Adaptive dose-finding designs to identify multiple doses that achieve multiple response targets

Adrian Mander and Simon Bond

MRC Biostatistics Unit Hub for Trials Methodology Research

13 Sep 2013

MRC Biostatistics Unit Hub

Motivating example - Diabetes IL-2 trial

- Immune response primary endpoint (max) Treg % change from baseline over 5 days
- Injecting drug any concentration is available
- One possible dose-response model is the non-linear Emax model

Either pick design to estimate the whole curve or targeted responses

Motivating example - Diabetes IL-2 trial

- Immune response primary endpoint (max) Treg % change from baseline over 5 days
- Injecting drug any concentration is available
- One possible dose-response model is the non-linear Emax model

Either pick design to estimate the whole curve or targeted responses

D-optimal designs

A design (ξ) gives the doses (d_i) to choose and the relative frequency of patients on each dose (w_i)

$$\xi = \begin{cases} d_1 & d_2 & d_3 \\ w_1 & w_2 & w_3 \end{cases}$$

The **information matrix** for the design is defined as

$$M(\xi,\theta) = \sum_{i=1}^{3} w_i \frac{\partial f(d_i,\theta)}{\partial \theta} \frac{\partial f^{\mathsf{T}}(d_i,\theta)}{\partial \theta}$$

The **D-optimal design** maximises the (log) determinant of the information matrix:

 $\arg\max_{\xi}|M(\xi, heta)|$

D-optimal designs

A design (ξ) gives the doses (d_i) to choose and the relative frequency of patients on each dose (w_i)

$$\xi = \begin{cases} d_1 & d_2 & d_3 \\ w_1 & w_2 & w_3 \end{cases}$$

The information matrix for the design is defined as

$$M(\xi,\theta) = \sum_{i=1}^{3} w_i \frac{\partial f(d_i,\theta)}{\partial \theta} \frac{\partial f^{\mathsf{T}}(d_i,\theta)}{\partial \theta}$$

The **D-optimal design** maximises the (log) determinant of the information matrix:

$$rg\max_{\xi}|M(\xi, heta)|$$

doptimal.ado

Either given θ what is the D-optimal design OR estimate θ from a dataset to give the **locally D-optimal** design.

doptimal, theta(0 30 0.2) model(emax) mindose(0) maxdose(1.5)
doptimal using temp.dta, model(emax) mindose(0) maxdose(1.5)

Output is

Estimating model parameters for Emax model given the dataset Finding D-optimal design

The model parameters for the emax model are -3.7108234 32.536035 .13706979

The D-optimal design is

Doses 9.42e-175 .1159005 1.5 Weights .33454905 .33090189 .33454905

doptimal.ado

Either given θ what is the D-optimal design OR estimate θ from a dataset to give the **locally D-optimal** design.

```
doptimal, theta(0 30 0.2) model(emax) mindose(0) maxdose(1.5)
doptimal using temp.dta, model(emax) mindose(0) maxdose(1.5)
```

Output is

Estimating model parameters for Emax model given the dataset Finding D-optimal design

The model parameters for the emax model are -3.7108234 32.536035 .13706979

The D-optimal design is

Doses 9.42e-175 .1159005 1.5 Weights .33454905 .33090189 .33454905

- The models available in optimal.ado are linear, quadratic and 4-parameter logistic
- Optimize needs to optimize over a vector rather than a matrix
- Constraints i.e. weights sum to 1 and weights are between 0 and 1 doses are between mindose maxdose
- I plan to adapt the code to accept a vector of differentials for user-specified functions
- Symbolic differentiation in R

- The models available in optimal.ado are linear, quadratic and 4-parameter logistic
- Optimize needs to optimize over a vector rather than a matrix
- Constraints i.e. weights sum to 1 and weights are between 0 and 1 doses are between mindose maxdose
- I plan to adapt the code to accept a vector of differentials for user-specified functions
- Symbolic differentiation in R

- The models available in optimal.ado are linear, quadratic and 4-parameter logistic
- Optimize needs to optimize over a vector rather than a matrix
- Constraints i.e. weights sum to 1 and weights are between 0 and 1 doses are between mindose maxdose
- I plan to adapt the code to accept a vector of differentials for user-specified functions
- Symbolic differentiation in R

The study team wanted to estimate the dose-response curve but then decided to target 10% and 20% responses

- need to use the inverse function $f^{-1}(y,\theta) = d$
- e.g. for 20% response the dose $d_{0.2} = f^{-1}(0.2, \theta) = \mathbf{g}(\mathbf{0.2}, \theta)$.

