Three models for combining information from causal indicators

The sheafcoef and propcnsreg package

Maarten L. Buis

Institut für Soziologie
Eberhard Karls Universität Tübingen
http://www.maartenbuis.nl
Sometimes we have multiple variables that measure the same latent concept.
Sometimes we have multiple variables that measure the same latent concept.

For example,

- a set of questions that measure someone’s IQ or degree of depression, or
Introduction

- Sometimes we have multiple variables that measure the same latent concept.
- For example,
 - a set of questions that measure someone’s IQ or degree of depression, or
 - someone’s education and occupation may measure someone’s socioeconomic status.
Sometimes we have multiple variables that measure the same latent concept. For example, a set of questions that measure someone’s IQ or degree of depression, or someone’s education and occupation may measure someone’s socioeconomic status. This is a good thing! But...
Sometimes we have multiple variables that measure the same latent concept.

For example,

- a set of questions that measure someone’s IQ or degree of depression, or
- someone’s education and occupation may measure someone’s socioeconomic status.

This is a good thing! But, we need models to make the best use possible of this information.
Effect indicators and causal indicators

- **Effect indicators** are variables that are influenced by the latent variable.

- Causal indicators are variables that influence the latent variable.

![Diagram of IQ and Q1, Q2, Q3]

Maarten L. Buis

Three models for combining information from causal indicators
Effect indicators and causal indicators

- **Effect indicators** are variables that are influenced by the latent variable.
 - For example factor analysis (factor)

![Diagram of IQ and Q1, Q2, Q3 relationships]

Maarten L. Buis
Three models for combining information from causal indicators
Effect indicators and causal indicators

- **Effect indicators** are variables that are influenced by the latent variable.
 - For example factor analysis (factor)

- **Causal indicators** are variables that influence the latent variable.
Effect indicators and causal indicators

- **Effect indicators** are variables that are influenced by the latent variable.
 - For example factor analysis (factor)
- **Causal indicators** are variables that influence the latent variable.
 - For example:
 - sheaf coefficients (sheafcoef),
 - parametrically weighted covariates, and
 - MIMIC models (propcnsreg).
The basic model

MIMIC

\[y = \beta_0 + (\lambda_0 + \lambda_1 z_1) \eta + \varepsilon_y \]
\[\eta = \gamma_0 + \gamma_1 x_1 + \gamma_2 x_2 + \varepsilon_\eta \]
The basic model

parametrically weighted covariates

\[y = \beta_0 + (\lambda_0 + \lambda_1 z_1)\eta + \varepsilon_y \]
\[\eta = \gamma_0 + \gamma_1 x_1 + \gamma_2 x_2 \]
The basic model

Sheaf coefficients

\[y = \beta_0 + (\lambda_0 \eta) + \varepsilon_y \]
\[\eta = \gamma_0 + \gamma_1 x_1 + \gamma_2 x_2 \]
The empirical information we use to estimate the γs and λs is that we choose the γs to optimize the effect of η on y.

η is a latent variable, so we need to fix its origin and its unit. Fix the origin by setting η to 0 when x_1 and x_2 are both 0. Fix the unit by setting the standard deviation of η to 1.
The empirical information we use to estimate the γs and λs is that we choose the γs to optimize the effect of η on y.

The empirical information we use to estimate the variance of ε_η in the MIMIC model is that this model assumes that the total residual variance changes along z_1 according to

$$\text{var}(\varepsilon_y) + (\lambda_0 + \lambda_1 z_1)^2 \times \text{var}(\varepsilon_\eta)$$
identification

▶ The empirical information we use to estimate the γs and λs is that we choose the γs to optimize the effect of η on y.

▶ The empirical information we use to estimate the variance of ε_η in the MIMIC model is that this model assumes that the total residual variance changes along z_1 according to $\text{var}(\varepsilon_y) + (\lambda_0 + \lambda_1 z_1)^2 \times \text{var}(\varepsilon_\eta)$.

▶ η is a latent variable, so we need to fix its origin and its unit.
 ▶ Fix the origin by setting η to 0 when x_1 and x_2 are both 0.
 ▶ Fix the unit by setting the standard deviation of η to 1.
Data preparation

```stata
. sysuse nlsw88, clear
(NLSW, 1988 extract)
. gen byte occ2 = occupation
(9 missing values generated)
. recode occ2 (2=1) (3 4 11 12 = 2) (5/10= 3) (13=.)
(occ2: 1920 changes made)
. label define occ2 1 "higher services" 2 "lower services" 3 "manual"
. label value occ2 occ2
.
. gen byte hs = grade == 12 if grade < .
(2 missing values generated)
. gen byte sc = grade > 12 & grade < 16 if grade < .
(2 missing values generated)
. gen byte c = grade >= 16 if grade < .
(2 missing values generated)
.
. replace tenure = tenure / 10
(2180 real changes made)
. gen white = race == 1 if race < .
.
. gen ln_w = ln(wage)
```

