Repeated Measures Anova: the Wide, the Long and the Long

2007 West Coast Stata Users Group

Phil Ender
Statistical Consulting Group
UCLA Academic Technology Services

October 2007
ATS gets numerous questions on

- Analysis of variance, in general
ATS gets numerous questions on

- Analysis of variance, in general
- Repeated measures analysis of variance, in particular
ATS gets numerous questions on

- Analysis of variance, in general
- Repeated measures analysis of variance, in particular
- With repeated measures on some or on all factors
ATS gets numerous questions on

- Analysis of variance, in general
- Repeated measures analysis of variance, in particular
- With repeated measures on some or on all factors
- Most common stat packages used for anova at UCLA:
 - SPSS
 - SAS
Three approaches to repeated measures anova

- The Wide – Multivariate Models
Three approaches to repeated measures anova

- The Wide – Multivariate Models
- the Long – Anova Models
Three approaches to repeated measures anova

- The Wide – Multivariate Models
- the Long – Anova Models
- and the Long – Mixed Models
To illustrate the different approaches to repeated measures ANOVA, I will use the following example design:
To illustrate the different approaches to repeated measures anova, I will use the following example design:

- Two factors:
 - One between-subjects factor (A) with 2 levels
 - One repeated (within-subjects) factor (B) with 4 levels
Split-Plot Factorial 2x4

<table>
<thead>
<tr>
<th></th>
<th>b₁</th>
<th>b₂</th>
<th>b₃</th>
<th>b₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>a₁</td>
<td>s₁</td>
<td>s₁</td>
<td>s₁</td>
</tr>
<tr>
<td></td>
<td>a₂</td>
<td>s₂</td>
<td>s₂</td>
<td>s₂</td>
</tr>
</tbody>
</table>
¡Warning!

There will be some SAS and SPSS code in this presentation.

Sorry.
The Wide – Multivariate Models
Repeated Measures Anova

SAS proc glm

```
proc glm data=wide;
   class a;
   model y1 y2 y3 y4 = a;
   repeated b 4;
run;
quit;
```
SAS includes two kinds of output:
- Multivariate tests of b and a*b
SAS includes two kinds of output:
- Multivariate tests of b and a*b
- Univariate tests of a, b, and a*b
Assumptions

Multivariate assumptions:

Observations are multivariate normal
Covariance structure – unstructured
Assumptions

Multivariate assumptions:

Observations are multivariate normal
Covariance structure – unstructured

Univariate assumptions:

Nonadditivity assumption; no subject by treatment interaction
Covariance structure – compound symmetric
Plus all the standard ones concerning normality and homogeneity of variance, etc
Now For Some SPSS Code
Now For Some SPSS Code

point ... click

point ... point ... click ... click

point ... click ... click
Now For Some SPSS Code

point ... click

point ... point ... click ... click

point ... click ... click

Actually, the SPSS syntax code looks a lot like the SAS code
manova y1 y2 y3 y4 = a
Repeated Measures Anova

Multivariate Results in Stata

```
manova y1 y2 y3 y4 = a

/* multivariate test of a*b interaction */

matrix ymat = (1,0,0,-1\0,1,0,-1\0,0,1,-1)
manovatest a, ytransform(ymat)
```

Phil Ender
Repeated Measures Anova: the Wide, the Long and the Long
Repeated Measures Anova

Multivariate Results in Stata

\texttt{manova y1 y2 y3 y4 = a}

\texttt{/* multivariate test of a*b interaction */}

\texttt{matrix ymat = (1,0,0,-1\0,1,0,-1\0,0,1,-1)}
\texttt{manovatest a, ytransform(ymat)}

\texttt{/* multivariate test of b main effect */}

\texttt{matrix xmat = (1, .5, .5)}
\texttt{manovatest, test(xmat) ytransform(ymat)}
Missing data can be a killer
The Downside of Wide

- Missing data can be a killer
- Manova analyses use listwise deletion for missing data
The Downside of Wide

- Missing data can be a killer
- Manova analyses use listwise deletion for missing data
- If a single value for a subject is missing the whole subject is deleted
The Downside of Wide

- Missing data can be a killer
- Manova analyses use listwise deletion for missing data
- If a single value for a subject is missing the whole subject is deleted
- There are single imputation methods based on row and column means
The Long – Anova Models
The Anova Linear Model

\[Y_{ijk} = \mu + \alpha_j + \pi_i(j) + \beta_k + \alpha \ast \beta_{jk} + \beta \ast \pi_{ki}(j) + \epsilon_{ijk} \]
The Anova Linear Model

\[Y_{ijk} = \mu + \alpha_j + \pi_{i(j)} + \beta_k + \alpha \beta_{jk} + \beta \pi_{ki(j)} + \epsilon_{ijk} \]

- This linear model is fixed-effects only, there are no random-effects
The Anova Linear Model

\[Y_{ijk} = \mu + \alpha_j + \pi_{i(j)} + \beta_k + \alpha \ast \beta_{jk} + \beta \ast \pi_{ki(j)} + \epsilon_{ijk} \]