We designed a study for 10 initial patients

• pairs of patients were put on the doses 0.04, 0.16, 0.6, 1 and 1.5 $(\mathit{IU} \times 10^6/m^2)$

Then we select the "best" model to determine future doses to minimize variances of targeted doses.

The study team wanted to estimate the dose-response curve but then decided to target 10% and 20% responses

- need to use the inverse function $f^{-1}(y,\theta) = d$
- e.g. for 20% response the dose $d_{0.2} = f^{-1}(0.2, \theta) = \mathbf{g}(\mathbf{0.2}, \theta)$.

We designed a study for 10 initial patients

• pairs of patients were put on the doses 0.04, 0.16, 0.6, 1 and 1.5 $(\mathit{IUx}10^6/m^2)$

Then we select the "best" model to determine future doses to minimize variances of targeted doses.

Need to calculate the (expected) **information matrix** after k patients for the design is defined as

$$M_k(\theta) = \sum_{i=1}^k \frac{\partial f(d_i, \theta)}{\partial \theta} \frac{\partial f^{\mathsf{T}}(d_i, \theta)}{\partial \theta}$$
$$Var_k(\theta) \approx \sigma_e^2 M_k^{-1}(\theta)$$

To select the next dose d^* for patient k+1 that minimises $Var_{k+1}(d_{0.2}, heta)$

Need to calculate the (expected) **information matrix** after k patients for the design is defined as

$$M_{k}(\theta) = \sum_{i=1}^{k} \frac{\partial f(d_{i}, \theta)}{\partial \theta} \frac{\partial f^{\mathsf{T}}(d_{i}, \theta)}{\partial \theta}$$
$$Var_{k}(\theta) \approx \sigma_{e}^{2} M_{k}^{-1}(\theta)$$

To select the next dose d^* for patient k + 1 that minimises $Var_{k+1}(d_{0.2}, \theta)$

$$Var_k(\theta) = \sigma_e^2 M_k^{-1}(\theta)$$

$$Var_k(d_{0.2}|\theta) \approx \frac{\partial g^T(0.2,\theta)}{\partial \theta} Var_k(\theta) \frac{\partial g(0.2,\theta)}{\partial \theta}$$
(1)

Now need to pick d^* and recalculate the above two equations

$$Var_{k+1}^{*}(\theta) = \sigma_{e}^{2} \left(M_{k}(\theta) + \frac{\partial f(d^{*},\theta)}{\partial \theta} \frac{\partial f^{T}(d^{*},\theta)}{\partial \theta} \right)^{-}$$

• Set θ to be $\hat{\theta}^{(k)}$, the estimate after k patients.

- Then plug $Var_{k+1}(d_{0.2}|\hat{\theta}^{(k)}, d^*)$ into equation (1)
- use optimize to minimise this function wrt d^*

$$Var_k(\theta) = \sigma_e^2 M_k^{-1}(\theta)$$

$$Var_k(d_{0.2}|\theta) \approx \frac{\partial g^T(0.2,\theta)}{\partial \theta} Var_k(\theta) \frac{\partial g(0.2,\theta)}{\partial \theta}$$
(1)

Now need to pick d^* and recalculate the above two equations

$$Var_{k+1}^{*}(\theta) = \sigma_{e}^{2} \left(M_{k}(\theta) + \frac{\partial f(d^{*},\theta)}{\partial \theta} \frac{\partial f^{T}(d^{*},\theta)}{\partial \theta} \right)^{-1}$$

• Set θ to be $\hat{\theta}^{(k)}$, the estimate after k patients.

- Then plug $Var_{k+1}(d_{0.2}|\hat{\theta}^{(k)}, d^*)$ into equation (1)
- use optimize to minimise this function wrt d*

$$Var_k(\theta) = \sigma_e^2 M_k^{-1}(\theta)$$

$$Var_k(d_{0.2}|\theta) \approx \frac{\partial g^T(0.2,\theta)}{\partial \theta} Var_k(\theta) \frac{\partial g(0.2,\theta)}{\partial \theta}$$
 (1)

Now need to pick d^* and recalculate the above two equations

$$Var_{k+1}^{*}(\theta) = \sigma_{e}^{2} \left(M_{k}(\theta) + \frac{\partial f(d^{*},\theta)}{\partial \theta} \frac{\partial f^{T}(d^{*},\theta)}{\partial \theta} \right)^{-1}$$