Maarten L. Buis
Three models for combining information from causal indicators
Sheaf coefficients after a linear regression

```
. qui xi: reg ln_w i.occ2 hs sc c
. sheafcoef, latent( _I* ; hs sc c) post

| ln_w    | Coef.  | Std. Err. | t     | P>|t| | [95% Conf. Interval] |
|---------|--------|-----------|-------|-----|----------------------|
| p1      | 0.2000228 | 0.0124272 | 16.10 | 0.000 | 0.1756516 - 0.224394 |
| a1__Iocc2_2 | -1.528682 | 0.1075842 | -14.21 | 0.000 | -1.739668 - 1.317696 |
| a1__Iocc2_3 | -2.600971 | 0.0133063 | -195.47 | 0.000 | -2.627067 - 2.574876 |
| p2      | 0.144066 | 0.0124393 | 11.58 | 0.000 | 0.119671 - 0.168461 |
| a2_hs   | 0.9303067 | 0.2141218 | 4.34  | 0.000 | 0.5103867 - 1.350227 |
| a2_sc   | 2.205349 | 0.1904522 | 11.58 | 0.000 | 1.831848 - 2.578885 |
| a2_c    | 3.031032 | 0.133601  | 22.69 | 0.000 | 2.769024 - 3.293041 |
| _cons   | 1.933329 | 0.0378121 | 51.13 | 0.000 | 1.859174 - 2.007483 |
```

. test _b[p1] = _b[p2]
(1) p1 - p2 = 0

F(1, 2042) = 6.95
Prob > F = 0.0084
Sheaf coefficients after logistic regression

```
. qui xi: logit union i.occ2 hs sc c
. sheafcoef, latent(_I*; hs sc c) eform post
```

| union | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-----------|-----------|-----------|---------|------|----------------------|
| p1_e | 1.241842 | .0855004 | 14.52 | 0.000| 1.074265 1.40942 |
| a1__Iocc2_2 | 1.58573 | .5031156 | 3.15 | 0.002| .5996415 2.571818 |
| a1__Iocc2_3 | 2.585204 | .1054152 | 24.52 | 0.000| 2.378594 2.791814 |
| p2_e | 1.028296 | .0661664 | 15.54 | 0.000| .8986119 1.15798 |
| a2_hs | -1.15095 | 5.973281 | -0.19 | 0.847| -12.85837 10.55647 |
| a2_sc | .6553856 | 7.081814 | 0.09 | 0.926| -13.22471 14.53549 |
| a2_c | 1.394004 | 7.161541 | 0.19 | 0.846| -12.64236 15.43037 |
| _cons_e | .2045564 | .042083 | 4.86 | 0.000| .1220752 2.870376 |

(_e) indicates the variables whose coefficients have been exponentiated

```
. test _b[p1] = _b[p2]
   ( 1)  p1_e - p2_e = 0

   chi2(  1) =    6.02
   Prob > chi2 = 0.0142
```
Syntax of sheafcoef

sheafcoef,
latent(varlist_1 [; varlist_2 [; varlist_3 [...]]])
[eform post iterate(#) level(#)]
Parametrically weighted covariates

```
. propcnsreg ln_w white tenure, lambda(tenure white) ///
    constrained(hs sc c) nolog
```

| Coef. Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-----------------|------|------|-----------------------------|
| **unconstrained** | | | |
| white | .2176303 | .0366948 | 5.93 | 0.000 | [.1457098, .2895508] |
| tenure | .3317353 | .0330047 | 10.05 | 0.000 | [.2670473, .3964233] |
| _cons | 1.252169 | .0400622 | 31.26 | 0.000 | [1.173648, 1.330689] |
| **constrained** | | | |
| hs | .6364459 | .1429802 | 4.45 | 0.000 | [.3562099, .9166819] |
| sc | 1.931921 | .1414771 | 13.66 | 0.000 | [1.654631, 2.209211] |
| c | 2.75269 | .0907335 | 30.34 | 0.000 | [2.574856, 2.930525] |
| **lambda** | | | |
| tenure | -.0429628 | .0199328 | -2.16 | 0.031 | [-.0820303, -.0038952] |
| white | -.0938623 | .0249237 | -3.77 | 0.000 | [-.1427118, -.0450128] |
| _cons | .3049783 | .0251357 | 12.13 | 0.000 | [.2557131, .3542434] |
| **sigma** | | | |
| _cons | .4976345 | .0074532 | 66.77 | 0.000 | [.4830266, .5122424] |