- This linear model is fixed-effects only, there are no random-effects.
- Can be more easily seen when expressed as a regression model,
 \[y = X\beta + \epsilon \]
The Anova Linear Model

\[Y_{ijk} = \mu + \alpha_j + \pi_{i(j)} + \beta_k + \alpha \cdot \beta_{jk} + \beta \cdot \pi_{ki(j)} + \epsilon_{ijk} \]

- This linear model is fixed-effects only, there are no random-effects
- Can be more easily seen when expressed as a regression model, \(y = X\beta + \epsilon \)
- Random effects are computed using different denominators for the various F-ratios
\[Y_{ijk} = \mu + \alpha_j + \pi_{i(j)} + \beta_k + \alpha \ast \beta_{jk} + \beta \ast \pi_{ki(j)} + \epsilon_{ijk} \]

- This linear model is fixed-effects only, there are no random-effects
- Can be more easily seen when expressed as a regression model,
 \[y = X\beta + \epsilon \]
- Random effects are computed using different denominators for the various F-ratios
- nonadditivity assumption - no block (subject) treatment interaction
The Anova Linear Model

\[Y_{ijk} = \mu + \alpha_j + \pi_i(j) + \beta_k + \alpha \times \beta_{jk} + \beta \times \pi_{ki}(j) + \epsilon_{ijk} \]

- This linear model is fixed-effects only, there are no random-effects
- Can be more easily seen when expressed as a regression model, \(y = X\beta + \epsilon \)
- Random effects are computed using different denominators for the various F-ratios
- Nonadditivity assumption - no block (subject) treatment interaction
- For this model \(\epsilon_{ijk} \) and \(\beta \times \pi_{ki}(j) \) are not separately estimable
data long;
set wide;
y=y1; b=1; output;
y=y2; b=2; output;
y=y3; b=3; output;
y=y4; b=4; output;
drop y1 y2 y3 y4;
run;
Repeated Measures Anova

SAS proc glm

```sas
proc glm data=long;
class a b s;
model y = a s(a) b a*b / ss3;
test h=a e=s(a);
run;
quit;
```
Repeating Measures Anova

Stata convert wide to long

```
reshape long y, i(s) j(b)
```
Repeated Measures Anova

Stata anova

```
anova y a / s|a b a*b /, repeated(b)
```
Repetido Anova

Stata anova

```stata
anova y a / s|a b a*b /, repeated(b)
/* inspect pooled-within covariance matrix */
matrix list e(Srep)
```
Along with the $e(Srep)$ matrix ...

- Allows evaluation of compound symmetry assumption
- Gives conservative p-values if assumption is not met
Stata manova also works with long data

\texttt{manova y = a / s|a b a*b /}
Stata manova also works with long data

```stata
manova y = a / s|a b a*b /

▶ Does not have a repeated option
```
Stata manova also works with long data

```
manova y = a / s|a b a*b /
```

- Does not have a repeated option
- Displays univariate F-ratios in multivariate format
- Output is a bit cluttered
Repeated Measures Anova

Stata manova also works with long data

```
manova y = a / s|a b a*b /
```

- Does not have a repeated option
- Displays univariate F-ratios in multivariate format
- Output is a bit cluttered
- Useful for multivariate repeated measures
There is also a user written ado

wsanova y b, id(s) between(a) epsilon
There is also a user written ado

```
wsanova y b, id(s) between(a) epsilon
```

- **-wsanova-** (John Gleason) – findit wsanova
Repeated Measures Anova

Using regression

recode s 5=1 6=2 7=3 8=4, generate(ss)
Using regression

recode s 5=1 6=2 7=3 8=4, generate(ss)

xi3: regress y e.a*e.b r.ss@i.a
Using regression

```
recode s 5=1 6=2 7=3 8=4, generate(ss)

xi3: regress y e.a*e.b r.ss@i.a

test _Ib_2 _Ib_3 _Ib_4

test _Ia2Xb2 _Ia2Xb3 _Ia2Xb4
```
Using regression

recode s 5=1 6=2 7=3 8=4, generate(ss)

xi3: regress y e.a*e.b r.ss@i.a

test _Ib_2 _Ib_3 _Ib_4
test _Ia2Xb2 _Ia2Xb3 _Ia2Xb4

test2 _Ia_2 / _Iss2Wa1 _Iss2Wa2 _Iss3Wa1 ///
 _Iss3Wa2 _Iss4Wa1 _Iss4Wa2 _Iss4Wa2
Regression comments

▶ Don’t use dummy coded variables
Regression comments

- Don’t use dummy coded variables
- Use -xi3- or -desmat- to create effect coded variables
Regression comments

- Don’t use dummy coded variables
- Use -xi3- or -desmat- to create effect coded variables
- -xi3- can create effect coding on the fly
Regression comments

- Don’t use dummy coded variables
- Use -xi3- or -desmat- to create effect coded variables
- -xi3- can create effect coding on the fly
- -desmat- (John Hendrickx) – findit desmat
- -xi3- (Mitchell & Ender) – findit xi3
- -test2- (Ender) – findit test2
Dummy Coding versus Effect Coding

