Presentation at the 12th UK Stata Users Group meeting

London, 11-12 Septermber 2006

Marginal effects and extending the Blinder-Oaxaca

decomposition to nonlinear models

Tamás Bartus

Institute of Sociology and Social Policy

Corvinus University, Budapest

E-mail: tamas.bartus@uni-corvinus.hu

Outline

- Brief description of the Blinder-Oaxaca decomposition
- Motivation
- Extending the Blinder-Oaxaca decomposition to nonlinear models
 - o marginal effects approach
 - $\circ~$ estimation of standard errors
- The gdecomp command
- Empirical example
- Discussion

Substantive problem

- (1) To what extent can observed racial/gender differences be attributed to to the fact that returns to characteristics x₁...x_K (endowments) is lower among blacks/women than among whites/men?
- (2) To what extent would the observed group difference be further reduced if blacks/women had the same endowment than whites/men do, provided there is no difference in returns to characteristics x₁...x_K?

Statistical solution to the problem (Blinder 1973, Oaxaca 1973)

- Estimation stage. Estimation of $E(Y_g) = a_g + b_g x_g$ for each racial/gender group $g(g = \{0,1\})$
- *Post-estimation stage* Calculation of three quantities:
 - $\circ E = (\mathbf{x}_1 \mathbf{x}_0) \mathbf{b}_1 \qquad \underline{e} \text{ndowment effect}$
 - $C = (\mathbf{b}_1 \mathbf{b}_0) \mathbf{x}_0$ <u>c</u>oefficient effect ("explained discrimination")
 - \circ U=a₁-a₀ <u>unexplained part</u>

Main motivation

- The postestimation stage of standard decomposition is not valid if nonlinear models are used in the estimation stage; there are some decomposition results for nonlinear models (Fairlie 1999, Yun 2004)
- Several important measures of (dis)advantage are categorical or count variables, like unemployment, number of children, teenage pregnancy, marital status, imprisonment (see the concept of underclass)
- Available user-written programs (decomp, decompose and oaxaca) do not extend decomposition to nonlinear models

Other ambitions

- Graphical interpretation
- Providing detailed decomposition, that is, identifying individual contributions of variables to C and E *Note*: objection to detailed decomposition is the "identification problem" (Oaxaca-Ransom 1999, Gelbach 2002): C and U parts are sensitive to the choice of the reference category of dummies and to changes in the scaling of continuous variables

Extending the Blinder-Oaxaca decomposition to nonlinear models I. The idea

Unpacking the Blinder-Oaxaca solution

The Blinder-Oaxaca decomposition methodology can be viewed as a package of two different ideas

- Substantive idea: the valid mathematical representations of the effect of discrimination and the effect of differences in endowments are (r₁-r₀)x₀ and (x₁-x₀)r₁, where r is a vector summarizing returns to the vector of relevant characteristics, x.
- Statistical idea: r=b -coefficients are rates of returns if linear regression is applied in the estimation stage

Suggested extension to nonlinear models

If nonlinear models were used in the estimation stage, $\mathbf{r} = \mathbf{b}$ obviously does not hold. Solution:

- The substantive idea should be considered to be true, whatever statistical model is used in the estimation stage.
- Although r#b after nonlinear models, the substantive idea suggests that r=m should hold, where m is the vector of marginal effects (or partial changes). *Proof presented on the next pages*

Extending the Blinder-Oaxaca decomposition to nonlinear models II. Proof

Claim: $E(Y_1) - E(Y_0) = (\mathbf{m}_1 - \mathbf{m}_0)\mathbf{x}_0 + (\mathbf{x}_1 - \mathbf{x}_0)\mathbf{m}_1$ **m** is the vector of marginal effects (or partial changes)

Proof

• Starting point is the decomposition presented in Fairlie (1999):

$$\overline{\mathbf{Y}}_{1} - \overline{\mathbf{Y}}_{0} = \left[\frac{1}{N_{1}}\sum_{k=1}^{N_{1}}F(x_{1}b_{1}) - \sum_{k=1}^{N_{0}}F(x_{0}b_{1})\right] + \left[\frac{1}{N_{0}}\sum_{k=1}^{N_{0}}F(x_{0}b_{1}) - \sum_{k=1}^{N_{0}}F(x_{0}b_{0})\right],$$
(1)

where $F(\bullet)$ denotes the cumulative probability function.

