b, q) = (0, q̃).

Now consider the largest q that the central bank can implement. From (15) the

largest q is attained when ∆ = 1. It satisfies

q̂ = u0−1
∙
1/ (βR)− n

1− n

¸
.

Thus, the policy ∆ = 1 attains the allocation (b, q) = (q̂/ (βR) , q̂) since no agent

is holding money across period when ∆ = 1. Accordingly, the central bank’s is

constrained to choose quantities q such that q̂ ≥ q ≥ q̃.

Finally, if the optimal policy satisfies ∆̃ > ∆ ≥ 1 the central bank is constrained

to choose an allocation that satisfies (21) and (22). Accordingly, the central bank’s

maximization problem is

max
q,b

(1− n) [u(q)− q] + (βR− 1) b

s.t. q = βbRF

µ
Rβ(1− n)u0(q)

1− nRβ

¶
(23)

and q̂ ≥ q ≥ q̃.

where to derive (23) we use (21) to replace ∆ in (22).

Proposition 2 There exists a critical value R such that if R < R, then the optimal

policy is ∆ ≥ ∆̃. Otherwise the optimal policy is ∆ ∈
³
1, ∆̃

´
.

The striking result of Proposition 2 is that it is never optimal to set a zero interest

rate band δ = i− id since the optimal interest rate band satisfies ∆ > 1. The reason

is that for society the use of collateral is costly since βR − 1 is negative. However,

without collateral consumption q = q̃ is small since agents economize on their cash

holdings. The central bank thus faces a trade-off. It can encourage the use of costly

18



collateral to increase consumption. The optimal policy simply equates the marginal

benefit of additional consumption to the marginal cost of holding collateral. It is

interesting to note that the use of fiat money is not costly for society, as money can

be produced without cost. Nevertheless each agent economizes on its use because it

must be acquired before it can be spend.

If R is small (R < R) the cost of holding collateral is so high that the central

bank’s optimum is to discourage the use of collateral.14 It does so by implementing

an interest rate policy that satisfies ∆ ≥ ∆̃. In contrast if the rate of return is high it

sets ∆ ∈
³
1, ∆̃

´
so that agents finance some of their consumption through borrowing

at the standing facility. An increase in R reduces the optimal ∆. In the limit as

R→ 1/β the holding of collateral becomes costless and we now consider the optimal

policy in this limiting case.

Costless collateral Holding collateral is costless when R = 1/β since the cost of

acquiring one unit is equal to the discounted return βR. To avoid indeterminacies

of the equilibrium allocation we consider the limiting allocation when the rate of

return of the collateral satisfies R→ 1/β.15 In this limiting case the critical value is

∆̃ = 1−βn
β−βn > 1 and Proposition (1) continues to hold. We define the allocation that

is attained under the optimal policy as the limiting allocation that is attained when

i→ id. We find the following results.

Proposition 3 With costless collateral, the optimal policy i → id implements the

first-best allocation q∗. The price level approaches infinity.

14This is similar as in Lagos and Rocheteau (2004) albeit in a very different context. They
construct a model where capital competes with fiat money as a medium of exchange. They show
that when the socially efficient stock of capital is low (which is the case when the rate of return is
low) a monetary equilibrium exists that dominates the nonmonetary one in terms of welfare. So in
this case it would be optimal to discourage the use of capital as a medium of exchange.

15We consider the limiting allocation since atR = 1/β agents are indifferent of how much collateral
they acquire even if they plan not to use it to obtain goods. If λc > 0 agents are strictly better off
by increasing their collateral holdings up to the amount where λc = 0. However, they are indifferent
between any amount of collateral that yields λc = 0. In the limiting allocation attained when
R→ 1/β agents acquire the smallest amount consistent with λc = 0.
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The proof of the first part is an immediate consequence of equation (15) which

implies that limβR→1 u
0 (q) = ∆. Since the first-best allocation requires that u0 (q) = 1

the result is established.

To understand why the price level approaches infinity under the optimal policy

note that if i = id > 0, then money is strictly dominated in return by collateral.

The reason is that the collateral can costlessly be transformed into money and so any

consumption level that can be achieved with money can be achieved with collateral

at no additional cost. However, the collateral has the intrinsic return βR = 1 while

the return on money is β
γ
< 1.16 Consequently, the demand for money approaches

zero. To encourage agents to hold the stock of money its price must approach zero.

This immediately implies that p→ +∞ and therefore zm =M+1/p→ 0. Only at the

Friedman rule i = id = 0 the returns are equal and so agents are indifferent between

holding money, collateral or both.

5 Conclusion

t.b.a.

16This follows from (16) together with u0(q) = ∆.

20



6 APPENDIX

In this Appendix we show that if the central bank’s objective is to maximize the

expected discounted utility of the representative agent, the central banks objective

is to maximize (2). To derive (2) we must first calculate hours worked in market 1.