LR test vs. unconstrained model: chi2(4) = 3.22 Prob > chi2 = 0.522

BIC(unconstrained) - BIC(constrained) = 19.91

This difference suggests very strong evidence for the constrained model
Maarten L. Buis

Three models for combining information from causal indicators

MIMIC model

```
. propcnsreg ln_w white tenure, lambda(tenure white) ///
   constrained(hs sc c) mimic nolog
```

Number of obs = 2229
LR chi2(8) = 137.63
Log likelihood = -1587.8862
Prob > chi2 = 0.0000

Constraint: sd of latent variables = 1

	Coef.	Std. Err.	z	P>	z		[95% Conf. Interval]	
ln_w	unconstrained	white	.1154214	.0275711	4.19	0.000	.061383	.1694599
		tenure	.354109	.0309777	11.43	0.000	.2933937	.4148243
		_cons	1.290095	.0384749	33.53	0.000	1.214685	1.365504
	constrained	hs	.7559966	.1473374	5.13	0.000	.4672207	1.044773
		sc	2.039394	.1383171	14.74	0.000	1.768298	2.310491
		c	2.805831	.0899889	31.18	0.000	2.629456	2.982206
lambda	tenure	-.0658272	.0182428	-3.61	0.000	-.1015825	-.030072	
	white	-.0035393	.0108898	-0.33	0.745	-.0248829	.0178044	
	_cons	.2547694	.0198169	12.86	0.000	.215929	.2936097	
sigma	_cons	.3016388	.0579338	5.21	0.000	.1880907	.4151869	
sigma_latent	_cons	.4684396	.0384153	12.19	0.000	.3931471	.5437321	
Syntax of `propcnsreg`

```
propcnsreg  depvar [ indepvars ] [ if ] [ in ] [ weight ] ,
constrained( varlist ) lambda( varlist ) [ 
standardized lcons unit( varname )
mimic
robust  cluster( varname ) level( #)
em_maximize_options  maximize_options ]
```
Causal indicators require a different strategy to recover the latent variable than effect indicators.
Conclusion (1)

- Causal indicators require a different strategy to recover the latent variable than effect indicators.
- Models with causal indicators recover the latent variable by scaling the observed indicators to optimize the effect of the latent variable on the dependent variable.
Conclusion (1)

- Causal indicators require a different strategy to recover the latent variable than effect indicators.
- Models with causal indicators recover the latent variable by scaling the observed indicators to optimize the effect of the latent variable on the dependent variable.
- A MIMIC model also recovers measurement error by making a parametric assumption on how the total residual variance changes over observed variables.
Conclusion (2)

Three models have been discussed:
Three models have been discussed:

- **Sheaf coefficients**: no measurement error, effect of latent variable is constant

- **Parametrically weighted covariates**: no measurement error, effect of latent variable changes over observed variables

- **MIMIC model**: measurement error, effect of latent variable changes over observed variables

The model with sheaf coefficients can be estimated using `sheafcoef`, the model with parametrically weighted covariates and the MIMIC model can be estimated using `propcnsreg`.
Conclusion (2)

- Three models have been discussed:
 - **Sheaf coefficients** no measurement error, effect of latent variable is constant
 - **Parametrically weighted covariates** no measurement error, effect of latent variable changes over observed variables
Conclusion (2)

- Three models have been discussed:
 - Sheaf coefficients: no measurement error, effect of latent variable is constant
 - Parametrically weighted covariates: no measurement error, effect of latent variable changes over observed variables
 - MIMIC model: measurement error, effect of latent variable changes over observed variables
Conclusion (2)

- Three models have been discussed:
 - **Sheaf coefficients**: no measurement error, effect of latent variable is constant
 - **Parametrically weighted covariates**: no measurement error, effect of latent variable changes over observed variables
 - **MIMIC model**: measurement error, effect of latent variable changes over observed variables

- The model with sheaf coefficients can be estimated using `sheafcoef`,
Three models have been discussed:

Sheaf coefficients no measurement error, effect of latent variable is constant
Parametrically weighted covariates no measurement error, effect of latent variable changes over observed variables
MIMIC model measurement error, effect of latent variable changes over observed variables

The model with sheaf coefficients can be estimated using `sheafcoef`,
the model with parametrically weighted covariates and the MIMIC model can be estimated using `propcnsreg`.
References

Bollen, Kenneth A.
Multiple Indicators: Internal Consistency or No Necessary Relationship.

Bollen, Kenneth A. and Richard Lennox.

The Treatment of Unobservable Variables in Path Analysis.

Heise, David R.
Employing nominal variables, induced variables, and block variables in path analysis.

Yamaguchi, Kazuo.
Regression models with parametrically weighted explanatory variables.