- Set θ to be $\hat{\theta}^{(k)}$, the estimate after k patients.
- Then plug $Var_{k+1}(d_{0.2}|\hat{ heta}^{(k)}, d^*)$ into equation (1)
- use optimize to minimise this function wrt d^*

$$Var_k(\theta) = \sigma_e^2 M_k^{-1}(\theta)$$

$$Var_k(d_{0.2}|\theta) \approx \frac{\partial g^T(0.2,\theta)}{\partial \theta} Var_k(\theta) \frac{\partial g(0.2,\theta)}{\partial \theta}$$
 (1)

Now need to pick d^* and recalculate the above two equations

$$Var_{k+1}^{*}(\theta) = \sigma_{e}^{2} \left(M_{k}(\theta) + \frac{\partial f(d^{*},\theta)}{\partial \theta} \frac{\partial f^{T}(d^{*},\theta)}{\partial \theta} \right)^{-1}$$

- Set θ to be $\hat{\theta}^{(k)}$, the estimate after k patients.
- Then plug $Var_{k+1}(d_{0.2}|\hat{\theta}^{(k)}, d^*)$ into equation (1)
- use optimize to minimise this function wrt d^*

core of my Mata code

```
Sbeta =optimize_init()
optimize_init_evaluator(Sbeta, &findbetahat_emax())
optimize_init_which(Sbeta, "min")
optimize_init_params(Sbeta, (0,1.25,1) )
optimize_init_argument(Sbeta, 1, data)
betahat=optimize(Sbeta)
```

```
e = (data[,2]-f_emax(betahat,data[,1]))
resvarhat = e'e/(rows(data)-3)
OIk = OIk_emax(betahat, data, target)
```

```
S=optimize_init()
optimize_init_evaluator(S, &findD_emax())
optimize_init_which(S, "min")
optimize_init_params(S, egbeta_emax(betahat, target))
optimize_init_argument(S, 1, OIk)
optimize_init_argument(S, 2, betahat)
optimize_init_argument(S, 3, resvarhat)
optimize_init_argument(S, 4, target)
p=optimize(S)
```

core of my Mata code

```
Sbeta =optimize_init()
optimize_init_evaluator(Sbeta, &findbetahat_emax())
optimize_init_which(Sbeta, "min")
optimize_init_params(Sbeta, (0,1.25,1) )
optimize_init_argument(Sbeta, 1, data)
betahat=optimize(Sbeta)
e = (data[,2]-f_emax(betahat,data[,1]))
resvarhat = e'e/(rows(data)-3)
OIk = OIk_emax(betahat, data, target)
S=optimize_init()
optimize_init_evaluator(S, &findD_emax())
optimize_init_which(S, "min")
optimize_init_params(S, egbeta_emax(betahat, target))
optimize_init_argument(S, 1, OIk)
optimize_init_argument(S, 2, betahat)
optimize_init_argument(S, 3, resvarhat)
optimize_init_argument(S, 4, target)
p=optimize(S)
```

A single simulation

Res var= 1

To handle the teams desire for two targeted doses we need the variance-covariance matrix of $(d_{0.1}, d_{0.2})$, we can minimise either

- The trace $Var(d_{0.1}, d_{0.2})$, or
- Determinant of $Var(d_{0.1}, d_{0.2})$.

Both performed well BUT one feature of the trial design that the investigators desired was dosing patients close to the two targets

• models with fewer than 4 parameters suggested doses in the middle of the two targeted doses.

Want to use optimise to find doses d_1^*, d_2^* , i.e. we want to find the next 2 doses.

- Need to add the two extra bits of information into $Var_{k+2}(\theta)$
- then calculate the trace using this variance estimate
 - $Var(d_{0.1}) + Var(d_{0.2})$

A single simulation

Res var= 1

The trial had a dose-decision meeting yesterday after the first 10 patients. I never asked permission to display the data but the non-linear models are fitting OK and the variance of the response is low.

Acknowledements

I would like to thank Frank Waldron-Lynch, John Todd, Linda Wicker and Larry (CIMR) for involving us in their study.

The trial had a dose-decision meeting yesterday after the first 10 patients. I never asked permission to display the data but the non-linear models are fitting OK and the variance of the response is low.

Acknowledements

I would like to thank Frank Waldron-Lynch, John Todd, Linda Wicker and Larry (CIMR) for involving us in their study.

I have produced two Stata commands

- optimal.ado to give the D-optimal design
- il2.ado more bespoke dose-finding function that I hope to make more generic (if interest)
 - these methods are still evolving.
 - the numerical methods of optimize() and deriv() seem to be holding up to this command