The money holdings at the opening of the first market are m̃ = 0 having bought and

m̃ = m+ pqs having sold. Hence, hours worked are

hb = φ[m+1 + (1 + i)c]− (R− 1)b

hs = φ[m+1 − (1 + id)(m+ pqs)]− (R− 1)b

Since h = nhs + (1− n)hb, we get

h = −(R− 1)b+ φm+1 + (1− n)φ(1 + i)c− nφ(1 + id)(m+ pqs)

= −(R− 1)b+ φm+1 + φm− φm+ (1− n)φ(1 + i)c− nφ(1 + id)(m+ pqs)

= −(R− 1)b+ ϕ+ (1− n)φc− nφ(m+ pqs) + φm

= −(R− 1)b+ (1− n)φc− nφ(m+ pqs) + φm

where the last equality follows from (1) and the fact that d = m+ pqs, so that

ϕ = φm+1 − φm+ (1− n)φic− nφid(m+ pqs) = 0.

Hence we get

h = −(R− 1)b+ (1− n)φc+ (1− n)φm− nφpqs = −(R− 1)b.
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where the last equality follows from the fact that pq = m + c and market clearing

requires qs = 1−n
n
q. Then, welfare is given by

W = −b+ (1− n) [u (q)− q] +
∞X
j=1

βj {(1− n) [u (q)− q] + (R− 1) b}

=
(1− n)[u(q)− q] + (βR− 1)b

1− β

To calculate welfare, it is also useful to consider the economy that starts at date

t = 0, at the beginning of the centralized market when agents having no financial

obligations toward the central bank. From then on, the economy is in steady state.

At t = 0, agents do not hold any collateral and have to produce the steady state level

b. Hence, at t = 0, h(0) = b, while for all t ≥ 1, h(t) = −(R− 1)b.

The expected discounted payoff from date 0 onward of an agent who starts with

m money holding in period 0 at the beginning of the centralized market is

W (m, 0, 0, 0) = −h(0) + V (m+1, b2)

In a steady state equilibrium the expected discounted payoff of an agent at the

end of market 1 with money holding m is

V (m, b) = (1− n)[u(q) + βW (m− pq + c, b, c, 0)] + n[−qs + βW (m+ pqs − d, b, 0, d)]

where

W (m− pq + c, b, c, 0) = −hb + V (m+1, b+1)

W (m+ pqs − d, b, 0, d) = −hs + V (m+1, b+1)
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Using the definitions for W (m− pq + c, b, c, 0) and W (m+ pqs − d, b, 0, d)] we get

(1− β)V (m, b) = (1− n)[u(q)− hb]− n[qs + hs]

= (1− n)[u(q)− q] + (R− 1)b

Hence, using the fact that h(0) = b, the expected discounted payoff of a represen-

tative agent with m money holding in period 0 at the beginning of the centralized

market is

W (m, 0, 0, 0)(1− β) = (1− n)[u(q)− q] + (βR− 1)b

which is equal to equation (2).

Proof of Proposition 1. We first prove the if part. Assume first zc = 0 and

zm > 0. Then from (16) and (17) we get

1− β

β
= (1− n) [u0(q)− 1] . (24)

and from (15) we have

1−Rβ

Rβ
≥ (1− n) [u0(q)/∆− 1] . (25)

Use (25) to replace u0(q) in (24) and rearrange to get ∆ ≥ ∆̃.

Assume now that zc > 0 and zm > 0. Then from (17) zc > 0 implies that 1+id > γ.

Use (16) to replace γ and rearrange to get ∆ < ∆̃. Next divide (17) by 1 + id and

solve for ∆ to get

∆ = 1 +
zm
zc

1 + id − γ

(1− n) (1 + id)
> 1

since 1 + id > γ. Hence we have 1 < ∆ < ∆̃ if zc > 0 and zm > 0.

Finally, assume that zc > 0 and zm = 0. Then, the previous equation immediately

implies that ∆ = 1.
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We now prove the only if part. From (16) and (17) we get

1− nβ − β (1− n)u0(q) = (1− n) (∆− 1) zc
zm

. (26)

and from (15) we have

∆

µ
1

R
− nβ

¶
≥ β (1− n)u0(q) (27)

Assume first that 1 < ∆ < ∆̃. Use (26) to rewrite (27) as follows

1− nβ −∆

µ
1

R
− nβ

¶
≤ (1− n) (∆− 1) zc

zm
.

Rearrange to get

0 < ∆̃−∆ ≤ (1− n) (∆− 1)
(1/R− nβ)

zc
zm

.

Hence, 1 < ∆ < ∆̃ implies zc
zm

> 0.

Assume next that ∆ ≥ ∆̃. Then from (26) we have

1− nβ − β (1− n)u0(q) ≥ (1− n)
³
∆̃− 1

´ zc
zm

.