Taylor-series expansion around sample means transforms (1) into

$$\overline{\mathbf{Y}}_{1} - \overline{\mathbf{Y}}_{0} = \left[F(\overline{x}_{1}b_{1}) - F(\overline{x}_{0}b_{1})\right] + \left[F(\overline{x}_{0}b_{1}) - F(\overline{x}_{0}b_{0})\right] + R_{1}$$
⁽²⁾

where R_1 is the residual reflecting the omission of higher-order terms.

Extending the Blinder-Oaxaca decomposition to nonlinear models II. Proof (continued)

• Following Yun (2004), the two terms in brackets in (2) can be approximated using two first-order Taylor series expansions around $F(\bar{x}_1b_1)$ and $F(\bar{x}_0b_1)$. Then (2) can be written as

$$\overline{\mathbf{Y}}_{1} - \overline{\mathbf{Y}}_{0} = f(\overline{x}_{1}b_{1})b_{1}(\overline{x}_{1} - \overline{x}_{0}) + f(\overline{x}_{0}b_{0})\overline{x}_{0}(b_{1} - b_{0}) + (R_{1} + R_{2}),$$
(3)

where $f(\cdot)$ is the probability density function and R_2 is again a residual term reflecting the omission of higher-order terms.

• Using a first-order Taylor series expansion $f(\bar{x}_0b_0)$ can be approximated as $f(\bar{x}_1b_1)$. Thus (3) becomes

$$\overline{\mathbf{Y}}_{1} - \overline{\mathbf{Y}}_{0} = f(\overline{x}_{1}b_{1})b_{1}(\overline{x}_{1} - \overline{x}_{0}) + \overline{x}_{0}[f(\overline{x}_{1}b_{1})b_{1} - f(\overline{x}_{0}b_{0})b_{0}] + (R_{1} + R_{2} + R_{3}),$$
(4)

where R_3 is again a residual term reflecting the omission of higher-order terms.

• Note that the terms $f(\bar{x}_g b_g) b_g$ are marginal effects in group *g*. Equation (4) can compactly be written as

$$\overline{\mathbf{Y}}_{1} - \overline{\mathbf{Y}}_{0} \approx m_{1}(\overline{x}_{1} - \overline{x}_{0}) + \overline{x}_{0}(m_{1} - m_{0}).$$
(5)

Estimation of standard errors

Constructing the variance-covariance matrix

 Following Jann (2005), the separate variance-covariance matrices for endowment and coefficient effects are

$$\mathbf{V}_{\mathbf{E}} = \left(\overline{\mathbf{x}}_{1}^{\mathrm{T}} - \overline{\mathbf{x}}_{0}^{\mathrm{T}}\right)\left(\overline{\mathbf{x}}_{1} - \overline{\mathbf{x}}_{0}\right)\mathbf{V}_{1} \qquad \text{and} \qquad \mathbf{V}_{\mathbf{CU}} = \overline{\mathbf{x}}_{0}^{\mathrm{T}}\overline{\mathbf{x}}_{1}\left(\mathbf{V}_{1} - \mathbf{V}_{0}\right).$$

• The above matrices are accumulated into the
$$\mathbf{V} = \begin{bmatrix} \mathbf{V}_{E} & \mathbf{0} \\ \mathbf{0} & \mathbf{V}_{CU} \end{bmatrix}$$
 matrix, and

• only the diagonal elements of **V** are kept (otherwise **V** is not positive definite).

Assumptions made

- $\overline{\mathbf{x}}_1$ and $\overline{\mathbf{x}}_0$ are fixed; their sampling variance is ignored (this can easily be relaxed, see Jann 2005)
- endowment and coefficient effects are independent

Syntax

```
gdecomp groupvar[, options]: estimation_command
```

gdecomp graph varname [, twoway_options]

This is not documented yet

where

groupvar specifies a binary (numeric) variable identifying the two groups (The group with lower/higher \overline{Y} is identified as group 0/1);

estimation_command should begin with a command supported by **margeff** (Note: the *Y* and *X* variables are in the *varlist* of *estimation command*);

varname is one of the varlist in estimation_command; and

options are

dxweight(high |low) reverse eform level(#) noheader nocoef

dummies(varlist_1 [\ varlist_2 ..])

dxweight(high |low)