F-ratios

<table>
<thead>
<tr>
<th></th>
<th>Dummy</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>A main effect</td>
<td>15.78</td>
<td>2.00</td>
</tr>
<tr>
<td>B main effect</td>
<td>35.96</td>
<td>127.89</td>
</tr>
<tr>
<td>A*B interaction</td>
<td>12.74</td>
<td>12.74</td>
</tr>
</tbody>
</table>
The Long again – Mixed Models
The Linear Mixed Model

$$y = X\beta + Zu + \epsilon$$
The Linear Mixed Model

\[y = X\beta + Zu + \epsilon \]

where

- \(y \) is the \(nx1 \) response vector
- \(X \) is the \(nxp \) fixed-effects design matrix
- \(\beta \) is the \(px1 \) vector of fixed effects
- \(Z \) is the \(nxq \) random-effects design matrix
- \(u \) is the \(qx1 \) vector of random effects
- \(\epsilon \) is the \(nx1 \) vector of errors
SAS proc mixed 1

```
proc mixed data=long;
class a b;
model y = a b a*b;
random intercept / subject=s;
run;
```
proc mixed data=long;
class a b;
model y = a b a*b;
repeated b / subject=s type=cs;
run;
Type 3 Tests of Fixed Effects

<table>
<thead>
<tr>
<th>Effect</th>
<th>Num DF</th>
<th>Den DF</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
<td>6</td>
<td>2.00</td>
<td>0.2070</td>
</tr>
<tr>
<td>b</td>
<td>3</td>
<td>18</td>
<td>127.89</td>
<td><.0001</td>
</tr>
<tr>
<td>a*b</td>
<td>3</td>
<td>18</td>
<td>12.74</td>
<td>0.0001</td>
</tr>
</tbody>
</table>
xtmixed y _Ia_2 _Ib_2 _Ib_3 _Ib_4 || s:

test _Ia_2

test _Ib_2 _Ib_3 _Ib_4

test _Ia2Xb2 _Ia2Xb3 _Ia2Xb4
Repeated Measures Anova

Stata xtmixed

\texttt{xi3 e.a*e.b}

\texttt{xtmixed y _Ia_2 _Ib_2 _Ib_3 _Ib_4 ///}\n\texttt{_Ia2Xb2 _Ia2Xb3 _Ia2Xb4 || s:}
Stata xtmixed

\texttt{xii3 e.a*e.b}

\texttt{xtmixed y _Ia_2 _Ib_2 _Ib_3 _Ib_4 ///
_Ia2Xb2 _Ia2Xb3 _Ia2Xb4 || s:}

\texttt{test _Ia_2}
\texttt{test _Ib_2 _Ib_3 _Ib_4}
\texttt{test _Ia2Xb2 _Ia2Xb3 _Ia2Xb4}
Once again, don’t use dummy coding
Stata xtmixed comments

- Once again, don’t use dummy coding
- -xi3- does not work directly with -xtmixed-
Once again, don’t use dummy coding
- `-xi3-` does not work directly with `-xtmixed-`
- Test command displays results as chi-square
- F approximation equals χ^2/df
SAS Covariance Types

SAS allows for a number of covariance structures:

autoregressive, heterogeneous autoregressive, compound symmetry, heterogeneous CS, Toeplitz, unstructured, and over a dozen more
SAS proc mixed revisited

```sas
proc mixed data=long;
class a b;
model y = a b a*b;
repeated b / subject=s type=ar(1);
run;
```
tsset s b

xi3: xtregar y e.a*e.b

test _Ia_2
test _Ib_2 _Ib_3 _Ib_4
test _Ia2Xb2 _Ia2Xb3 _Ia2Xb4
Comparing proc mixed w/ ar(1) and xtregar

- Results are close but not identical
Comparing proc mixed w/ ar(1) and xtregar

- Results are close but not identical
- proc mixed uses a REML estimator
Comparing proc mixed w/ ar(1) and xtregar

- Results are close but not identical
- proc mixed uses a REML estimator
- xtregar uses a GLS estimator
Repeated Measures Anova

proc mixed w/ ar(1) vs xtregar

<table>
<thead>
<tr>
<th></th>
<th>proc mixed</th>
<th>xtregar</th>
</tr>
</thead>
<tbody>
<tr>
<td>A main effect</td>
<td>1.65</td>
<td>1.94</td>
</tr>
<tr>
<td>B main effect</td>
<td>91.57</td>
<td>102.78333</td>
</tr>
<tr>
<td>A*B interaction</td>
<td>14.69</td>
<td>13.866667</td>
</tr>
</tbody>
</table>
For balanced designs the repeated anova and mixed models yield the same results.
For balanced designs the repeated anova and mixed models yield the same results.

Results are different for unbalanced designs.
Closing Comments

For balanced designs the repeated anova and mixed models yield the same results.

Results are different for unbalanced designs.

For missing data within subjects use mixed with FIML.
For balanced designs the repeated anova and mixed models yield the same results.

Results are different for unbalanced designs.

For missing data within subjects use mixed with FIML.

Repeated measures anova is not necessarily the best way to study change over time.
A web page with all of the Stata commands and complete output can be found at

The End