Then zc > 0 immediately implies that

0 > ∆̃−∆ ≥
(1− n)

³
∆̃− 1

´
(1/R− nβ)

zc
zm

.

a contradiction. Hence ∆ ≥ ∆̃ implies zc = 0.

Existence and uniqueness when ∆̃ ≤ ∆: In this case zc = b = 0 and from

(17) γ = 1 + id. Then, from (16) and (17) we get (24). Since right-hand side of (24)

is strictly decreasing in q there exists a unique q that solves (24). Finally, from (18)

we have zm = q.

Existence and uniqueness when 1 < ∆ < ∆̃: The system of equations (15)-

(18) with zc = βRb/∆ can be reduced as follows. Equations (18) and zc = βRb/∆
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imply zm = q − βRb/∆. Then, multiply both sides of (17) by zm and replace zm to

get

(q − βRb/∆) [γ − (1 + id)] = −(1− n)zc(i− id)

Use (16) to eliminate γ as follows

(q − βRb/∆) (1 + id)(1−
γ

1 + id
) = (1− n)zc(i− id)

(q − βRb/∆) (1 + id) {1− (1− n)β[u0(q)− 1]− β} = (1− n)zc(i− id)

(q − βRb/∆) {1− (1− n)β[u0(q)− 1]− β} = (1− n)
βRb

(1 + i)
(i− id)

Hence, an equilibrium is defined by the following two equations:

1

Rβ
= (1− n)u0(q)/∆+ n

(q − βRb/∆) {1− (1− n)β[u0(q)− 1]− β} = (1− n)
βRb

(1 + i)
(i− id)

We can use the first equation to replace for u0(q) in the second to get

1

Rβ
= (1− n)u0(q)/∆+ n (28)

q = βRbF (∆) (29)

If we substitute q in the first expression, we get

1

Rβ
= (1− n)u0 [βRbF (∆)] /∆+ n ≡ RHS (30)

The left-hand side of (30) is constant while the right-hand side is decreasing in b for

a given 1 ≤ ∆ < ∆̃. Moreover, we have limb→0RHS = +∞ and limb→∞RHS = n <

1
Rβ
. Hence, for any policy ∆ with 1 ≤ ∆ < ∆̃ a unique b > 0 exists. Then, from (22)

a unique value for q exists. Accordingly a unique symmetric stationary equilibrium

exist.

Finally, we have lim∆→∆̃ F (∆) = +∞ and so b→ 0.
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Proof of Proposition 2. Substituting (23) into the objective function the problem

becomes

max
q

(1− n) [u(q)− q] + (βR− 1) q

βRF
³
Rβ(1−n)u0(q)

1−nRβ

´
s.t. q̂ ≥ q ≥ q̃

After rearranging the first-order condition is

(1− n) [u0(q)− 1] + 1− βR

βRF (∆)

∙
F 0 (∆)∆

F (∆)

u00 (q) q

u0 (q)
− 1
¸
= λ̂− λ̃

where λ̂ is the multiplier of the first inequality and λ̃ the one of the second inequality.

Consider the first-order condition17and note that

∆ (q) =
Rβ (1− n)u0 (q)

1− nRβ

Suppose that the optimal q is such that ∆ = 1, i.e., q = q̂. In this case λ̃ = 0 and

λ̂ > 0 implying that Θ (q̂, R) > 0. Then we have F (1) = 1, F 0 (1) = 1−nR
R−1 and so

Θ (q̂, R) =
1− βR

βR

1− nR

R− 1
u00 (q̂) q̂

u0 (q̂)
< 0

which is a contradiction. Thus, in any equilibrium q < q̂ implying ∆ > 1.

Now suppose that the optimal q is such that ∆ = ∆̃, i.e., q = q̃. In this case

λ̃ > 0 and λ̂ = 0 implying that Θ (q̃, R) < 0. One can show that lim∆→∆̃ F (∆) =∞,

lim∆→∆̃ F 0 (∆) = ∞, lim∆→∆̃
F 0(∆)∆
F (∆)

= ∞ and lim∆→∆̃
F 0(∆)∆

F (∆)F (∆)
= (1−1/R)

(1/∆)2(1−n)(∆−1)2 .

Moreover, (1− n) [u0(q)− 1] = 1/β − 1. Accordingly, we get

Θ (q̃, R) = 1/β − 1 + 1− βR

βR

R (1− βn)2

(R− 1) (1− n)

u00 (q̃) q̃

u0 (q̃)

17The following proofs omit many intermediate steps. A file containing the full proof is available
upon request.
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Consider first R→ 1. Then we have limR→1Θ (q̃, R) = −∞. Now consider R→ 1/β.

Then we have limR→1/β Θ (q̃, R) = 1/β−1 > 0. Since 1−βRβ
(1−βn)2

(R−1)(1−n) is monotonically

decreasing in R we have a unique critical value R such that Θ
¡
q̃, R

¢
= 0. Thus if

R < R, q = q̃ and if R > R, q solves Θ (q,R) = 0.
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