- **dxweight** (*high*) implies that $E = m_1(\bar{x}_1 \bar{x}_0)$ this is the default
- **dxweight** (*low*) implies that $E = m_0(\bar{x}_1 \bar{x}_0)$

reverse

- The group with higher (lower) \overline{Y} is identified as group 0 (1)
- Useful if large values of Y measure outcomes which are negatively valued

eform

- Means that *depvar* is the natural logarithm of the outcome under study
- Marginal effects will be changes in the exponential of linear prediction

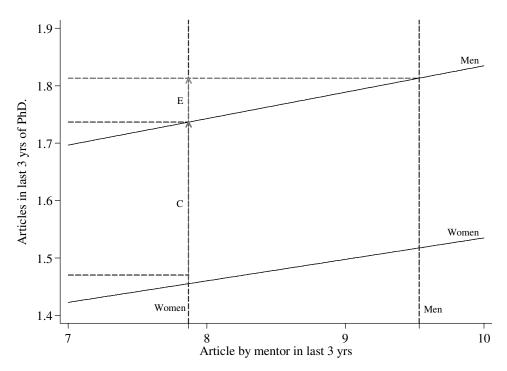
noheader / nocoef suppresses the display of overall / detailed decomposition results.

dummies(varlist_1 [\ varlist_2 ..]) see the help file for margeff

The gdecomp command III. The (undocumented) graph subcommand

This command displays the group-specific partial regression lines and visualizes the C+U and E effects:

. gdecomp fem : poisson art ment kidbin . gdecomp graph ment



This example refers to Empirical example III.

Data and variables described on next page.

Legend C / E = Effect of C+U / endowment effect

What you can see is that

- C here measures "total discrimination"
- Regression lines are parallel, U dominates the C+U component.
- Endowment effect is relatively small

Empirical example I. Data, variables, summary statistics

Data: Scientific Productivity of Biochemistry Phd students, used in Long (1997)

On-line availability: http://www.indiana.edu/~jslsoc/stata/socdata/couart2.dta

Definition and means of variables

Variable	Definition	Men (N=494)	Women (N=421)
fem	Sex: 1=female, 0=male.		
art	Articles in last 3 years of PhD.	1.88	1.47
Inart	Log of art + .5.	0.51	0.36
artbin	1 = 1 or more article in last 3 years of PhD, 0 = otherwise	0.72	0.67
ment	Article by mentor in last 3 years	9.53	7.87
kidbin	At least one child aged ≤ 5 .	0.47	0.19

How to explain the gender difference in scientific productivity?

(Assume for the sake of presentation that the difference is substantial and statistically significant)

Empirical Example II. Decomposition using linear regression: results

. gdecomp fem : regress lnart ment kidbin

Decomposition of differences in expected value of lnart after regress High outcome group: Men - Low outcome group: Women

Observed	difference	.14900966
Residual	difference	2.776e-17

lnart	Coef.	Std. Err.	Z	P> z	[95% Conf	. Interval]
	-+					
Model						
E	0035613	.0220912	-0.16	0.872	0468593	.0397368
С	0267357	.0532107	-0.50	0.615	1310269	.0775554
	-+					
E						
ment	.0427713	.0054856	7.80	0.000	.0320196	.0535229
kidbin	0463325	.0213993	-2.17	0.030	0882744	0043907
	-+					
С						
ment	0086776	.0476413	-0.18	0.855	1020528	.0846975
kidbin	0180581	.0237001	-0.76	0.446	0645094	.0283932
	_+					
U						
cons	.1793067	.0841065	2.13	0.033	.0144609	.3441524

Empirical Example II. Decomposition using linear regression: interpretation

Interpretation:

- Overall, neither the E nor the C part is significant.
- Detailed decomposition shows that both ment and kidbin have significant endowment effects. If women had
 as good mentors (as many kids) than men then women would publish more (less).
- The U part is statistically significant. But the C part is not significant, returns to observed characteristics do not depend on gender
- So, would the scientific productivity of the average woman increase if she were treated in the same way as the average man? The command

. lincom [U]_cons+[Model]C

reveals that the increase in productivity would be 0.15. This is approximately the observed difference.

Empirical Example III. Decomposition using poisson regression: results

. gdecomp fem : poisson art ment kidbin

Decomposition of differences in expected value of art after poisson High outcome group: Men - Low outcome group: Women

Observed	difference	.4122823
Residual	difference	.05424126

	art	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
Model							
	E	0218253	.0340048	-0.64	0.521	0884736	.0448229
	С	.041618	.0645936	0.64	0.519	0849831	.1682191
 Е		 					
	ment	.0765719	.0046746	16.38	0.000	.0674098	.0857341
	kidbin	0983973	.033682	-2.92	0.003	1644127	0323818
С							
	ment	.0678438	.0544729	1.25	0.213	0389211	.1746088
	kidbin	0262258	.0347136	-0.76	0.450	0942632	.0418116
 U		 					
	_cons	.3382484	.1059164	3.19	0.001	.130656	.5458408

Empirical Example III. Decomposition using poisson regression: interpretation

Interpretation:

- About 10 per cent of observed difference is residual. Residual difference reflects the losses during linearization, the term $(R_1 + R_2 + R_3)$ in Eq. (4).
- Again, we find
 - o significant endowment effects of ment and kidbin but no significant overall endowment effect;
 - o a significant U part, but a not significant C part
- So, would the scientific productivity of the average woman increase if she were treated in the same way as the average man? Here the answer is yes: the command
 - . lincom [U]_cons+[C]kidbin+[C]ment

reveals that the improvement is almost 0.4 articles (p<0.01), which is approximately the observed difference.

Empirical Example IV. Decomposition using logistic regression: results

. gdecomp fem : logit artbin ment kidbin								
Decomposition of differences in probability of artbin == 0 after logit High outcome group: Men - Low outcome group: Women								
Observed difference Residual difference				.05486263 00514448				
artbin	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]		
Model	 							
E	.0017739	.0122614	0.14	0.885	022258	.0258058		
C	0745998	.0410109	-1.82	0.069	1549797	.0057802		
 Е								
ment	.0212166	.004637	4.58	0.000	.0121282	.030305		
kidbin	0194427	.0113508	-1.71	0.087	0416898	.0028044		
сС								
ment	065841	.0387393	-1.70	0.089	1417687	.0100866		
kidbin	0087587	.0134597	-0.65	0.515	0351392	.0176218		
U								
_cons	.1328329	.0588945	2.26	0.024	.0174018	.2482641		

Empirical Example IV. Decomposition using logistic regression: interpretation

Interpretation:

- Again, about 10 per cent of observed difference is residual.
- Again, we find
 - o significant endowment effect of ment but no significant overall endowment effect;
 - o a significant U part, but a not significant C part
- So, would the scientific productivity of the average woman increase if she were treated in the same way as the average man? Here the linear combination
 - . lincom [U]_cons+[Model]C

lacks statistical significance.

Discussion

Progress made

- Extending the decomposition methodology for some nonlinear models
- Detailed decomposition results for each variable
 - Warning: C and U parts are sensitive to the choice of the reference category of dummies and to changes in the scaling of continuous variables (this is the "identification problem")
 - But the linear combination of U and C remains "identified" (Gelbach 2002)
 - Detailed decomposition might be useful; in our example, the nonsignificant E part hides significant individual contributions

Still missing

- Variance estimation: relaxing the assumption of fixed sample means
- Graphical interpretation (work under progress)

References

Blinder, A.S. (1973). Wage Discrimination: Reduced Form and Structural Estimates. The Journal of Human Resources 8: 436-455.

Fairlie, R. W. (2003). An extension of the Blinder-Oaxaca decomposition technique to logit and probit models. Yale University, Economic Growth Center, Discussion paper no. 873.

Gelbach, J. (2002). Identified Heterogeneity in Detailed Wage Decomposition. Unpublished paper (On-line: http://glue.umd.edu/~gelbach/papers/comment-or/submitted-12-16-02-comment-or.pdf)

Jann, B. (2005). Standard Errors for the Blinder–Oaxaca Decomposition. Paper presented on the 3rd German Stata Users Group Meeting, Berlin. (On-line: http://repec.org/dsug2005/oaxaca_se_handout.pdf)

Oaxaca, R. (1973). Male-Female Wage Differentials in Urban Labor Markets. International Economic Review 14: 693-709.

Oaxaca, R.L., Ransom, M.R. (1999). Identification in Detailed Wage Decompositions. The Review of Economics and Statistics 81: 154-157.

Yun, M-S. 2004. Decomposing differences in the first moment. Economics Letters 82: 275-280.